FIN77

User’'s Guide

Salford

The Compiler Specialists

7(’5)0 aie

IMPORTANT NOTICE

Salford Software Ltd. gives no warranty that all errors have been eliminated from

this manual or from the software or programs to which it relates and neither the
Company nor any of its employees, contractors or agents nor the authors of this
manual give any warranty or representation as to the fitness of such software or
any such program for any particular purpose or use or shall be liable for direct,
indirect or consequential losses, damages, costs, expenses, claims or fee of any
nature or kind resulting from any deficiency defect or error in this manual or such
software or programs.

Further, the user of such software and this manual is expected to satisfy
himself/herself that he/she is familiar with and has mastered each step described in
this manual before the user progresses further.

The information in this document is subject to change without notice.

May 1998

© Salford Software Ltd 1998

All copyright and rights of reproduction are reserved. No part of this document may
be reproduced or used in any form or by any means including photocopying, recording
taping or in any storage or retrieval system, nor by graphic, mechanical or electronic
means without the prior written consent of the Salford Software Ltd.

Preface

This user's guide describes the facilities available in version 3.55 and later of
FTN77(DOS/Win16), the Salford Software Fortran 77 compiler for 80386-, 80486-
and Pentium-based Personal Computers ruriiigDOS revision 5 and later. This
compiler and the applications generated from it can be run under DOS or in a DOS
box under Windows 3.1(1) or Windows 95. When used with Salf@@arwin+, it

can also be used to create Win16 applications for Windows 3.1(1) or Windows 95.

This guide also describes the facilities available in version 3.62 and later of
FTN77(Win32), the Salford Fortran 77 compiler for 80486 and Pentium based
Personal Computers. This edition of the compiler is suitable for the Windows NT
Operating System and for Windows 95. It can also be used with ClearWin+ in order
to generate Win32 applications for Windows 3.1(1) (using Win32S), Windows 95 and
Windows NT.

The guide concentrates on compiler-specific features and those areas of the Fortran
language where theNSI Standardél needs amplification.

The guide is not intended to be used as a Fortran language reference manual although
chapter 10 does contain a detailed guide to the features of input/output and chapter 12
is a comprehensive guide to character handling. For further information about Fortran
77 the reader is referred to one of the many published texts sidfeative Fortran

77 by Michael Metcalf (Clarendon Press ISBN 0-19-853709-3).

FTN77 provides a large number of useful subroutines and functions in addition to
those specified in thANSI Standard. Some of the functions that have been provided
are defined as intrinsic functions and are described in chapter 11. The remaining
functions and all of the subroutines are outlined in chapter 29 and described in the on-
line Help systems (one for DOS and one for Windows) and also in a companion
volume called th&TN77 Library Referencmanual.

On the next page you will find a list of chapter headings in this guide. A full table of
contents appears after the acknowledgements.

1ANSI X3.9-1978

FTN77 User's Guide

Chapter headings in this guide: page
L. INErOAUCTION ..o 1
2. Installation guide and getting started (DOS/Win16)................. 5
3. Installation guide and getting started (Win32)ccoeuuvee. 15
4. Compiling With FTNT77 ..ccooiiiiiiieee e 21
5. Using /LGO and /LINK........ccoooiiiiiiiiiiiiiiiiieeeeeee e 39
6. COMPIlEr OPLIONSevvviiiiiiiiiiiiiiiieieieeeeeee e 43
7. USING SDBG....oiiiiiiiiiiiiiee ettt e e e e e e 51
8. Program developmentoevvvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 75
9. Optimisation and efficient use of Fortran............ccccccccvvvennnns 85
10. Fortran iNPUL/OULPULceeiiiieeieiiii e 95
11. INtrinSIC fUNCLIONS......ccoiiiiiiiiiii e 139
12. Fortran 77 character handling facilities............cc.ccccoeiunnee. 157
13. Language exteNSIONS..........ccuviiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeee 177
14. The in-line assemblercccccccciee 193
15. The in-line assembler and DBOS...........ccccccovvviiiiiiiieennenn. 201
16. Mixed language programming.........ccccccvveveeeiiiiiiiiieeeeeeeenee. 209
17. The COMGEN ULIlItYcevviieiiiiiiiiie e 217
18. Calling the Windows API (WIN32)ccccceiiiiiiiiiiiiiieieeennn 223
19. Using LINK77, RUN77 and Libraries (DOS/Winl6)........... 229
20. SLINK (WIN32) ..oiiieiiiiiiiiee ettt 241
21. Using MK and MK32.......ccccuiiiiiiiiiiiiiiiieieeeeeeeeeee e 265
22, USING PIALO.....ceeiiiiiiiiiiiiiee e 277
23. DBOS (DOS).iiiiiiiiiiiiiee e ettt e e e s e e e e e et e e e e annnes 289
24. Running DBOS applications under Windows (Winl6) 307
25. Plotter Interfacing (DOS)uvvviiiieiiiiiiieiieeeeeeeeiiiieeee 313
26. Calling real mode libraries and programs (DOS)................ 315
27. Execution errors and IOSTAT values........ccccceevvvviiiinnnnen. 325
28. Error and exception handling (Win32)........ccccccvvvvvvinnnnnnne. 333
29. Overview of the FTN77 run-time librarycccccceeininnnnns 335

Some chapters relate only to one version of the compiler (diS/Winl6 or Win32).
These are distinguished in the even page header. In chapters that are largely common to bc
versions, sections that relate only to one version are presented with a shaded background.

Acknowledgements

* % %

FTN77 is a registered trademarks of Salford Software Ltd.

DBOS, Salford C++,SLINK and ClearWin+ are trademarks of Salford Software
Ltd.

FTN9O is a joint trademark of Salford Software Ltd and the Numerical Algorithms
Group Ltd.

MS-DOS, Windows, Windows 95 and Windows NT are trademarks of Microsoft
Corporation.

BRIEF is a trademark of Borland International Inc.
Intel is a registered trademark of Intel Corporation.
AUTOMAKE is a trademark of Polyhedron Software Ltd.

FTN77 User's Guide

Vi

Table of Contents

L) (o To [UTox 1o o 1

THRE COMPIIET. ... et eeaeeeeees 1.

High COMPIlAtioN SPEEA.....cciii i eaeaes 1
(0] o] [=To1 A ot Lo [= PP PPPRUURRRS 1
COMPIIE-tIME QIAGNOSTICS. ... eeeeeeeeiiiiitiittitttete e e e e e e e e e e ettt ettt ettt e eeeetaseeebbebeebbbeennnn e e e e eas 2
RUN-tIME IagNOSTICS ..o e e e e e e e e e e e e e e e e e et e e e eaeeeeeeeeenaes 2
SOUICE [EVE] AEDUGGEL. ...ttt eeeas 2
IN-lINE ASSEIMDIET. ..ottt 2.
Other [anguage EXIENSIANS..........ooiiiiiiiiieeeeieee ettt e e e e e e e e e e e aeaeeaeteeeeeeeeeeessnsreneees 3
POrtaDIlIty GIAS. ...eeeeeiiiiiiiiie s 3....
Mixed language programming and liIBraries. ..o 3
ClEAIWWINttt e e e e e e e et e e e e e e e s r e e e s s e nanen 3

Installation guide and getting started (DOS/WINL16)ccccevvevvviieeeiiiiiiiniiiiiinnnn, 5

Hardware reQUINEMENTScoeiiiii ittt et e e e et e et e e e e e e« s 5
INSTAIING FTNT 7.t e s e e e e e e e e e e e e e e e e e e eeeeeeee et e eeeeeeeeeeeeeeebbbebebbebebnnnnn SRR
A SIMPIE EXAMIPIE. ...ttt e ettt 8
LCT=] oo IR} = U (=0 PP 9

The HELPT77 ULIITY.....oooiiiiiiiii e 13

Installation guide and getting started (Win32)......ccccoevvieeieiiiiiiiieeeeene e 15

Hardware reQUINEMENTScooiiiiii ittt et e e ettt e e e e e e e« s 15
[T =Vl 1o Vo T N N PR 15
A SIMIPIE EXBIMIPIE. ...ttt e ettt aeeaeeaas
LCT= [g IR} = U (=0 PP
USING The HNKET L.ttt e

Resource compiler (SRC)
How to use this guide to create WIin32 appliCationsS...........uuuvuuiiiiiiiiiiiiiii e 20

Contents-1

FTN77 User's Guide

4, ComPpPiliNG WIth FTIN 77 e e e e e e e e e e e e e e e e e e e aaaaeas 21
The compilation/I0adiNG PrOCESS. .. .ciiiii e e e e e e eas 21
COMPIIET SOUICE INPUL ...ttt e ettt ettt e e e et bbb bbb s e e e e e e e e e e e e as 22
(0] g o1 (=T o] o] 1 o] o 1< PP PPPPPPPPPPP 23.......
(o] o] 11 F= 4o] g 1] 110 To ST 23
Compilation Messages and SEALISHICS.uuuurrrurueiiiiiiere e 27
Specifying the properties of the 0bJECt COUR..........uviuiiiiiiiiii 29
Configuring the FTN77 COMMANG.........cooiiiiiiiiiiiiiiiiiiiiii eeeeeae 32
Reading compiler options from @ file............uuuiiiiiiiiii 33
COMPIIET AIFECLIVES ...ttt st e e e e e e e e e e e e e e e e e aeaeeeeeeeeeeene 34
The OPTIONS AIFCHVE.......uuiiiiiiiiii ittt e e 35
The NOLIST GIFECHVE. ...ttt e 35
The INCLUDE GIr€CHVE.uiiiiiiiiie ittt e e e e 36
THE PROFILE fACHITY.t eeiieiiii et e e e e e e e et e e e e e e et e e e e e easaa e eeaaeanenaaeeaes 36
5. O LS o I 1@ 2= To I I N 39
[7= To = 12 o o o 0P PP 39
THE JLGO OPLION. ...ttt e e e e e e e e e e e e e e e e e e et et et e et e eeeeeeeeesannnnneenne 39.......
The JLINK COMPIIET OPLION. ... e e e e e e e e e e aaaaaas 40
Relocatable binary libraries and input fileS ...t 41...
THE THARDFAIL OPLOMN.....cciiiiiiiieeeeeeeee ettt e e e e e e e e e e e e e e e e e e eeee e et eeeeeeeeeaeasseenennennes 41
The JUNDERFLOW OPHON.. ...t e e e e e e e e e e e aaaaaas 42
THE TPARAMS OPHION. ..ot e aaeeeees 42
Opening INPUL/OULPUL FIES.......ooo i e e e e e e e e e ettt e e ettt e e e eeeeeeeeeeaeees 42
6. COMPIIET OPLIONS ..ot 43
(O 18 (o1 (=] (=] (=] (oD PSPPPPPY 43.....
(D12 =10 | ot] o g 11 [T do] o1 o] o 1= F PP 49
7. LU LS 0o TS 1] 2 1 51
111 oo [FToi 1To] o P TP TP PP PP P TP PPPPPPRPRR 51
INVOKING SDBG ...t e e e e e e e e e e e e e e e e e e aaaeeeeeeeen 52.....
LOCALION OF SOUICE fIlESeiiiiieiiie et e e e e e e 53
USING SDBG.....coiiiiiiiiiiiiiiiie ettt s e s e e oo oo e e e e e e e e e e e e e e e e ettt et ettt e et e eeeeetaatbbbbtbeeebe b ennnnnan 54.
(D2 o] oY1 o [1 PP 55.......
The StACK/STAIUS WINTOW ...t ie ettt ettt e e et e e e e e s s r e e e e e e e s s e 55
SOUICE COUE WINTOMttt ettt e e ettt e e ettt e e e e e s e e e ettt e e e e s s et bbb et e e e e e e s s et rnnneeeees 57
SettiNG DrEAKPOINTS ...ttt 58

Contents-2

Table of Contents

Setting conditional BreakpoiNtS.........cooooii 59
RUN L0 TINE 1ot 60...
SINGIE SEEPPING....eeiiiiiiiiii ittt e e e e e e e e e e e e e e e e e et et e et ettt ettt eeeeaararrrraranes 60
EXamining Variables.........coooiioi s 61
Profiling INFOIMELION.........ueiiiiie s 61
Miscellaneous INFOrMATIAN.cooiiiiiiiiii e e 62
VariabIES WINAOW.coiiiiiiiii et e e e s e e e e e e s 62
Data VIEWING WINOOWS........coiiiiiiiiiiiiieeieiiee ettt e e e e e e e e e e e e e e e et e eee ettt e eeeeeeesaeaeesesnnennnes 63
SIMPIE EXPIESSION. ... e a s 63
AATTAY . ettt e et e et e et e et e e e e e nnanans 64....
SHUCTUIEL L1ttt 65
MEMOTY AUIMP. ...ttt e e e e e e e e e e e e e e e e e et et e et te et eeeeeeeesesaennennnne 66
DAt VIEW WINUOW.ceiieiiiiiiiiiiiee ettt e e s e e e e e s e e e e e e e s 68
Maching COUE WINAOWSuueiiiieiiiiiiiiie e e e s e e e e s snnnnee 68
COMMANG [INE... ettt e e e e st e e e e e e e s aee s 69...
COMIMANAS......ettteeii et e e e e e ettt e e e e e e s s e e et e e e e e e s snnrree et eeeesesnnnneed 69
CUStOMISING the AEDUGQEL. ... oo e e e e et e e e e e e e aa e e e e eeareaan 73
Program develOpPMENtoviiiiiii e 75
(D] E= Vo aTo 1S 1ol =Tt 11 = TP PPRSURRRP 75
CompPIilAtioN QIAGNOSTICS. .. i e e e e e e e e e e e e e aaaaaaas 75
[T g 1G] o L= o [[0) Ao PRSP PPPPPPRR 78
RUN-tIME QIagNOSTICS. ..o e aeeeeeeaees 78
Arithmetic oVerflow ChECKINGuuuuiiiiiiii e 79
Argument CONSISIENCY CRECKINGuuuriiiiiie s 80
Array SUDSCIIPE CNECKING.eeiiiiiiiiiiii e 81
Checking for undefined variables (/UNDEE)............ccooooiiiiiiiieas 82
ASSIGNED GOTO statement ChECKScoouiiiiiiiiiiiiei e 83
CharaCter GaLAevreiiiiee e 83......
Optimisation and efficient use of FOrtranccccoeevvviiiiicc e, 85
111 oo [FToi 1To] o P TP TP PP PP PP TP PPPPPPRPR 85
(0] 1110 01ES7= 1o PP P PP PR 85.
The /OPTIMISE COMPIIEr OPLION.....cciiiiiiiiiiieeeeeeeeeeeeeeee e e e e e e e e 85
USING 8 COPIOCESSO. ... iiieeeeieeeeee ettt ettt e o e e e e e e e e e e e e e e e aaeeeeeeaeeeeeeeeeeeannne 85
OPLIMISALION PrOCESSES. .. ittt i e e e e eeeas 86
HelpiNg the OPLIMISEE........ooiiiiiiiiiiee e e e e e e e e e e e e e et e et e e eeeeeeeeanes 90
EffiCiEnt USE OF FOIIAN 77........iiiiiiiiie et 90

Contents-3

FTN77 User's Guide

LADEIS. ...t Q......
INEANSIC FUNCHONS. ... ettt as 91
StAtEMENT FUNCHIONS....ceeeeeiiiiiiitee et e ettt e e aeb s 92
COMMON SUDEXPIESSIONS......ciiiiiiiiiiiiieiieiit ittt e e e e e e e e e e e e e e e e eaaaeeeeeees 92
[070] 4517 o | =TT PUPPPPPTNN 92
DUMMY AIray QIMENSIONSueueiititiiiiiirra et ettt et e e e eeeeeeeeeeebabbbbbeeeereennes 92
CharaCter Vari@bhIES.uuuueuiiiiieeee e 92
FOrMAL STALEMENTS ...t e ettt e e e e e et e e e e e et e eeaees 93
Switching off variable traCking............oooi i 94
10. o = LT] 010 7 10 1101 | 95
OV BIVIBWV. . ettt ettt ettt e e e e e e e e e e e e e et e ettt e eeeeeeeeaaaes 95
L= Tolo] (o =3P PP 96
UNFOrMAatted FECONM.......ce eeeeeeeaneee 96
Lol Eo 1= To [=Tolo T o PP PPPPPTTRUPPPPRPPPPN 98
ENGfIlE TECOIM. ... ittt 98
1= TTTRN 99
FIlE EXISTENCE ...ttt s 29
FIle NAMES .., Q9...
FIlE PrOPEITIES ...t eaaeaeeeeeeeees s 99....
FIlE SEIUCTUIE ...ttt s 99...
FlE POSITION ... e e e e e e e e e et e et e ettt et et ee e e e e eeerbaaarnae 100
FIlE BCCESS. . 101
INEEINAL FIES .. e 101
L8] 1 £ S PP PP PPPPPPPPPPPPPPPRY 102
L0 a1 5 =T | = OSSP 103
Internal file IdeNtifierooooie bt 103....
Error and end-0f-file CONAItIONS.......uuuuuiiiiiiii s 103
(7] g1 aT=Tox 11 aTo I {11= PSP 106......
The OPEN SEAIEMENL.....cco i e e e e e e e e e e et et et et eeeeeeeenanes 106
User-supplied input/output deviCe AriVEIS........covvuuiiii e 113
The CLOSE StatEMENL......ciiiiiii et e e et e e e e e e et e e e e e aasaan s 116
The INQUIRE SEAIEIMENL. ... e e e e e e e e e e e aaaees 117
Data transfer StAtEMENTSuuuiiii e e e et e e e e e e et eaa s 122
Formatted, SEQUENTIAL ACCESS... . ciiiiiiii e e e e e e e e e eeaeeans 128
Unformatted, SEQUENTIAI ACCESS.uuuiii et e e e e e e eeeenan 129
[0] {4 1 F= 11T B0 [Tt A= (o T 129
UNfOrmatted, QIrECE ACCESS. .. cuu ittt e e e e e e e eeas 130

Contents-4

11.

12.

Table of Contents

File POSItIONING STAIEMEINLS.uuiiiiiiitiiiiii e e e e e e e e e e e e et e et et et et e e e e ee e e e e bbb bbb b b e ebebbn s 131
BACKSPACE STAEMENL. .. .cciieiiiiie ettt e ettt e e e e et e e e eennes 132
ENDFILE STAEMENL.....ceeiiiiieiieeei ettt ettt e e e et e e e e eenai e eeeees 132
REWIND SEAIEIMENT. ...ttt e e et e e e e e e et e e e e eennnan 132

EXtensions t0 the StANdard...........ooooiiiii i eeeeeeeees 132
Extensions to the OPEN StatemMent........cooooiieiiiiiiee e 133
Extensions to the CLOSE StatemenL............couiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 133
Input/output of binary, octal and hex. Values...........cccoos 133
BUSINESS EQItING. ...eeeiiiiiiiiiiiiiiitee ettt e et bbb s 133
Miscellaneous INput/OUtpUt EXIENSIONS........coeiieiiiiiiiii s 137

INEANSIC fUNCHIONS. ... e e e e 139

T goTo B ox 110] o PP P PP 139

NON-ANSI INIINSIC FUNCLIONS. ...ttt ettt eb bbb nnaas 139

GeNEriC and SPECIIC NMAMEBS......uuuiiiitiiiiir e e e e e e e e e e e e ettt e ettt e e e e et e e e b bbb bbb b beb s 140

Intrinsic function names as actual argUMENLS.coooviieiii i 140

Integer arguments and FUNCION FESUIISuuuii s 141

Logical arguments and fUNCLION FESUILSuuurii s 142

INtriNSIC FUNCHON AESCIIPLONS.....coiiiiiiiiiie e e e e e e e e e e e e e e et e e e te et eeeeeeeeaee 142

Notes for the table of INtriNSIC fFUNCLIONS.........oooiiiiii e 148

Fortran 77 character handling facilities.............cccccvvvviiiiiiciii e, 157

CharaCter STALEMENTS ...ttt ettt ettt e e et e et e e eeeaaaaaaaaaaaeas 157

CRAIACIET CONSTANLS. ...t e e e e e e e e e e e e e e aeaaaaeaeeeeaeeees 159

(0 gF= 1= T (T o o] (T [0 TSSOSO PP PPPPPPPPPPINY 159

(01 g F= 1= Toa (=] gt L1 o T 4 1= 01 5P TT TP PP 160

Character expressions in parameter StatemMeNntS.........ooooiviiiiiiiiiiiiiiieee e B6l......c..e. 1

CRAIACTIET @ITAYS.....coiiiiiiiieeeeeeee e e e e e e e e e e e e e e e e et e e ettt teeeeeeeseesesaennnnes 162......

(0 gF= 1= T (= ST U o 1S3 (g [0 TP PPPPRPSUPU 162

Data statements involving Character @NILIESuuuuuuuuuiiiiiie e 163

Input and OUtPUL Of ChArACLEr HALA.uuvriitiiiiieeee e 164

Comparing CharaCler SIHNGSoiiiiiiiiiiiiie ittt e e e e e e e e e e et e et e et eeteteeeeeeeeseaneees 167

Intrinsic functions for handling character data................cooiiiiiiiiiii e 169
Conversion from character to integer and VICE-VELSA...........ccooeeeiveiiiiiiieeeeiiiiee e eeeeeeiiann, 169
Length of @ charaCter €Ntyii i a e 170
LOCAtING @ SUDSIIINGieeiiie et e e e et e e e e e e e e e e e e e esaa e aaaaees 170
Portable character COMPAIiSOMS.........uuuiiiiiiiiiiee e a e e eeeeaaaas 171

ChArACTEr TUNCHIONS. ...t e e e e e e e e e e e e e e e e eeteeeeeeeeees 172

Contents-5

FTN77 User's Guide

Characters as dummy and actual argUmMEILS.............ooiiiiiiiiiiiiiiiiiiiiii i eaeeeeas 173
Character entities in COMMON DIOCKS..........ccooiiiiiii s 175
13. T g T [0 oY Lo T =) (=T 1S (o o 1 177
INTEGER and LOGICAL data tYPEScceiiiiiiiiiiieeeeeeeeeeeeeeiti bbbt a e e e e e e e e e e e e aaaaaeaeas 178
REAL and DOUBLE PRECISION data tyPeS........cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiibiiii s a e e e e e e 179
Data initialisation in type StatEMENTScoooiiiiiiii e 179
Hollerith data and ENCODE/DECODEouutiiiiiiiiiiiiiiee e eeeeeeeeeeeees 180
Use of @, $and _ Characters iN NAMIES.ieeiiiiii i i 182
o] g o [N =T 01 SO PSPPPPRTRT 182
Octal, hexadecimal and DINArY VAIUES.uuuuuiuiiiiiiiee e 182
[070] 4517 0| T TP UPPPPTPTRPPPPPNY 182
INPUE NG OULPUL ...ttt e e e e e e e e e e e e e et e e eeeeaeeeeeeeeeesseennnees 183
WHILE SEALEMENT. ... ettt e ettt e e e e et et e e e e e e e n e e e e ennan el 4. 18
DO WHILE SEAEMIENLccieeiieie ettt e ettt e e e ettt et e e et e s n e e e e e nateaeeaes 184
END DO SEAEEIMENT. ...ttt ettt e et e e et ettt e e e e e e e n e e e et ennaneeeees 185
Extra subroutines and intrinSiC fUNCHIANS.........cooiiiiiiii s 185
[a1e=T g g Tl o] doTo=To (U= OSSPt 186
The INTERNAL PROCEDURE State€mMeNt..........cvvviiiiiiiiiiiiiiiiiiiinean e eeeeeeeaeeeas 186
The PROCEDURE SEAEMENL.......uiiiiiiitiiiiiiiiiiiiaae e s s e e e e e e e e e e eeeee et eteeeeeeeeeeeeesnnsssnnees 186
THe EXIT SEAIEMENT....ceiiiiiiiiiiiiitiet et e e e e ettt ettt ettt et b bbb nnnas 187
The INVOKE StatEMENL......coi i 187
Example of the use of an internal proCedure..........coooooiiiiiiiiii i 187
IN-INE 32-Dit @SSEMDIGE.....eeeetiiiit s 188
Numeric checking of variablesS and @rr@yS...........uuuuuuuueuummiiiee e 188
Special form of the DATA SAIEMEIL........uiiiie s 189
ConditioNal COMPITALION. ... e e e e e e e e e e e e aeaees 190
SPECIAL PARAMETER and /SPARAM........coutiiiee ettt e e e e aaaees 190
CIF, CELSE aNd CENDIEii ittt e e et a e e e e aaa e e e e e eeeaaneaens 190
IMPLICIT NONE ...ttt e e et e e et e e et e e e et e e e et e e et e e eab e eeeen 1. 19
INTERRUPT SUDIOULINES. ...ttt e e e ettt s e e e e e et s e e e e e eatts e e e eeeeabnnnnaeeaaees 191
14. The iN-liNE ASSEMDBIETuuiiiiiiiiiiiiiiiiieeee e 193
T oTo [0 ox 110] o PR PP PTT 193
The execution enviroNMeNt (WIN3B2)........oiiiiiiiiiiiiiie e e e e e e e e e e e aaaaaaes 193
The CODE/EDOC fACHITY. ...eetttiiiiiiiiiiiiiittietee e e ettt ettt e et bbbe e es 193
Mixing of Intel 32-bit Assembler and FOMran..... ... 194
[L= LSRR PPPPPUTUPPPPPPPP 195

Contents-6

15.

16.

17.

Table of Contents

Referencing FOrtran Variables..............uuuuueeeeieee e 195
LITEIAIS ...ttt e et e e mmnnnnenn—— e e e 196
Halfword and byte forms Of INSLUCHIONS............oooiiiiiiiiiii e 196
USING the COPIOCESSOL. ...ttt ettt ettt e e e e e eeas 197
INSEIUCHION PIEFIXES. ..ttt ettt e e e e e e e e e e eeeeas 197
Other assembler faCIlItIESoiiiiiiiii e 198
Calling MS-DOS AN BIOS......ccciiiiiiieiiiiit ettt ettt e et s bt e e st e e e ibeeee e 199
Other machine-level fAaCIlItIES..........coiiiiii e 199
o (o] g0 [Tt Lo [TP PPPPTTRPRRPPPRN 200....
The in-line assembler and DBOS..........coiiiiiiiie e 201
FTN77 programs and the DBOS €nVIrONMENT......ccoiiiiiiiiiieieeeeeeeeeeceeeeeeeeeeeeeeeee s 201
SEGMENE SEIECION FEYISIEIS. ...ttt 201
Variable STOTAgE e 201
Linkage to SUDIOULINES........coiiiii e 203
LI 1 IR (010111 = PP 206
The machine code programmer’s WINAOMW............ooiiiiiiiiiiiiiiiiiiiiiiiiiiiie e e e e e e e e e 207
Mixed language Programmingceuuueueiiiiieeeeeereeeeriis e e e e e e e eeeeerr e eees 209
111 de e [UToi 1To] o P PP T TP PPPPPPPPPN 209
Dz 1= 1Y o[PP P PURURTIINN 209
BaASIC JALA BYPES ..t a e e e e e e 209
AATTAYS ..t e ettt e e e e e e e e e 209......
(01 g F= 1= Toa (] g 10 To PP 211
Calling FTINTT7 fTOM C/CH ettt e e e e e e e e e ettt e e ettt et e et e ea e e b bbbt bb bbb s 211
111 oo [UToi 1To] o WO PP TP TP PP PPRPPPPRRTPTO 211
CHARACTER VAIADIES.ovviiiiiiiiiiiii et 211
AATTAYS ..ttt ettt e e et e e e e e a b 212......
INTEGER, LOGICAL and REAL.......cuttiiiiiiiiie ettt 212
COMMON DIOCKS. ...t e e 212
Calling C/C++ from FTNT77 OF FTNOQ......ouuiiiiiiiiiiii e e e e e e e e et a e e e e eaban e e eaaaens 212
Calling WINAows 3.1 fUNCLIONS........cuuiiiiiiiiiiic e e et e e e e s 215
Mixing I/O systems in C/C++, FTN77 and FTNOAQ........ccoooiiiiiiiiiiieeiiie e 215
The COMGEN ULIIEY....ceeeeiiiiiie e e e e e e e e e e 217
111 de e [UToi 1To] o P PP TP P TP PPPPPPPPPPN 217
COMMANG [INE ..ottt e e e e st e e e e e e st eeeas 217...
SOUICE fil@ FOIMAL. ... eiiiiiiiiie e e e e e e e e e e s L. 21

Contents-7

FTN77 User's Guide

18.

19.

20.

21.

Changing the ProCeSS MOUE/STALEuuuuieiiiiiiiiiii ettt eeeeeeeennnnas 218

INCLUDE QIFECHIVE.iiiiiiiiiiiiieiiie ettt et e ettt e eeeeeeeesaaebebbebbbeennnnnnnan 218

(070] 1011 11=T0] =S PPPPRUPTIINN 218

Variable deClarations. ... e 219

Data tYPE MAPPING. - et e ettt a e e e e e e e e et e e et e e eeeaaaee 221

[T 001 = LT o FS S PP PPPPRPRRRRN 221

Calling the WIindows AP (WIN32)cooeeiiiiiiiie e 223

T goTo B ox 110] o PR PP P PP 223

Calling Windows AP routines from FOMram.........ccoooiiiiiiiiieeeeeee e 223

Using LINK77, RUN77 and Libraries (DOS/WINL16)...........ccvvvviveiiiiiiiiiienieeeeenn. 229

T o To [0 ox 110] o PP P PP 229

THE LINKT7 ULIEY. ..ecteeeeee ettt e b e et e et e e e 230
LINKT77 COMMENAS.....ciiiiiiiiiiiiiiitiieiiet e e e e e e e e e e et et ettt ettt e eeaeee bbb abbeeennnnas 230
USING LINKT7 7.ttt et e e et e et e et 233

RUNNING the PrOGIaIM. ... e e e e e e e e e e e e e e e e e et e e e e e aaaeeeeees 233

THE RUNTT7 ULIEY. ..ecteeeeee ettt e ekt e e e st e e s st e e e 234

[o] = AT OSSOSO PP PPPPPPPPPRPTPTNE 235
Relocatable binary lIDraries.o 235
Dynamic INK [IDFari@sS.oooi i 237
Creating dynamic lINK [IDIrari©sS...... ... s 238
Common blocks in dynamic link lIDraries.............cooeeiiiiiiiiiiici e 239

SLINK (WINSB2) ..ttt 241

T goTo [0 ox 110] o PP P PP 241

(1= [T TR} = U (= PP 241

EXECULADIES. ...t aeaeaees 245

[o] = AT OO PP PPPPPPPPRRTRTRTNt 249

SLINK COMMEANT FEEIEINCE. ... e e e e e e e e e 253
INEEFACHIVE MOTE.... ..o e e e e e e e e e e e e e et et e e et eeteeeeeeeesnnnees 253
ComMMAN LINE MOE.......uiiiiieeee e e e e 259
Direct import of Dynamic LINK LIDrari@s..........ccuviviiiiiiiiiiiiiiiiiiii e 261

USING MK @Nd MK32......coiiiiiiiie s e e e e e e e e e e e eananana s 265

T oTo [0 ox 110] o PR PP PTT 265

TULOTIAL .o e e e e e e e e e e e e e e e ettt e e e e eeeeaaaes 266

RETBIBNCE ...t 270

Contents-8

22.

23.

Table of Contents

O LS o T d = o SRR 277
T goTo [0 ox1To] o PP P PP 277
Getting STAred......coo i 277....
THE OPLONS MENUL....coiiiiiiiiii e a e e e e e e e e et e e e e e eeteeeeeeeeeeeeeannees 278
THE TOOIDAL. ... e e e e e e e e e e e e e 278
EdItiNg SOUICE FlES......ciiiiiiiiiiiiiiieeee ettt e e e e e e e e e e e e e et et e et ettt ettt eeeeeeeaeebbebebbbbbennnnnnan 280
Creating @ NeW Fileooiiiiiiiii 0....... 28
Open an EXIStiNG Fleuuuiiiiiiiiiiiiiiiieeee 1....... 28
Compiling & SINGIE SOUICE FilB.......uuuiiiiiiiiiieeeee e 281
THE MESSAGE WINUOW. ...ttt e e e e e e e e e e e et e e et e et ettt eeeeeee e bbb bbb eebbebenennnnas 281
Changing File OPLIONS.........ciiiiiiiiiiiiieiiieieit et e e e e e e e e e e e e e e e eeeaeaaeeeeeeeenees 282
WOTKING WIth PrOJECIS . eteii et e e e e e e e e e e e et e e e e e e eaba e e eaeeensannes 282
Creating @ NEW PrOJECL.ttt e et s e e e e e e e e e e et e eeaaanaes 282
THe ProjeCt WINAOW e e e e e e e e et e e e e e e aaaa s 283
Compiling and BUilding @ PrOJECT........uiiiiiiiiiii e 284
B LT o)1 A 1YL= o O PSS 284
Projects - AAVanCed FEATUIEScoiviiii e e e e e e e e e eaneann 284
(O101S o] 421 g To [d =1 (o N PSRN 284
Yoot = (= = (o] g 1=V PO PSPPPPNt 85....... 2
StANAAIT WINGOWS ...ttt e e e e e e e e e e et e et ettt e e et et e e e bbb bbb bbb s 285
(0] 121 01 11 o PRSPt 286
BIOCK MArKiNg......coo oo 287
DBOS (DOS) . iiiiiiiiiiiee e 289
T goTo B ox1To] o PP P PP 289
DBOS and expanded MemOry MANAGELS.ouiiiiiiiieeiiiieeeiieeiib bbbt a e e e e e e e e aaaaaaaaaaaas 290
Network cards and expanded MemOry MANAGELSooeererrrrrreeeeeeeeeeeeee et ettt eeeeeeeeeeeaeerereeeeeee 293
DBOS coOmMMAaNd liNE ArgUMIEIILS.eeiiiiitiittiitiitiiiii e s e e e e e e e e e e e e e e e e e e et e ettt eeeeeeeeeesebeeeebeeneeennnnan 293
MEMOIY MEANAGEMENT. ..ottt e ettt e e et ettt e e et e et b et e e et e ate e e e e e eebbb e e eeeennes 296
ConfigUrINg DBOS..... .. e e e e e e e e e e e e et e et ettt ettt e et et bbb bbb e b e e b 297
The CONFIGDB ULIIY.vveeeiiiiieie ettt 297
The DBOS_SET and DBOS_RESET commands.........ccoccoovviiviiieeiiiiiiiee et 298
The paging algOrtM........ooiiiiiiie e e e e e e e e e e e et et e ettt ettt e e e e eeebaebbbbbeebbbeeenes 299
Writing programs Within MEMmMOIY CAPACILY.uierreeeeee e ee e et 301
Assembler instructions and the execution eNVIFONMENT...........coooviiiiiii s 302
Using assembler instructions to call DOS and BIQS............coooiiiiiiiiiii e 304
D] 210 S o 4 =T0 o] 4V 1 11> o JR PP UPPTTN 306

Contents-9

FTN77 User's Guide

24,

25.

26.

27.

28.

29.

Running DBOS applications under Windows (WIiNl6)ccccccvvvvviiiiiienenennn. 307
111 de e [UToi 1To] o PO PP TP PP PP PPPPPPPPPN 307
INSEAIING WDBOS.......ceiiiititiiiiiiiieaaa s ettt ettt ettt e eeeesea bbb bbb bbb e e e e e e e e e e e e e e e eeeeas 307
WINAOWS MOAESceiiieiiiiiit ettt e s aaaees 308......
Running programs in @ DOS DOX......coooiiiiiiiiiiiiiieiee e e e 309
SWItChiNg DaCK 10 WINAOWS.........oiiiiiiiiiiiiiee it e e e e e e e e e e e et e e et e e e et e eeeeeeenenneee 310
WDBOS VEISION NUMDEL ...ttt ettt e e ettt e e e e s st e e e e e e e s s s e 311
Plotter INterfacing (DOS) ...ccooiiiiei et e e e e e e e e e 313
THE PIOMET . e 313
CabliNg FEQUITEMENTS. ... e e e e e e e e e e e e e e e e e e et e e e e eaaaaeaeees 313
PANEI SETHINGS ...ttt e e e e e et e 313
PIOTHING PIOL FIlES. ..ttt s 14......3
Calling real mode libraries and programs (DOS)cccoeeviiieeeiiiiiiiveeecee e, 315
111 de e [UToi 1To] o PO PP TP PP PP PPPPPPPPPN 315
Real and proteCted MOAES...........ooiiiiiiiiiiiiiie e e e e e e e e e e e e et e e e et e eeeeeeeeeeeeseneees 315
Rules for calling real mode from protected MQAde..............uuuvuiiiiiiiiiiii e 316
Calling real-Mode lIDIAIES.cuvviiiiiiiiiii ettt eeeeeeeeaeeenes 317
Calling real-MOde AFIVELS.....cooi i 323
Execution errors and IOSTAT VAIUESooevieeiiiiiiiii it 325
Error and exception handling (WiN32)........ooeeviiiiiiiiiiieeeee e e e e 333
Overview of the FTN77 run-time library..........ccoevvvviiiiiie e 335
BiIt-NANAIING. ... 336
Character-NANAIING..........oooi i e e e e e e e et ettt e ettt ettt eeae b e e bbb ebeebeeennnnnann 336
(0f]paat=Talo l 1o T o F= 1= o NPT PP 337
(D= 1= =T 1 1] o H TP PP PP 337
Error and exXception NANAIINGooooiiiii e 338
File MANIPUIBLION ...ttt mmmmmmmmmmnne s 338
[CTr= o] 1o PSSP PP PP PRRPRRRRTN 340
(C1r= o] aTTedR o] 0] 1 (=T AT ot £=T= o TP PPPPP 341
LT =T o] a1 TotS3 o141 1 (=1 SO 342
HOE KBY .ttt e e ettt ettt et bbbttt as 342
IN=lINE et e e ee s 342

Contents-10

Table of Contents

IVIOUSE . ..ot e ettt e e e ettt b e e e et e et e e et e e e b e e e e e e ennn e as 343

L 101 =] USSP PPPPPPINY 344
PrOCESS CONTIOL ...ttt ettt e e 344....
RANAOM NUIMDEES.eeiiiiiii et 4. 34
LRy= =1 02T Lo =P PPPRPPRRRN 345
Yo 10 o o PP 345
SEOragE MANAGEIMENL ... e eiieetti ettt e e et e e et e e e e e e et e et st e et ee et b e e e e e eetba s e e e eesnbaneeeeeenbnnaaeees 346
SYSEEM INFOIMALIONL. ... e e e e e e e e e e e e e e e aaaaeaeeaeees 346
TEXE SCIEENIKEYDOAIMciiiiiiiiii ittt e e e e e e e e e e e e e e e et ettt et e ettt e eeeesessseenenenenees 347
TEXE WINOOWS. ...ttt e e e e e e e e e e e e e e e ettt e ettt ettt et e e et eeaebbbb bbbt bbb e eas 348..

TIME AN TALE ..o 348

Contents-11

FTN77 User's Guide

Contents-12

1.

Introduction

The compiler

FTN77, the Salford Fortran 77 compiler for 32-bit Intel microprocessor systems
represents a significant advance for Fortran programmers. It provides fast
compilation speed and a range of diagnostic, development and optimisation facilities
which together far surpass those usually available on either mainframes, minis or PCs.
These facilities and features are summarised below.

High compilation speed
FTN77 achieves typical compilation speeds of between 100,000 and 200,000 lines per
minute on a 66mhz Pentium machine.

The linkers,LINK77 andSLINK, are correspondingly fast. This means that the time
required to compile and link any reasonably sized Fortran program is considerably less
than when using other Fortran compilers and linkers on the same hardware.

Object code

The compiler incorporates many features such as constant folding and common sub-
expression recognition which make efficient object programs the norm.

Programs can be compiled in check mode, local optimisation mode (the default), or
globally optimised mode.

An option enables you to study the instructions generated in symbolic form.

FTN77 User's Guide

LINK77 and SLINK can be used for mixed language whigtINK will accept any
Win32 COFF object file.

Compile-time diagnostics

All compile-time error messages are in plain English and refer to names, labels etc. a:
appropriate.

Run-time diagnostics

Optional run-time checks are available for array bounds, arithmetic overflow,
subroutine argument consistency, undefined variables etc. Full trace-back through
subroutine calls, and post-mortem facilities are also available in the event of a run-
time error. A language extension allows a check that the numeric value assigned tc
any numeric variable or array is within a specified range. A compile-time option
enables all static variables and arrays to be initialised to zero zero or to a specia
“undefined” value at the start of executiomhese checks are sufficient to ensure that
almost all faulty programs that contain run-time errors fail cleanly and give an
informative error message.

Source level debugger

The compiler provides a full screen source level debugger which can be used with or
without the optional run-time checks being in force. The debugger makes it possible
to execute any size of program while viewing the source on screen, with the option to
view variable and array values, input/output status, calling sequences etc. in pop-uy
windows. The debugger is controlled by function keys and commands. The hardware
debugging facilities available in the 80486 family of processors are supported and the
debugger has a powerful conditional break pointing facility.

In-line assembler

FTN77 supports &£ODE/EDOC facility for in-line Intel assembly instructions in 32-
bit protected mode.

Chapter 1 Introduction

Other language extensions

Language extensions that are available inclDe/ END-DO and DO / WHILE
statementd-NCODE / DECODE, Hollerith data and business editing. Shifts, masks
and address handling are available as intrinsic functions which generate in-line code.
Conditional source code compilation is available usif, CELSE and CENDIF.

An INCLUDE directive allows nested source files to be automatically included in a
compilation. Declaration and use of variable types have been extended to
INTEGER*1, INTEGER*2, INTEGER*4, REAL*4, REAL*8 (synonymous with
DOUBLE PRECISION), COMPLEX*8 and COMPLEX*16, LOGICAL*1,
LOGICAL*2 andLOGICAL*4.

Portability aids

The provision of dANSI compile-time option allows programs to be validated both at
compile-time and run-time for compatibility with tHNSI Standard. ThéDREAL
compile-time option allows single precision programs to be automatically compiled
using double precision arithmetic throughout (where appropriate). It iscaessary

to use the generic intrinsic function names for this feature to function correctly.

Mixed language programming and libraries

Compiled code written iFTN77 can be linked with code from Salford C/C++ and in
both cases the programmer hascess to an extensive library functions and
subroutines foigraphics and other requirements. Also by usingGhEXTERNAL
statement in Fortran, you can define an interface between routines written in C and
Fortran and it is possible to call Fortran routines from C and visa versa.

ClearWin+

ClearWin+ is Salford’s revolutionary new Windows programming environment. A
simple series of function calls allows you to build a complex Windows interface with
little or no knowledge of Windows programming methods. For more information see
the Fortran edition of th€learWin+ User’s Guide

FTN77 User's Guide

2.

Installation guide and getting
started (DOS/Win16)

Hardware requirements

The hardware requirements for runnlRgN77 (DOS/Winl6)are as follows:

O

An 80386SX-, 80386DX-, 80486SX-, 80486DX- or Pentium-based PC, with a
hard disk.

If you are using an 80386, an 80387 maths coprocessor is recommended. Equally,
if you are using an 80486SX, an 80487 coprocessor is recommended (the
80486DX includes its own coprocessor). For those who do not have a coprocessor,
a coprocessor emulator is incorporated witBiROS. This offers the ability to

run DBOS applications containing floating point arithmetic without the use of a
coprocessor, but with unavoidable execution speed penalty. Applications written
in Fortran also support a Weitek coprocessor. Further information about the use
coprocessors is given on page 85.

O FTN77 requires version 5 (or later) MS-DOS, PC-DOS or Novell-DOS.

O The compiler requires a minimum of 2 Megabytes of mem&VN77 programs

are not limited to 640K and are capable of addressing all the memory available.

Installing FTN77

In order to installFTN77 follow these steps. Information given here may be
superseded by that given ilrREADME file on the first installation disc.

FTN77 User's Guide DOS/Winl16

O Ensure that the following parameters in y@®NFIG.SYS file have at least the
values shown here:

FILES=30
BUFFERS=30

O You will have been shipped two high density discs (eitjér@& 5%, inch). Put
the first disc in either drive A or drive B , change to this drive and type:

INSTALL

As you run through the installation sequence, peggsr for the default response
andEsc to abort from the sequence.

O The INSTALL program will read the fil&FILES.CFG from the disk and issue
warnings about running oth®0OS extenders. When you have read the warnings
enter “Y” to the prompts.

O INSTALL will use theDOS PATH to search for a previously installed version of
DBOS. If this directory cannot be found you will be asked for the name of the
directory forDBOS which you wish to create. This directory will hold nothing
butDBOS. You may choose to call it, for example:

C:\DBOS.DIR

INSTALL will now search fol=TN77. If it is not found you will be asked for the
name of the directory fdFTN77 which you wish to create. This directory could
be dedicated t&TN77 or you might wish to use the same directory as that for
DBOS. You may choose to call it, for example:

C:\FTN77.DIR

Now you will be shown the directories and asked to confirm that these are what
you want.

O The files are then copied from the release diskettes to the nominated directories,
with some of the larger files being converted from the compressed format in which
they appear on the release diskette. This process may take several minutes.

When the first diskette has been copied you will be prompted to remove it and
insert the second of the two diskettes. The contents of the second diskette are the
copied.

O You will then be asked if you want to update your Windov&YSTEM.INI file in
order to use th®/DBOS.386 virtual device driver. WDBOS.386 is essential if
you wish to rurClearWin+ applications or ruidBOS in aDOS box in Windows
enhanced mode (further information is provided in chapter 24).

O Next you will be asked if you want yoddlUTOEXEC.BAT file to be updated to
include theDBOS andFTN77 directories on the path, and to add the command

Chapter 2

Installation guide and getting started (DOS/Win16)

DBOS. If you choose the default response “No”, then you will need to edit the
AUTOEXEC.BAT file yourself as described below.

O You will then be given a terminating message, and prompted to terminate. When
you terminate the program, you will be reminded to reboot your system.

O If you have not allowedNSTALL to amend yourAUTOEXEC.BAT file, you
should now edit thAUTOEXEC.BAT file as follows:

1) Amend thePATH command to include the new directories containing the
compiler andDBOS.

2) Add the following command at the bottom of the file:
DBOS

Alternatively, you can type th®BOS command once, before you use the
compiler or any other program that u$280S. If you are using Windows

3.1(1) this must be loaded befol@BOS (see chapter 24) for further

information).

If you want to limit the amount of memory which is availableD8OS, you
should type:

DBOS <memory Timit>

where <memory limit> is the hexadecimal address (for exanpk&)S
200000 limits DBOS to two megabytes; for further details see page 305).

After loadingDBOS, theHELP77 utility may also be loaded (see page 13).

In the unlikely event that you have difficulty loadiB3OS (for example the
system hangs, dDBOS crashes with a traceback) you should progressively
remove non-essential driver§,SRs etc. from your CONFIG.SYS and
AUTOEXEC.BAT files, in order to find any possible incompatibility.

O After you have completed the installation sequence, you must reboot the system

DBOS is a Terminate and Stay ResideMBR) program. Once it has been loaded,
you do not need to reloddBOS again unless it is explicitly removed by use of the
KILL_DBOS command, or a systemhwot is performed.DBOS takes care of the
memory management and provides servicdsTie77 programs. A full description of
DBOS can be found in chapters 23 and 23.

For compatibility with previous versionBTN77 defaults toINTS and/LOGS. You
may wish to use thETN77 option /CONFIG at this point to change these options
(see page 32).

FTN77 User's Guide DOS/Winl16

A simple example

The example below shows a simple Fortran 77 program created usihg§Glhtext
editor and stored in a file naméty PROG.FOR.

PROGRAM SIMPLE

1 READ *,A,B,C
IF(A.LT.0.0)STOP
PRINT *,A,SQRT(A),B*C
GOTO 1
END

This program can be executed usingFA&77 command:
FTN77 MYPROG /LGO

with the following typical input/output:

[FTN77 Ver x.xx Copyright (c) Salford Software Ltd. 199x]
NO ERRORS [<MAIN@FTN77 - Ver x.xx]

Program entered
123

1.00000 1.00000 6.00000
456

4.00000 2.00000 30.0000
-100

Notes:
O FTN77 assumes by default that source files haveRBER suffix.
O A detailed specification of theTN77 command appears in chapters 6 and 5.

O FTN77 and all executable files produced BYN77 needDBOS to be loaded in
order to run.

ooln this example, the first parameter is the name of the source file containing the
Fortran 77 program antiGO means “load-and-go” (see chapters 4 to 6 for a full
description of all of the options available). Selecting this option means that the
program is compiled and executed immediately without the need to use the linker.

Chapter 2

Installation guide and getting started (DOS/Win16)

Getting started

We have provided a simple statistics program, together with some test data, to show
you some of the main featuresF6fN77. The relevant files can be found in the sub-
directory\DEMO which will have been copied on to your hard disk. To illustrate
these features work through the following steps:

O

O

You may find it helpful to print the fil&TATS.FOR (which is about 150 lines
long), so that you can refer to it during the demonstration.

Compile and execut8TATS.FOR using FTN77 with the “load-and-go” option,
/LGO, as follows:

FTN77 STATS /LGO

The results will be displayed on your screen. Notice that the file sSUfQR! is
implied when compiling (any other suffix should be given explicitly). @O

option avoids using the linker, and shows how quick it is to compile and execute a
program during development.

Now try some of the features which makdN77 an outstanding program
development tool. Try the compiler without any debugging aids by typing:

FTN77 STATS1 /LGO
The program fails, but the co-processor fault is not easily traced in its raw state.

You can now use some of the unique combinations of features providadNGY
in order to locate the cause of the error. Type:

FTN77 STATS1 /CHECK /LGO

/CHECK is used so that, when a run-time error occurs,RRN77 system can

help you to find it. A window appears which contains an error message. Press
Esc to remove this window and you will see a (red) arrow pointing to the faulty
source statement. PreB4& to display the help window for full details of the
debugger facilities. Pre&hift F1 to exit from the debugger.

In order to illustrate another powerfFTN77 feature, compile program
STATS2.FOR by typing:

FTN77 STATS2

Note that a warning message is displayed saying that the varllLUE" is
undefined.

Sometimes you will have an undefined variable in a program which is not so easy
to locate as this one and the compiler cannot output a compile-time message. In
this case, you can use tHgNDEF option to pinpoint the undefined variable at
run-time. Type:

FTN77 User's Guide DOS/Winl16

FTN77 STATS2 /UNDEF /LGO

The run-time system displays the error message and indicates the faulty source
program line. Predssc to clear this window and note the faulty line in the source
indicated by a (red) arrow.

O Often you will know where an error is, but not its cause. You can ugertkié7
window-based debugger to find out. Try the facilities of the debugger with
STATS.FOR (remember there is no error in this program). Type:

FTN77 STATS /BREAK

/BREAK implies both/CHECK and /LGO and causes the system to enter the
debugger. A window appears showing the source program, with a (red) arrow
pointing to the first statement. Press K&y, and theHELP window for the
debugger will appear. You will see from this that you can step through progam
execution in one of two ways either:

m statement by statement (pressiiQ) or by

m setting breakpoints by moving the cursor and predsig
You can also:

m display the values of all variables in a routird)(

m toggle F5 to switch between the normal display screen for the program
(including any graphical output) and the debugger window,

m and print the values of variables and array elements (BRENT <variable>
on the blank command line).

All these and many other facilities are described in P window. Try
stepping through the source code and printing the values of some variables. Wher
you have finished, preghift-F1 to exit from the debugger.

O So far we have always used tth&O option (either explicitly or implicitly) to run
the programs. With this option, no intermediate files are created. When the
program is free of errors (or when a number of modules must be linked together),
it can be compiled witfFTN77 and then linked with.INK77 as follows. Compile
STATS.FOR again using:

FTN77 STATS
This creates the filETATS.OBJ. Use the linker to link-load it with:
LINK77 STATS.LNK

STATS.LNK is a short ASCIl file of commands. These commands load
STATS.OBJ and generate the flSTATS.EXE. Now run STATS.EXE by

typing:

10

Chapter 2

Installation guide and getting started (DOS/Win16)

STATS
The program will display the same results as before.

(As an alternative to using the information fi@TATS.LNK, the LINK77
commands can be typed in directly as in the next example.)

The programEX1.FOR illustrates howFTN77 traps run-time errors which, in
large programs, can save many hours of valuable program development time.
Print the fileEX1.FOR. Now compile it, and link-load it as follows:

FTN77 EX1 /CHECK
LINK77

LO EX1

FILE

(Note thatLINK77 uses a “$” sign as a command prompt. In this ¢as&K77
reports that routin®lOWT is missing. This is deliberate.)

To execute this program with the option of entering the debugger, uBdJiiers
utility and type:

RUN77 EX1

From the display, choose the number of one of the deliberate run-time errors.
RerunEX1.EXE using the different numbers until you have seen all the errors that
can be trapped in this way.

Now try the profiling facility, which allows you to see how many times each
statement in the program has been exercised. Type:

FTN77 STATS /PROFILE /BREAK

PressF6 to execute the program, then Down Arrow to trace back to the main
program. PresEsc to clear the “program terminated” message, then [reéds
profile the program. Observe that the source window displays the required
information. Use thé&age Up/Page Dn and arrow keys to scroll the source in
the window. PresShift-F1 when you have finished with the profile window.

The combination ofPROFILE (to ensure that all code has been exercised) with
the checking optiotBREAK makesFTN77 a very powerful development tool.

If you want to see the assembler equivalent of the machine code generated by the
compiler, type:

FTN77 STATS /EXPLIST

The compiler produces a filETATS.LIS which is a source listing showing
assembler interspersed with the Fortran statements.

Using /LIST instead of EXPLIST produces a listing file of the source program.
Notice how all the compile-time options are listed at the start, and how levels of

11

FTN77 User's Guide DOS/Winl16

nesting ofDO and block-IF statements are indicated by .1 .2 etc. following the
line numbers at the left hand side.

O You might now like to look at some othdgfTN77 facilities which are
demonstrated by the prograBX2.EXE and EX3.EXE. These programs have
already been compiled and link-loaded. Before you execute the programs, you may
want to look at the comment lines at the start of the source versions of these
programs EX2.FOR andEX3.FOR).

EX2.EXE can be used to view a file in binary format. The user can scan forward
or backward through the file using the cursor keys. This program illustrates a
number of FTN77 features: windowsCODE/EDOC, and the use of virtual
memory file access.

The program should be used with a flename as a parameter, thus:
EX2 MYFILE
whereMYFILE is any file.

O EX3.EXE, which requires afcGA or VGA colour screen, illustrates the use of a
number of low level graphics primitives. The program draws the graphs of some
elementary functions. It requires no data and is executed by typing

EX3

O The programs of the fornGRAPHx.FOR also illustrate the use of graphics
primitives and require aBGA or VGA colour screen. Some of these (numbers 7
to 11) are supplied in executable formGRAPH4.FOR requires an on-line
graphics printer whilsERAPH5.FOR requires an on-line plotter. The command
lines are, for example:

FTN77 GRAPH1 /LGO
GRAPH7

O GWIN.FOR is a substantial program that implements a graphics drawing
application and illustrates how pop down graphics menus can be incorporated into
an FTN77 program. The program is presented in executable form and is almost
entirely mouse driven. In this case you type:

GWIN

O THREADS.FOR illustrates the multi-threading facilities that are available with
FTN77. This program is also supplied in executable form. The command line is:

THREADS

This brings us to the end of our “Getting started” tutorial. Now that you have been
introduced to some of the powerful tools that are available MitN77, you will
be ready to develop your own software.

12

Chapter 2 Installation guide and getting started (DOS/Win16)

HELP!

FTN77 provides aHELP facility which is invoked, in its simplest form, by typing:
FTN77 /HELP

This causes the system to output information about the USENT7 on the screen.
TheHELP subsystem consists of a large number of pages of useful information. Each
page may be longer than a screen, in which case you may scroll through the text by
using the arrow keys aritage Up, Page Dn .

The following function keys are the most useful:

F1 invokes a brief explanation on how to useltel P subsystem

F2 returns to the previoudELP screen (which may be from a previous in-
vokation ofHELP)

F3 gives an index oHHELP pages

Enter As you move the cursor down the page, references to other pages will
change colour. ThEnter-key will transfer you to that screen

Esc leaves theHELP subsystem

Each of the utilitied INK77, RUN77, MKLIB77 and theFTN77 debugger also have
a help option.

The on-line HELP system includes details of tHeTN77 run-time library. An
overview of the subroutines and functions in this library is presented in chapter 29.

The HELP77 utility

HELP77 provides pop up help information from within other applicatidAEN77-
based or otherwise). To us=LP77 you should include the following statements in
your AUTOEXEC.BAT file after theDBOS command:

HOTKEY77
HELP77

Any other hot key programs should be loaded aft@TKEY77. After you have
rebooted your PC youillfind that the keyCtrl Alt H will enter this help subsystem at

the general index. Items are selected using the cursor keys. The help information
provided is the same as that described on page 13 but notE2thaturns to the
previousHELP screen even after re-entering the help subsystem.

13

FTN77 User's Guide DOS/Winl16

TheHELP system includes many fragments of sample code.

14

3.

Installation guide and getting
started (Win32)

Hardware requirements

The hardware requirements for runniRgIN77 using the Windows 95 or Windows
NT operating system are as follows:

O An 80486DX or Pentium based PC, with a hard disk. It is feasible to use a 386 or
a 486SX based PC but these machines are not really adequate for Windows 95 and
Windows NT.

O 16 Megabytes of memory is recommended for the compiler and operating system.

O 4 to 5 Megabytes of free hard disk space.

Installing FTN77

The compiler and associated tools are distributed on high density floppy disks. The
installation program is a Windows application and can be run under Windows NT,
Windows 95 or Windows 3.1(1).

If you are installingFTN77 on a network, you should be logged in as the system
administrator. You should also install the system whilst running Windows NT or
Windows 95. This is necessary to ensure that the “Salford Compiler” group is added
to the common areas.

The installation program can be run from either the file manager or the program
manager. Insert the first disk into one of the floppy disk drives, say drive A. From
either of the above appétions, select th®un... item from the file menu. A dialog

box will appear prompting you for the command line. Enter the command

15

FTN77 User's Guide Win32

A:SETUP

and click on the OK button. The installation program will now load from the floppy
disk.

Now follow the setup instructions on the screen. These will guide you through the
setup procedure. You will be asked to specify the directory where you wish to install
the FTN77 compiler. You will also be asked to confirm the location of your Windows
SYSTEM directory (normallyC\WINNT\SYSTEM32 for Windows NT). If this is

the first installation, you will be asked to enter your name and other related details.

When the installation has been completed, a batch file cAT&7VAR.BAT will

have been created in th&'N77 directory. This sets the appropriate environment
variables and should be executed before using the compiler. As an alternative, yol
could add the directorZ:\WIN32APP\FTN77 to your path by using the System
option from the Control Panel (see the entry for “Environment Variables” in the
Windows NT system manual).

A simple example

16

The example below shows a simple Fortran 77 program created usigGlhtext
editor and stored in a file naméty PROG.FOR.

C PROGRAM SIMPLE

1 READ *,A,B,C
IF(A.LT.0.0)STOP
PRINT *,A,SQRT(A),B*C
GOTO 1
END

If you have not already executed N77VAR.BAT from the FTN77 directory, you
should do so now. This program can be compiled usingTh&7 command:

FTN77 MYPROG
with the following typical initial output:

[FTN77 Ver x.xx Copyright (c) Salford Software Ltd. 199x]
NO ERRORS [KMAIN@>FTN77 - Ver x.xx]

Notes:

O FTN77 assumes by default that source files have the .FOR suffix. In this example,
the first parameter is the name of the source file containing the Fortran 77
program.

O A detailed specification of theTN77 command appears in chapters 4 to 6.

Chapter 3

Installation guide and getting started (Win32)

Getting started

We have provided a simple statistics program, together with some test data, to show
you some of the main featuresf6fN77. The relevant files can be found in the sub-
directory\DEMO which will have been copied on to your hard disk. To illustrate these
features work through the following steps:

O

O

You may find it helpful to print the fil&STATS.FOR (which is about 150 lines
long), so that you can refer to it during the demonstration.

Compile and execut8TATS.FOR usingFTN77 as follows:
FTN77 STATS

followed by:
STATS

The results will be displayed on your screen. Notice that the file suffix “.FOR” is
implied when compiling (any other suffix should be given explicitly).

Now try some of the features which mak8N77 an outstanding program
development tool. Try the compiler without any debugging aids by typing:

FTN77 STATS1
and run the program.
The program fails, but the co-processor fault is not easily traced in its raw state.

You can now use some of the unique combinations of features providadNGY
in order to locate the cause of the error. Type:

FTN77 STATS1 /CHECK
and run the program.

/CHECK is used so that, when a run-time error occurs,FRR77 system can

help you to find it. When the program is run, a run-time error message is
displayed on the console detailing the cause of the error. The line which generates
the error can be located by using the debugger supplied with the compiler. A full
description of the debugger and its use can be found in chapter 7.

In order to illustrate another powerfFTN77 feature, compile program
STATS2.FOR by typing:

FTN77 STATS2

Note that a warning message is displayed saying that the variable “NVALUE" is
undefined.

Sometimes you will have an undefined variable in a program which is not so easy
to locate as this one and the compiler cannot output a compile-time message. In

17

FTN77 User's Guide Win32

this case, you can use tHgNDEF option to pinpoint the undefined variable at
run-time. Type:

FTN77 STATS2 /UNDEF
Now run the program by typing
STATS?

The run-time system displays the error message and indicates the faulty source
program line.

O If you want to see the assembler equivalent of the machine code generated by th
compiler, type:
FTN77 STATS /EXPLIST

The compiler produces a fil8ETATS.LIS which is a source listing showing
assembler interspersed with the Fortran statements.

Using /LIST instead of EXPLIST produces a listing file of the source program.
Notice how all the compile-time options are listed at the start, and how levels of
nesting oDO and blockH- statements are indicated by .1 .2 etc. following the line
numbers at the left hand side.

Using the linker

SLINK is the Salford 32-bit linker for Win32. It can be employed to link more than
one object file by adopting one of three modes of operation that are available.

a) Command line mode
For example typing:

SLINK MAIN.OBJ SUB1.0BJ SUB2.0BJ
will create an executable call®AIN.EXE.

b) Interactive mode

Typing SLINK will put the linker in interactive mode and generate a “$"
command prompt. For example:

SLINK

$ LOAD MAIN
$ LOAD SUB1L
$ LOAD SUB2
$ FILE FIRST

18

Chapter 3 Installation guide and getting started (Win32)

generates an executable callekdRST.EXE. If the nameFIRST had not been
supplied on the last line then the default name of the executable would be
MAIN.EXE.

¢) Script file mode
It is also possible to use an editor to create a script file and then supply this file on
the command line. For example suppose theSftRIPT.LNK contains:

LOAD MAIN
LOAD SUB1L
LOAD SUB2
MAP

FILE FIRST

The the command line:
SLINK SCRIPT.LNK

will produce the executablEIRST.EXE together with a link map in the file
FIRST.MAP. For further information see chapter 20.

HELP!

In order to call upon thETN77 help system either
O use the help option on the compiler command line:
FTN77 /HELP
O or click on the help icon in the “Salford Compilers” group,
O orissue the command
WINHELP32 FTN77.HLP

from a command prompt.

Resource compiler (SRC)

The Salford resource compil&RC, is supplied for Windows programmers. To
compile a resource type:

SRC <RESOURCE_FILE>.RC

The resultant object file should be linked to the program (SinyK.

19

FTN77 User's Guide Win32

For example:

FTN77 MYPROG
SRC MYRES.RC
SLINK MYPROG.0BJ MYRES.0BJ

See the Fortran edition of tlidearWin+ User’s Guiddor further information.

How to use this guide to create Win32 applications

The following chapters are not relevant to Win32:
O Chapter 19 describingiNK77, RUN77 and libraries.
O Chapter 23 describinpBOS.

O Chapters 25 to 26 describing BTRIEVE, connecting to a plotter, and using
realmode libraries respectively.

For a details of the Win32 runtime library see chapter 29.

20

4.

Compiling with FTN77

The compilation/loading process

A Fortran 77 program must be converted to binary form before it can be executed.
The process of producing an executable program takes place in two phases.

O Compilation : where the Fortran 77 program is checked for syntactic and
semantic correctness and relocatable binary code is output to an intermediate file
<filename>0OBJ, where <filename*OR is the name of the source file.

O Loading : using theFTN77 Linker, LINK77 or SLINK, where the relocatable
binary code is loaded together with:

1) any other relocatable binary code files,

2) library files that might have been produced by previous compilation(s) with
FTN77 (or other compatible compilers, such as Salford C++) and

3) routines from the=TN77 library, other system libraries and dynamic link
libraries.

FTN77 is controlled by means aompiler optionsandcompiler directivesThe first

part of this chapter describes many of the available compiler options. Some of the
compiler directives are described on page 34. A summary of all the compiler options
and directives is given in chapter 6.

If the program resides in a single file, the two phases of compilation and loading can
be combined by means of the compiler optibitNK whilst the “load and go” option
/LGO adds a third phase and automatically runs the progrdnGO and other
associated options are described in chapter 5. The u&éNBf77 together with
RUN77 to link and run DOS/Win16 programs, is described in chapter 18ail®ef

the Win32 linkerSLINK are given in chapter 20.

21

FTN77 User's Guide

The compiler option defaults described in this manual are those provided when
FTN77 is distributed . Pag@&2 describes how to reconfigure the compiler to give
different defaults.

Compiler source input

22

The compiler reads programs from text files which have been created by a suitable
ASCII text editor.

The source file should be specified as the first parameter 6tNE7 command as
follows:

FTN77 <pathname>

When <pathname> does not include an extension, the compiler searches for the file
<pathname*OR and if it finds it, it is compiled, otherwise the compiler outputs an
error message. Source files must hav®R as a suffix, or be specified with an
explicit extension. Any file name acceptable to the operating system can be used.

For example
FTN77 MYPROG

compiles the program in the filMYPROG.FOR which is in the current directory
whilst

FTN77 C:\FTN\PROJECT\MYPROG

compiles the fileMYPROG.FOR in the directoryC:\FTN\PROJECT\.

Only one source file name may be specified unless wildcards are used. For example:
FTN77 *.FOR

would compile all of theFOR files in the current directory. In this case an explicit
extension (likeFOR) is essential.

Note that any lower case letters in the source file are treated as upper case letters
except within character constants or Hollerith data.

Chapter 4 Compiling with FTN77

Compiler options

Compiler options may be specified as part ofRi&77 command line, for example:
FTN77 MYPROG /ANSI /LIST

caused-TN77 to compile a program held in a source &y PROG.FOR using the
options /ANSI and /LIST. The options may be abbreviated, but care should be
exercised to ensure that the abbreviated form is unique. The subsections below
describe some of the options that are available. A complete list is given in chapter 6.

Compilation listing

/LIST <pathname>r /LIST
The /LIST compiler option generates a program listing on a given file. |If
<pathname> is omitted, then the default name for the listing file is
<filename=LIS.

When a compilation listing is produced, it always contains the following
information:

O Date and time of compilation
Source file pathname
Compiler version number
Compiler options in use

Source statement listing

O O o o o

Error, warning and comment messages.

The listing consists of all source statements and directives, numbered from line 1.
If an INCLUDE file is listed (thdNCLUDE directive is described on page 36), its
numbering starts from 1 and numbering reverts to that of the previous file once the
INCLUDE file has been processed. At the end of the listing of each program unit,
three blank lines are output (unlgFAGETHROW is also used). Some error
messages, warnings and comments are interspersed with the listing of statements
and directives; others appear at the end of the listing of a program unit. More
details of such messages will be found in chapter 8. A summary of all compiler
messages is provided in chapter 6. A number of other features of the listing should
be noted:

O The line numbers of atNCLUDEd file are preceded by a slash character,
which itself is preceded by two digits specifying the level of nesting of the
INCLUDE directive.

23

FTN77 User's Guide

O The level of nestingn) of DO and/or blockH statements is indicated hy .

following the line number for non-zero valuesnof Each time &0 or block-

IF is started,n is incremented by one and each timé&@ or blockiF is
completed,n is decremented by one. In the unlikely event that this level
exceeds 99, two asterisks appear instead afl is not decremented until the
first non-comment line appears following the definition of eitherDkelabel

or of theENDIF statement.

Non-printing ASCII characters are represented by a query character (?) on the
compilation listing. Note that the actual non-printing character is, however,
treated as part of the source line to be processed.

The relative address of each statement is printed in hexadecimal at the right of
the line (unlessNO_OFFSET is also used). Relative addresses allow the user
to locate the source of run-time errors which occur in parts of the program
where no checks have been specified. This is the byte address of the first
machine instruction corresponding to the statement, relative to the start of the
current program unit. The relative address is incremented for each statement
for which the compiler generates code. Code generation ceases for the
remainder of the source file when a compilation error is found (unless
/PERSIST is also used).

The information in positions 73 to 80 is separated from the remainder of the
line by several spaces. This makes the problem of lines overflowing past
column 72 more noticeable from the compilation listing. Note, however, that
information contained in positions 73 to 80 is overwritten in the source listing
by the address offset information (unléskD OFFSET is also used). See
also page 27 and the optitdO_WARN73.

/APPEND_LIST <pathname>

is equivalent tdLIST but allows the compilation listing to be appended to the end
of an existing file, thus enabling the listings produced by several separate
compilations to be sent to the same file. For example, to cofBi@G1.FOR

and PROG2.FOR and send the resulting compilation listings to the file
BOTH.LIS, it is only to necessary to type:

FTN77 PROGI /LIST BOTH.LIS
FTN77 PROG2 /APPEND_LIST BOTH.LIS

[EXPLIST

24

is equivalent tdLIST but causes each source statement to be followed by the 32-bit
Intel assembler statements into which it was compiled. The assembly language
listing is fully symbolic. Information on 32-bit Intel assembler can be found in one
of the Intel Programmer’s Reference Manuals.

Chapter 4 Compiling with FTN77

IMAP
implies /LIST but also produces a list of all names used in a program unit in a
source file (see Figure 4-1) except for system routines and variables that have been
declared but not used (see alBULLMAP and/EXTREFS in chapter 6). A map
contains the following information for each name used in it:

USAGE local, common, argument etc.
TYPE integer, real, character etc.
COMMON BLOCK NAME if appropriate.

O O o o

OFFSET The offset field enables the run-time address of a variable to be
calculated if desired. For a variable or arrayG@MMON, the offset is its
position relative to the start of the common block. For a local variable or array,
the offset is its position relative to the local workspace poiEBiX@6) or the
stack frame pointel5BP%) of the program unit (see chapter 15).

O COMMENTS This information tells the user whether the name has been
implicitly typed, has appeared in an equivalence statement, is an array, or (in
the case of a local variable) if that variable has never been used in an
executable statement in the program unit.

Under Win32, if the LINK option is used together wittMAP then a linker
map is placed in the file <filename>.MAP.

IXREF
implies /MAP and is used to produce a cross-reference listing for each program
unit in a source file. The cross-reference listings for a program unit in a source
file appear after the compilation listing for that program unit. It excludes variables
that have been declared but never used (but seéFldd XREF in chapter 6).
An example of a cross-reference listing appears in Figure 4-2. The cross-reference
listing contains the source file line numbers of each reference to each label and
name in a program unit. The names and labels are sorted into ascending
alphanumeric or numeric order respectively.

An asterisk following the line number has a different meaning for a name and for

a label:

O For a name, the asterisk means that the named variable has been modified on
the line in question by, for example, an assignment.

O For a label, the asterisk means that the label was defined on the line in
question.

SALFORD UNIVERSITY FTN77 VER. X.xx C:\TESTER.FOR

COMPILER OPTIONS: LISTING INTS NOCHECK LOGS DYNM OFFSET NOANSI
NOPAGETHROW NOSILENT NO_OPTIMISE

25

FTN77 User's Guide

0001 MAP

0002 CHARACTER G(5),NG*72,NAME*14

0003 DIMENSION P(5)

0004 COMMON/ABCD/NG, NAME

0005 DATA P/4.0,3.0,2.0,1.0,0.0/

0006 DATA G/’A*,’B*,’C*,’D",’E"/ AT 001D

0007 1 READ(1,4,END=6)NAME, N AT 001D

0008 READ(1,4)NG AT 0080

0009 SUM = 0 AT 00C6

0010 Do 3 I=1,N AT 00CD

0011.01 Do 2 J=1,5 AT 0OED

0012.02 2 IF(NG(I:I).EQ.G(J))SUM = SUM+P(J) AT 0102

0013.01 3 CONTINUE AT 0127

0014 WRITE(2,5)NAME, INT(SUM/N+0.5) AT 0129

0015 GOTO 1 AT 01A4

0016 4 FORMAT(A,15) AT 01A9

0017 5 FORMAT(1X,A,” AVERAGE NUMBER OF POINTS’,I4) AT 01C4

0018 6 END AT 0203

Name Usage Type Offset Comments

G Local CHARACTER *1 Array EBX%+20 Saved

I Local INTEGER*2 EBX%-38 Implicitly
defined
Saved

INT Intrinsic - -

function

J Local INTEGER*2 EBX%-40 Implicitly
defined
Saved

N Local INTEGER*2 EBX%-22 Implicitly
defined
Saved

NAME Common /ABCD/ CHARACTER *14 +72

NG Common /ABCD/ CHARACTER *72 +0

p Local REAL Array EBX%+0 Saved

SUM Local REAL EBX%-36 Implicitly
defined
Saved

Common block /ABCD/ is 86 bytes long
End of compilation - Clocked 0.5 seconds

Figure 4.1 A compilation listing and compile-time map

26

Chapter 4

CROSS-REFERENCE MAP

G

INT

NAME
NG

p

SUM
LABEL
1
LABEL
2
LABEL
3
LABEL
4
LABEL
5
LABEL
6

10

14

6*
12

12*

13*

17*

18*

Compiling with FTN77

12

14
7* 14
8* 12
12
14

16*

Figure 4.2 Cross-reference for the program Figure 4.1

Note: The cross-reference facility has no means of knowing whether the actual
arguments of a function or subroutine are modified when the routine is referenced.
Thus an asterisk will not appear in the cross-reference listing when a variable is
used as an actual argument. If the line number is followed by the character “i”, the
number is a line number in ANCLUDE file whose name can be found from the

source listing.

Compilation messages and statistics

All error, warning and comment messages are output to the compilation listing file if
one is specified or implied, otherwise, these messages are output on the screen. Note
that these messages are never simultaneously output to the compilation listing file and
on the screen. Messages fall into three categories - error, warning and comment.

/SILENT

suppresses the printing of warning and comment messages. UnléSH ENT
option is in force, the message that is output on the screen at the end of

27

FTN77 User's Guide

compilation of a program unit will include the numbers of warning and comment
messages.

/IGNORE <n>
allows the suppression of any given compilation error, warning or comment. A
typical use of this option might be to permit checkingdAbiSI-conformity, but to
allow the use of Hollerith data. The appropriate error number, 081 in this case,
can be found by including the compiler optiEERROR_NUMBERS. Thus the
compiler could then be invoked with:

FTN77 PROG /ANSI /IGNORE 081

It is possible to ignore more than one type of error, warning or comment. In this
case every error number to be ignored should be preceded h@N@RE option.

It is important to note that if errors (as opposed to warnings or comments) are
ignored, the code generated may be incorrect.

/IDCLVAR
causes the compiler to report an error for each occurrence of a name in a progran
unit that has not appeared either as an argument, in a type statement, ar
EXTERNAL statement, adNTRINSIC statement or &2OMMON statement.
Note that all external function and subroutine names must appear in an
EXTERNAL statement ifDCLVAR is used.

/INO_WARNT73
One unfortunate feature of Fortran is that information beyond position 72 of a line
is ignored by the compiler. This can often lead to lines being rejected by the
compiler with an apparently spurious error message. For examplEQRMAT
statement is not continued and yet extends past position 72 the message:

(IT0 Unpaired Teft bracket(s)

would be output. In order to make this sort of problem easier to recognise, by
default FTN77 issues a warning when characters are found in columns 73
onwards. This may be tedious if your program uses columns 73 onwards for
statement sequence numbers, in which case the default can be changed by usin
the/NO_WARN73 option.

ISTATISTICS
causes the compiler to output a message on the screen stating the number of line
compiled and the compilation speed.

/ANSI
ensures that all constructs used in a program conform NS¢ Standard. The
IANSI option also informs th&TN77 run-time system thaANSI-conformity is
required. This means that, for example, non-standard use of format descriptors
(such as business editing in a run-time format) causes a run-time failure.

28

Chapter 4 Compiling with FTN77

/INO_CR
Under DOS/Winl16, by defaulETN77 expects lines in the source file to be
terminated with carriage return, and ignores the following line feed character
which is normally present iMS-DOS format text files. TheNO_CR option
causes carriage returns in a source file to be ignored, and line feed to be treated as
end-of-line. This allows=TN77 to deal with source files iMS-DOS text file
format and also source files iBNIX text file format (where end-of-line is
indicated simply by line feed). This is particularly useful in a networked
environment, wittMS-DOS machines connected 6WNIX servers.

Specifying the properties of the object code

By defaultFTN77 always produces relocatable binary code unlesgNfde BINARY

option is specified. The relocatable binary code can be either loaded automatically by
FTN77 using LINK or LGO (see chapter 5) or it can be made available in a (.OBJ)
file for loading with the linkerl.LINK77 or SLINK.

/IBINARY <pathname>
specifies <pathname> as the name of the resulting relocatable binary file.

Under DOS/Win16, this is particularly useful when used in conjuction with a
widecard form for the source file name, where the effect is to output all of the code
into one file. If the option is omitted, the source file name is used wilBBEJ .
extension.

ISAVE
By default, local variables are stordgnamicallyon the stack. Space for dynamic
variables is reserved on entry to a program unit; the space is freed, and all data
values are lost oRETURN. The alternative is to store variabktatically. Static
variables maintain their values until execution terminates. The following types of
variables will automatically be static:

O Any variable that appears inSSAVE statement.

O Any variable in a program unit containing a ble€B¥VE statement.
O Any variables that appear inDAATA statement.

O Any COMMON block variable.

All other variables will be made static if tA@AVE option is used. However, it is
better programming practise to US&AVE statements in program units where
static storage is required, rather than relying on the use/SAYE compiler
option.

Note that while recursion is not part of the Fortran 77 standard, it is supported by
FTN77, and in order to obtain different instances of variables for different
invocations of a routine called recursively, these variables must be allocated to
dynamic storage.

29

FTN77 User's Guide

IZEROISE

is used to set all static variables and arrays (that have not appearddAihAa
statement) to zero at the start of execution. It is sometimes found that programs
developed with other Fortran compilers, will not run wifGiN77 is used. These
problems can often be traced to the assumption that alDAd#ed variables are
initially set to zero. The use of theSAVE and /ZEROISE options will often

make the program “work”, but efforts should be made to correct the program
source by explicitly giving values to the undefined variablesthis context, the

use of the/UNDEF option, which causes all ndbATAed variables to be
initialised to a known “undefined” value, will be found to be very useful (see below
and chapter 8).

Note that it is necessary to compile thein program with this option if
uninitialised common blocks are to be set appropriately.

/DEBUG

causesFTN77 to generate symbolic information and to activate the symbolic
debugger when fatal errors occufDEBUG is included in bot/CHECK and
/UNDEF which are normally preferred DEBUG can be used on its own in order

to allow the debugger to be used on “dirty” code, which intentionally violates some
of the rules of Fortran 77.

/CHECK

implies/DEBUG and causeBTN77 to plant extra object code so that errors (such
as array subscript errors and arithmetic overflow) result in a run-time error and
entry into the symbolic debuggetCHECK is fully described in chapter 8.

/UNDEF

implies/CHECK and also causdsTN77 to plant code to check that a variable or
array element has previously been given a value when it appears in, for example,
the right hand side of an assignment statemebNDEF is fully described in
chapter 8.

/INTL and/INTS

30

With /INTS, every variable of typENTEGER will becomeINTEGER*2 unless it
is explicitly declared asNTEGER*4 or INTEGER*1. Similarly every constant of
type INTEGER will becomeINTEGER*2 unless one or more of the following is
true:

O Its value lies outside the range -32768 to +32767.
O It contains more than five decimal digits including leading zeros.

O It is not followed by the letter L or B. For example, 1011L means the
INTEGER*4 constant 1011 and 56B means thNTEGER*1 constant 56.
(This form of constant is not allowed with tHENSI option.)

Chapter 4 Compiling with FTN77

If the /INTL option is used, every variable of tydBITEGER will become
INTEGER*4 unless it is explicitly declared dSNTEGER*2 or INTEGER*1.
Also every constant of type integer will becoMB'EGER*4 unless it is followed

by the letter S or B. For example, 26S medMEEGER*2 constant 26 and 123B
meansNTEGER*1 constant 123. (This form of constant is not allowed with the
/ANSI option.)

FTN77 only acts as a standard-conforming compiler wiidfiL is used.

You can us&TN77 /CONFIG to determine the default setting (wheth&T/S or
/INTL) and to change the default if you prefer.

Note that the use of tHANSI option does not impIYINTL. FTN77 provides the
intrinsic functionsINTB, INTS andINTL for conversion betweeiNTEGER*1,
INTEGER*2 andINTEGER*4 data (see chapter 11).

The DOS/Winl16 version dFTN77 is released withINTS as the default whilst
the Win32 version is released willNTL as the default.

/LOGL and LOGS
With /LOGS, every variable of typeOGICAL will becomeLOGICAL*2 unless it
is declared akOGICAL*1 or LOGICAL*4 and every constant of tydgOGICAL
will becomeLOGICAL*2.

If the /LOGL option is used, every variable of typ®GICAL will become
LOGICAL*4 unless it is declared dOGICAL*1 or LOGICAL*2. Also, every
constant of typ& OGICAL will becomeLOGICAL*4.,

FTN77 only acts as a standard-conforming compiler wthe€»GL is used.

You can usd-TN77 /CONFIG to determine the default setting (whethe®GS
or LOGL) and to change the default if you prefer.

Note, however, the use of tHANSI option does not implyLOGL. FTN77
provides the intrinsic functionsOGB, LOGS andLOGL for conversion between
LOGICAL*1, LOGICAL*2 andLOGICAL*4 data (see chapter 11).

The DOS/Win16 version dFTN77 is released withLlOGS as the default whilst
the Win32 version is released withlOGL as the default.

/IDREAL
specifies thatFTN77 should treat all single precisiorREAL) variables and
constants as double precisioRHAL*8). Correspondingly, allCOMPLEX
variables are treated &ZOMPLEX*16. It is not necessary to use the generic
forms of the intrinsic functions when usifBREAL. If /DREAL is used, the
compiler becomes aware of the allowable extensions.

/DREAL can make it very easy to compile and execute a single precision program
that has produced valid results on a machine with a more accurate single precision

31

FTN77 User's Guide

floating point representation, which would otherwise not work satisfactorily
without a major conversion.

/OPTIMISE
controls program optimisation and is described on page 85.

/STACK <n>
under Win32, when linking an object module to produce an executable file, the
linker needs to know how much memory to set aside for the program siask.
the size of the program stack in bytes.

This option is not generally required as the default supplied by the compiler is
more than adequate. For more information see chapter 20.

IWEITEK
under DOS, causes code to be generated for Weitek 1167 and 3167 coprocesso
on a 386 and for a Weitek 4167 coprocessor on a 486. If the machine on which
the resulting program is run does not have such a coprocessor, the program will
fault on the first attempt to perform an operation requiring the coprocessor. A
Weitek coprocessor is not required in order to perform the compilaWEITEK
must also appear on tiEBOS command line before the resulting executable can
be run.

Configuring the FTN77 command

32

TheFTN77 command has many options and it is often convenient to alter the default
settings for the options or to create alternative versions of the compiler for specific
purposes. For example, you might wish to use the compiler/l@0® and/CHECK

as default options. To configure your compiler type:

FTN77 /CONFIG

and follow the instructions on the screen. These differ under DOS/Win16 and Win32.
Under DOS/Win16 the default options areltinto FTN77.EXE whilst under Win32

the default options are stored in an ASCII file called FTN77.0OPT that is automatically
called when the compiler is executed.

Under DOS/Winl16, you iV be presented with a screen of options as they are
currently defined (not all options are configurable - only those displayed) and you can
select options with the cursor keys and invert them using the space bar. When yot
have the options as you require them, presEinigr will highlight the pathname of

the file to be written with the new options. By default, this is the pathname of the
FTN77 command itself. You can simply preEster again to modify theFTN77
command itself, or use backspace and other keys to alter the pathname as desire

Chapter 4

Compiling with FTN77

When Enter is pressed the file is created (if neccessary) and set up B3 N7
command with the options you have selected.

Notes:
O The pathname you choose must have EXE. suffix.

O If at any time you eceive a fresh version dfTN77 you must recreate any
configured versions of tHETN77 command.

O If at any point you decide to abandon the configuration processgsess

Under Win32, you are presented with a dialog box with a menu of options. Select
Compiler Options or Display Configuration and click on theConfig button.

Make your changes and then click on Bred button. From the menu box, click on

the Save button in order to create a new version of FTN77.0PT. It is possible to
maintain alternative sets of default configurations by using the compiler option called
/OPTIONS as below.

Reading compiler options from a file

Compiler options can also be read from a file. The contents of the file can then be
used as a set of options that will be combined with the command line. For example,
suppose you create a file called F77.0RTthe current directory containing the
following:

/ANSI /LIST
The FTN77 command
FTN77 MYPROG /OPTIONS F77.0PT

will compile MYPROG.FOR using the given options. You can use more than one
option file, but an option file must not itself contain fRPTIONS compiler option.

Also the options file must not contain options that will be passed to the program using
/IPARAMS.

It is possible to maintain various sets of default configurations by creating a batch file
(F77.BAT say) of the form:

FTN77 %1 /OPTIONS F77.0PT %2 %3 %4 %5 %6 %7 %8 %9

for each configuration. You could then create a .BAT file for each .OPT file in use
and your command line would then take the form:

F77 MYPROG

33

FTN77 User's Guide

Compiler directives

34

FTN77 will successfully process simple programs which contain only Fortran source
statements. Such usage of the compiler implies that, for many options such as run
time diagnostics, either the system default will operate B ld77 compiler option

must be used to change this default for the whole program source. Clearly, in the cas
of large or complex programs, this is not satisfactdf.N77 therefore provides a
number of compiledirectiveswhich can be used to give fine control over the facilities
that are available.

The following table provides a list of compiler directives that can be inserted into the
FTN77 source code. Further information is available via the given cross reference.

Directives

Purpose Page
OPTIONS To specify one or more compiler options in| a 35
source file
NOLIST & LIST To suppress and re-enable a source listing 35

INCLUDE '<pathname>’ | To insert the contents of the specified file at the 36
current point in the compilation. Useful for
frequently used common blocks etc..

LIBRARY ’'<pathname>' | Used withlANK and LGO to access a specified 41

library.
CIF, CELSE, CELSEIF | For conditional compilation 190
& CENDIF
IMPLICIT NONE Forces the programmer to give every variable] ar191
explicit type.
CODE & EDOC To start and terminate a 32-bit assemblerl93

sequence. These directives are only allowed if an
/ANSI compiler option has not been selected

The following notes apply to all compiler directives:

O

O

Each directive must start in column 7 or beyond.

Unless otherwise stated, a compiler directive may appear anywhere in a source
program.

Spaces have no significance except in file names which appear as characte
constants within quotation marks.

Compiler directives other thaBODE and EDOC must not be labelled. CODE
andEDOC can be treated as executable statements should this be desired.)

Chapter 4

Compiling with FTN77

The OPTIONS directive

The OPTIONS compiler directive provides a means of specifying many but not all of
the compiler options within a source file. For example:

OPTIONS (SILENT,DREAL)

could appear in a file instead of using the command line opfi®SHENT and
/IDREAL.

O

There are three methods of specifying the current compiler characteristics and
their order of precedence is significant. Default compiler options, configured by

using the command@TN77 /CONFIG, are read first and are superseded by any
command line compiler options (including those presented MEPaIONS file).
These in turn are superseded by any compiler directives given in the program.

An OPTIONS directive can only appear before the first program unit, or between
program units, in a source file.

There is no limit to the number @PTIONS directives that can appear in the
source file.

Many of the command line options are availableO&TIONS directives. For
example: CHECK, DCLVAR, DEBUG, DOCHECK, DREAL, EXTREFS,

FULLCHECK, FULLMAP, FULLXREF, INTL, INTS, LOGL, LOGS, MAP,

UNDEF, XREF, ZEROISE.

Although the compiler optiordLIST is superfluous in the presence /MAP,
/[FULLMAP, /XREF, or /[FULLXREF, it is nevertheless required if any of the
optionsMAP, FULLMAP, XREF or FULLXREF are specified in a®PTIONS
directive in the program source.

The NOLIST directive
It is possible to suppress all or part of the listing by means of the directives:

NOLIST
LIST

which may appear anywhere in the source program or IN@GhUDE file. However,

note that theéLIST option must have been specified on the command line to cause a
listing file to be opened. If the compilation listing is suppressed, error, warning and
comment messages are output on the screen.

The NOLIST directive does not suppress the listingECLUDE files. The way to
do this is described in the next subsection.

35

FTN77 User's Guide

The INCLUDE directive

It is possible to include source statements and compiler directives from another file by
means of adNCLUDE directive which may appeamywherein the current source
file. This directive takes one of the forms:

INCLUDE ’<pathname>’
INCLUDE ’<pathname>’, NOLIST

where <pathname> is the name of a file containing Fortran 77 source statements an
compiler directives. If the pathname includes a suffix then this suffix must appear in
the directive. For example:

INCLUDE °COLOURS.INS’

includes the given file from the current directory.

An alternative form of théNCLUDE directive is available, illustrated by the example:

INCLUDE <COLOURS.INS>

which includes the given file from the Salford directory which under DOS/Win16 is
typically C:\DBOS.DIRMINCLUDE whilst under Win32 is typically
C:\WIN32APP\SALFORD.

The use oNOLIST means that the contents of tMCLUDEA file are not output to

the compilation listing file. This facility is most often useful whelC@MMON

block is repeated a number of times in a program. Note that a source program may
contain any number dNCLUDE directives each of which can, optionally, specify a
different file. INCLUDE directives can be “nested” to a depth of 10. Thus one
INCLUDEC file can itself contain othéNCLUDE directives.

The PROFILE facility +

It is often useful to know how many times each statement in a program has been
executed. Such information may reveal logical errors and can often help in tracing
the execution path in the event of a run-time failure. It will also indicate which parts
of a program are most heavily used so that those parts can be examined and recoded
improve execution speed should this be considered worthwhile. Profile has a further
use in ensuring that test data exercises all parts of a program. The two directives

T For Win32, this is available frofiTN77 version 2.1 onwards

36

Chapter 4

Compiling with FTN77

OPTIONS(PROFILE)
OPTIONS(NOPROFILE)

or theFTN77 compiler option
/PROFILE

are used to control the facility. The directives may appear anywhere in the program
source. Once profiling is enabled either by option or by directive, each subsequent
executable statement is compiled so that a count is kept at run-time of the number of
times that statement is executed. The profiling facility is switched off when a
OPTIONS(NOPROFILE) directive appears in the source file or when the end of the
source file is reached.

To obtain a profile listing you should compile and execute your program using the
/BREAK compiler option together witiPROFILE (or the corresponding directives
OPTIONS(PROFILE) andOPTIONS(NOPROFILE)). Run the program - either to

a breakpoint (using the cursor keys a&8) or to completion (using6). Then press

F9 to obtain profile information on the screen, or issue the command

PROFILE <pathname>

from the debugger command line to send the information to the specified file. See
chapter 7 for further details of using the symbolic debugger.

Note:
O The PROFILE facility can not be applied simultaneously to more than one source
file.

O /PROFILE implies/LIST. This means thdPROFILE generates a listing file and
any error messages will appear in the file rather than on the screen. It is therefore
better to deal with compile time (syntax) errors before usiRROFILE.

However, the directiv®PTIONS(PROFILE) does not depend olhIST in this
manner.

37

FTN77 User's Guide

38

5.

Using /LGO and /LINK

Load and go

FTN77 provides a load-and-go facility via theGO compiler option so that programs

can be quickly compiled, loaded and executedGQ can be used with large and
complex programs, even those that require the use of libraries. No permanent object
or executable file is produced (although there must be enough disk space to accom-
modate a temporary object file). These features make this facility invaluable for
teaching, testing and development where repeated compilations and test runs are the
norm.

If you wish to keep a copy of the current executable file therLiiNK option should
be used Under Win32 you can use this together wits0.

All the other compiler options summarised in chapter 6 are available (with the
exception of/BINARY and/APPEND_BINARY) together with a number of extra
options which allow the following:

O specification of relocatable binary library and input files,
O underflow trapping,

O interactive debugging.

The /LGO option

The load-and-go facility is invoked by tHeGO option. For example:
FTN77 MYPROG /CHECK /LGO

39

FTN77 User's Guide

would compile, load and execute the program held in the sourdd¥iRROG.FOR.
The order of options on the command line is immaterial, except when an option
requires a name, in which case the name must follow it.

The optiongBREAK and/DBREAK both imply/LGOT. These options also imply
either/DEBUG or /CHECK.

These options are summarised in the following table for easy reference.

Option Debug Check Immediate /LGO
code code entry to implied
planted planted debugger
/IDEBUG v
/CHECK v v
/IBREAK v v v v
/IDBREAK v v v

The /LINK compiler option

When the compiler is invoked with thielNK option, for example

FTN77 MYPROG /LINK

the linker is automatically invoked after compilation is complete (assuming, of course,
that no compilation errors have occurred). The resultant object file is loaded and a
corresponding EXE file is produced. The example above would create a run file
calledMYPROG.EXE.

If you wish to load other relocatable binary files, in addition to that produced by
compilation of the named source file, tHeIBRARY compiler option (or the
corresponding directive) should be used (see below).

T Under Win32, BREAK and DBREAK are available fronkTN77 version 2.1 onwards

40

Chapter 5 Using /LGO and /LINK

Relocatable binary libraries and input files

The use of thé.GO and/LINK options is not restricted to programs that require only
the FTN77 library. Other system or user relocatable bin&WR) libraries andRLB
input files can be specified by using one or both of the following methods:

O By using theLIBRARY option in theFTN77 command line. For example:
FTN77 MYPROG /LGO /LIBRARY GKSLIB

O By using aLIBRARY directive (which must commence at or beyond column 7) in
the source file.

LIBRARY <pathname>

where <pathname> is the name of the file. For example:

LIBRARY ’C:\GRAPHICS\GKSLIB’

Use of aLIBRARY directive ensures that iRLB library or input file is forgotten
when loading a program as the directives are always present in the source file.

If a library filename does not include path information, the current directory is
searched, followed by the directory containingRA@&77 compiler.

Notes:
O The compiler will automatically search first for &bLB library or RLB input file
with a name suffixed byOBJ, and then for the unsuffixed filename, even if the

library or input filename specified in tH€TN77 command does not contain the
suffix.

O Under Win32, the optionMKLIB can be used to generate a static library
containing a separate COFF object for each function or subroutine (see page 46).

O Dynamic link libraries are not specified on théBRARY directive. Under
DOS/Winl16 they are specified in tHdBRARIES.DIR file, see page 237 for
further details. Under Win32, DLLs are normally located either in the directory
for the executable or on the PATH.

The /[HARDFAIL option

Under DOS/Win16, the use of tHelARDFAIL option causes run time errors to
produce a machine level message and return to the operating system, rather than
entering the symbolic debugger. This is sometimes useful if the program contains
assembler code.

41

FTN77 User's Guide

The /UNDERFLOW option

Under DOS/Winl16, the use of thHe&NDERFLOW option ensures that the first
occurrence of underflow in an arithmetical computation is treated as a failure and is
not ignored as would otherwise be the case. A large number of occurrences of
underflow during execution can result in long execution times because of the way in
which the underflow condition is treated. If an underflow is trapped, the message

ERROR: Floating point arithmetic underflow

is output and the interactive debugger is entered, see chapter 7. If underflows occu
during program execution and tHEINDERFLOW option is not usedRUN77
outputs a message at the end of the run specifying the number of underflows that hav
occurred.

The /PARAMS option

The /IPARAMS option is provided to specify command line information for the
program. This option is necessary in order to §0pl77 from scanning the whole
command line before the user’s program is executed.

For example, suppose thAdEWPROG.FOR obtains two filenames FILE1 and
FILE2 by means of calls to the system rout@&NAM. These filenames could be
specified as follows:

FTN77 NEWPROG /LGO /PARAMS FILE1l FILE2

An illustrative program appears with the description of Gh&NAM routine (see the
FTN77 Library Referenge

Opening input/output files

42

Under DOS/Win16/LGO can be used with &EAD option in the form:
/READ <unit> <pathname>

This opens the given file for formatted sequential reeckss on the given unit.
/WRITE is similarly used to assign an output file from the command liREADU
and/WRITEU are correspondingly used for unformatted sequentieéss files. For
example:

FTN77 MYPROG /LGO /READ 7 MYPROG.DAT

6.

Compiler options

Quick reference

Compiler options are specified as part of BiéN77 command line, for example:
FTN77 MYPROG /ANSI /LIST

Note that options may be abbreviated, but care should be exercised to ensure that the
abbreviated form is unique.

The object code produced can be loaded and executed automatically by means of the
FTN77 option /LGO, see chapter 5 for details. The interactive source level
debugging system (see chapter 7) is entered automatically in the event of an error.

There follows a summary of the options available at the time of publicattéBLP
can be used to obtain an up-to-date summary. Further information is usually available
elsewhere in the manual. Please refer to the index for a cross reference.

Some of the options described in this section can be adopted as compiler defaults. The
default options can be listed and changed by usinCO&FIG compiler option.

/ANSI
Checks that the source conforms to AdS| Standard.

/APPEND <pathname>
Synonym fofAPPEND_BINARY (DOS/Win16 only)

/APPEND_BINARY <pathname>
Append the compiler output to the given relocatable binary file. Thus, several
compilations can contribute to one binary file (DOS/Win16 only).

/APPEND_LIST <pathname>
Append the compilation listing to the given file.

43

FTN77 User's Guide

IBINARY <pathname>
Use the given file in place of the defa@BJ file name. Under DOS/Win16, you
can use a wildecard form for the pathname.

IBREAKT
Implies both/CHECK and/LGO and causes a break to the symbolic debugging
facility at the first executable statement.

IBRIEFT
Causes all errors, warnings and comments to be output in a form which is
compatible with thBRIEF text editor. Programs can then be compiled and then
edited whilst still withinBRIEF.

/CHECK
Causes code to be planted in order to enable the run-time checking of array
bounds, overflow etc., and also to enable the use of the source-level debugging
facilities (i.e./CHECK implies/DEBUG).

/ICONFIG
Set-up installation compiler defaults.

IDBREAKT
Implies /LGO and causes a break to the symbolic debugging facility at the first
executable statement (i.e. liI®REAK, but/CHECK is not implied) (DOS/Win16

only).

/DCLVAR or /DCLVAR <n>
/IDCLVAR (or /DCLVAR 2) causes the compiler to report an error for each
occurence of a name in a program unit that has not appeared either as ar
argument, in a type statement, &XTERNAL statement, anINTRINSIC
statement or aCOMMON statement. Note that all external function and
subroutine names must appear inE2iTERNAL statement ifDCLVAR is used.
/DCLVAR 1 is similar but relaxes the requirement that intrinsics appear in an
INTRINSIC statement and that externals appear iEAMERNAL statement.

/IDEBUG
Causes the output of information to allow the use of the source-level debugging
facilities (does not imply the run-time checking associated with/@HECK,
/FULLCHECK and/UNDEF options).

/DELOBJ_ON_ERROR
If /LINK or LGO is used no permanent object module is created. Otherwise, by
default an object module will be generated even when errors are present.
/DELOBJ_ON_ERROR overrides the default.

T For Win32, this is available frofiTN77 version 2.1 onwards.

44

Chapter 6 Compiler options

/IDOCHECK
Causes a run-time fail if zero-tripO-loop is executed.

/IDREAL
Enables the automatic generation @OUBLE PRECISION and DOUBLE
COMPLEX for all REAL andCOMPLEX and intrinsic functions.

/DO1
CausedPO loops to be executed at least once.

/ERRFAIL
Causes a hard fail at the first error encountered in the file.

/ERROR_NUMBERS
Error messages are accompanied by their error number. This number can be used
with /IGNORE.

J[EXPLIST
Expanded source listing.

IEXTREFS
As for IMAP except that the output is restricted to external references (subroutine,
function and common block names).

/[FULLCHECK
Implies/CHECK and, in addition, array elements are checked individually.

/[FULLDCLVAR
Synonym foDCLVAR.

[FULLMAP
Implies/MAP but includes unreferenced variables.

/[FULLXREF
Implies /XREF and, in addition, includes a cross-reference map of all
unreferenceOMMON variables.

/HARDFAIL
Suppresses entry into the debugger in the event of a run time BO&\WWin16

only).

/HELP
Invoke the window based help system.

/IGNORE <error number>
Causes the compiler to disregard the error whose number fIBNORE (note
that if errors of severity greater than “warning” are ignored the code produced will
probably be invalid)

/IMPLICIT_NONE
Demands that all variables have an explicit type.

45

FTN77 User's Guide

46

/INTL and/INTS
Change the default integer length.

/ILGO
Compile, load and execute.

/LIBRARY<name>
Specification of relocatable binary library and input files when usifgQy or
/LINK.

/LINK
Compile and load.

/LIST <pathname> ofLIST
Produces a source listing file.

/LOGL and/LOGS
Change the default length for logical values.

IMAP
Compile-time map option (see als68JLLMAP).

/MKLIB <filename.LIB>
Generates a static library containing a separ@€&Fobject for each function or
subroutine. This option is useful, when a user wants to link in only a few routines,
from a file containing a large number of routines (Win32 only).

INO_BINARY
Suppresses the creation of an object module.

INO_COMMENTS
Suppresses comment messages (equivaléBtit&ENT 1).

/INO_CR
Treat line feed as end-of-line (rather than carriage return) in source files. Allows
direct compilation of eitheMS-DOS or UNIX-style source files (DOS/Winl6

only).

INO_FAIL
Synonym fo/PERSIST.

INO_FLOATING_TRACKING
Turns off register tracking for floating point values. Register tracking is one of the
optimisation processes that is carried out by default (even whelOBEMISE
option is not used). Register tracking enables a register value to be re-used in
preference to a redundant recall of a stored value. Using a register can alsc
increase the precision of this intermediate value.

INO_OFFSET
Suppresses the output of address offsets on the source listing.

Chapter 6

Compiler options

INO_PEEP_HOLE
Turns off the peep-hole optimiser. This is only effective with fBETIMISE
option.

INO_RETYPES
By default FTN77 produces a warning when variables are declared more than
once in the same program unit with the same type on each occasion. This option
causes this situation to produce an error rather than a warning.

INO_WARNT73
Suppresses warnings for characters appearing in columns 73 and beyond in the
source file.

INO_WARNINGS
Suppresses warning and comment messages (equivalShtENT).

I/NOLINK
If /CONFIG has been used to makielMK the default, NOLINK restores the
default (Win32 only)

INOTRACKING
Turns off register tracking for all variables (sB&)/ FLOATING_TRACKING).

/OLDARRAYS
Allows array subscript checking to be used with array arguments whose
corresponding dummy argument is declared with a last subscript of 1. This option
is only effective when used witRULLCHECK.

/ONLY_UNDEF
Implies /UNDEF without /CHECK. It can be useful with programs that do not
strictly follow the Fortran rules but want undefined variable checking.

/OPTIMISE
Enables global optimisation. In the default state, local optimisation is in force
unless checking is enabled.

/OPTIONS <pathname>
Specifies a file containing additional compiler options.

/IPAGETHROW
Causes each program unit in the compilation listing to be printed at the top of a
new page.

/IPARAMS
Enables the object program to read filenames from the command line.

/IPERSIST
By default compilations with errors will terminate as if control break had been
pressed. When the command appears in a batch file, the batch process will then be

47

FTN77 User's Guide

interrupted. If PERSIST is used, the control break is suppressed and processing
of the batch file will continue even when compilation errors have occurred.

IPROFILET
Enables the run-time profile facility.

ISAVE
Do not use the stack for storage of local variables and arrays. Otherwise dynamic
storage is used for all local variables and arrays. This has the effect of a blank
FortranSAVE statement in each subprogram. Its use should normally be avoided.

/SILENT or /SILENT <n>
Suppress warning and comment messaff@d.ENT 1 suppresses only comments,
while /SILENT 2 (or /SILENT) suppresses both comments and warnings. When
the/SILENT option is not used, the message that is output on the screen at the enc
of the compilation of a program unit includes the numbers of warning and
comment messages.

ISPARAM <n>
Used in conjunction with th€lF, CELSE and CENDIF statements to facilitate
conditional compilation.

/STACK <n>
n is the size of the program stack in bytes used by the linker. The default value is
usally more than adequate (Win32 only).

ISTATISTICS
Print the number of lines compiled and the compilation speed on the screen.

/UNDEF
Implies /CHECK and also causes code to be planted in order to do run-time
checking of any undefined variables or array elements.

/UNDERFLOW
Used in conjunction with the load-and-go facility to trap underflD@$/Win16

only).
IUNSAFE

Unsed in conjunction withOPTIMISE in order to improve the execution speed of
certain programs by using code re-arrangement techniques (see page 89).

IWEITEK
Under DOS, causes the compiler to generate code ilaise the Weitek 1167,
3167 and 4167 coprocessoSVEITEK is also required on theBOS command
line before the resulting executable can be run.

T For Win32, this is available frofiTN77 version 2.1 onwards.

48

Chapter 6 Compiler options

IXREF
Causes the generation cross-reference listing.

IZEROISE
All static variables and arrays set to zero at start of execution.

Default compiler options

Many of the above options have a corresponding opposite. For exadhiplei¢ the
opposite of INTS. If the default setting is changed by using f8©®NFIG option,
then there are occasions when you may wish to use the opposite option in order to
temporarily restore the original default. The configuration screen that appears when

using CONFIG indicates the name of the opposite when one exists.

49

FTN77 User's Guide

50

1.

Using SDBG

Introduction

In order to improve user efficiency and the usability of Salford products a new set of
debuggers, collectively known &OBG, has been designed and implemented. There
are three editions in the range:

O one forMS-DOS based applications,

O one for Windows version 3.1 and above (including Windows for Workgroups
and Win16 based Windows 95 applications)

O and one for Windows NT version 3.1 and above and Win32 based Windows 95
applications.

All three debuggers have been designed to function consistently. The debugger for
MS-DOS based applications uses BOS screen but enates a Windows
environment. Some of the detail in this chapter, describing this emulation, can be
ignored by Winl16 and Win32 programmers.

Like other Salford compilerd;TN77 also incorporates another feature to facilitate
debugging, namely the checking options. The checking options, which ensure that a
program does not corrupt itself and does not give inconsistent results, are described in
chapter 4.

SDBG may be used either:

O in conjunction with the checking facilities, by compiling with one of the
/CHECK or /UNDEF compiler options, or

O without the checking facilities by compiling using tHBEBUG compiler
option.

SDBG allows you to view your source file(s) whilst controlling the execution of your
program using function keys and debugger commands. These keys and commands
control the following facilities:

51

FTN77 User's Guide

Program breakpoints

Single stepping

Display of variables

Source and data file inspection

Evaluation of expression values

Program status display

Write/use data breakpoints (using hardware)
Machine code debugging

Profiling (statement execution count)
Input/output stream information

Display of the contents of virtual memory

0O OO O OoO0OOoO0Oaooooo o o

Control of screen size

Invoking SDBG

52

SDBG may be invoked in one of several ways.

O By compiling a program for immediate execution with IBREAK option, for
example:

FTN77 MYPROG /BREAK
Used in this wayBREAK implies the/CHECK and/LGO options.

O By compiling the program with th®OBREAK option. This option is similar to
the /IBREAK option except that it does not imply tHE€HECK option which
causes the compiler to plant checking code.

O By linking together one or more .OBJ files produced W@RECK or /DEBUG
options and executing the resultant .EXE file as follows.

For DOS programs und&BOS useLINK77 and then type,
RUN77 MYPROG /BREAK

For Win16 executables us&NK77 and then type,
WINDBG MYPROG

For Win32 executables u§tINK and then type,
SDBG MYPROG

Chapter 7

Using SDBG

The source file for each section of the code to be debugged should be available exactly
as it was compiled (i.e. you must not edit these source files prior to using the
debugger).

Assuming that no compileéme error is encountered, each of these commands will
cause your program to be suspended at the first executable statement in a module
compiled with/ DEBUG.

The /DEBUG and /DBREAK options cause the compiler to plant sufficient
information to enablé&SDBG to operate, but specify that no checking code is to be
planted.

In general, it is better to debug a program compiled with checksDBIREAK and
/DEBUG are very useful in the following cases:

O When a problem does not manifest itself when the checks are enabled. Often this
is a consequence of a calculation being performed with undefined variables or
array elements and you are advised to compile the program usidyNREF
option before usin@DBG.

O When the program is just too large to fit in memory when compiled with checks.
O When the program runs too slowly when compiled with checks.

Programs which are not checked may well overwrite themselves and/or the tables
which SDBG uses to interpret their behaviour. This can produce unpredictable
results.

Location of source files

By default the debugger will look for the source files in the directories they occupied at
compile time. If the source files have been moved, there are two methods for
specifying alternative directories to for the debugger to search.

Firstty you can specify the environment variable SOURCEPATH in your
AUTOEXEC.BAT or its equivalent. This can contain a list of paths. Semicolons are
used to separate the paths in the same way as the standard PATH variable. For
example:

SET SOURCEPATH=C:\COMMON\SOURCE;C:\USERS\PROJ;W:\SRC

Secondly, the Windows debuggers can take an optional command line parameter that
specifies a source path. This path will replace any path brought in by the
SOURCEPATH environment variable. For example

SDBG SIMUL /SOURCEPATH
C:\COMMON\SQURCE; C: \USERS\PROJ;W:\SRC

53

FTN77 User's Guide

/SOURCEPATH can be abbreviated t8FP.

Using SDBG

54

The first taskSDBG will carry out is to save the running program’s screen display
and replace it with the debugger screen, switching to text mode if requseBG

only displays information in text mode although you can debug programs that use
graphics modes supported by the Salford graphics library.

SDBG makes use of a windowed interface. In common with other user interfaces a
mouse is not absolutely necessary but is extremely useful. The mouse cursor will
appear as a one character block in the middle of the screen.

The window that appears on top of all the others is calleaduhrent window. The
current window will respond to any key-presses or mouse actions. It can be
distinguished by the double line border surrounding the window. All other windows
have a single line border. You can change the current window by pointing at another
window and pressing and then releasing the left mouse button. In this case the
window you pointed to will be brought to the front and you will see the border change.

You can cycle through the currently open windows by presaitiN. The current
window can be moved by pointing to its title bar and pressing the left mouse button.
While the button is depressed you can ‘drag’ the window to its new location.

At the bottom right hand corner of a window you will see that the border thins from a
double line to a single line. The single line denotes the fact that you can resize the
window. This is achieved by moving the mouse to this area and pressing and holding
the left mouse button. You can then drag the window corner to its new size.

At the top left corner of most windows you will see a box character (shows]as [

By moving the mouse over this area and pressing the left mouse button the window
will close. You can also close a window by pressikig-F4. Some windows will

close when th&sc key is pressed.

When theSDBG screen initially appears it will contain three windows that sit on top
of the so calledesktopvindow. Namely

O astack/statusvindow,
O asource codavindow,
O avariableswindow.

If SDBG was invoked because of a run-time error, a description of the problem is
displayed in the stack/status window. Otherwise the stack/status window will initially
be hidden behind the source window which will show the current execution point.

Chapter 7 Using SDBG

Other windows calledlata viewwindows can be opened by the user when required.
These five differing types of window are described in the following sections.

Desktop window

All visible windows sit on top of the desktop. This is a blue and white hatch with the
bottom line displaying help and status information. The status line is mostly made up
of a line of white text on a blue background. This gives a list of the most common key
presses for the current window. This status line is sensitive taltlaand Ctrl keys

being depressed. You can also click the left mouse button over a key description and
the key press will be simulated. The rightmost six characters show the current
debugger mode. The alternatives are:

Status Meaning
PAUSE The program has stopped because of a breakpoint and is awaiting commands.
STOP The program has stopped because of a runtime error (willitie wisplayed

in the stack/status window). You will not be able to continue, step or run the
program from this point.

END The program has terminated.

RUN The program is running and can be paused by pre§dimgBreak. SDBG
does not automatically switch to the program screen because most switches
would be unnecessary and waste time. The screen is switched as required.

The stack/status window

The stack/status window can be brought to the top by presdin@ in any other
window. The stack/status window provides two uses:

O to display the reason wi§DBG has been entered.

O to display the current call stack,

55

FTN77 User's Guide

56

Error: Reference through NULL pointer

validate_pointer

_val » edi
ma;min(int,(ptr)flnat,(ptr)flnat,(ptr)flnat)
main

[0]1= d:sdbos.dir~demosstatsl.cpp
void maxmin{int nvalues.float =*values.float *xmax.float *xminl>

float *ptr=8,lmax=*values.lmin=*values;
ford{int i=1; i<{nvalues; i++>

if (e +iptrd >Imax? Imax=*pte;
else if <(=ptr<{lmin> Imin=%pte;

Figure 1. An screen shot from the DOS version of the debugger.
The status part of this window gives the reason$BG has been entered.

The stack part gives a trace back through the active call stack. This is a list of the
active subroutines and functions. Routines that have debugging information, and
therefore can be debugged at the source code level, are displayed in black text
Routines having no debugging information are shown in grey text. You can view the
source code and variables for any routine in the call stack with debugging information
by either:

O moving the bar in the status window to the line containing the routine name
and pressingnter,

O or by double-clicking the left mouse button over the routine name.

If you try to open a routine with no debugging information a machine code window
will appear. This may appear confusing if you are not familiar with programming at
this low level. If one appears, simply click the close button or gxesE4 and it will
disappear.

The stack/status window does not have a close button and cannot be closed by pressir
Alt+F4. This is because the current call stack and status are always relevant.

There are some key presses that apply to every window.

They are as follows:

Key Action
F1 Help
Alt+F4 Close window

Chapter 7 Using SDBG

F5 Display user screen

F6 Run or continue the program
F7 Single step the program

F8 Single step over

Alt+C Display call stack window
Alt+N Next window

Alt+X Exit SDBG

Source code window

At a basic level a source window is just a window that shows the contents of a source
file. WhenSDBG is first entered the source window will display the source code for
the current execution point. A red bar denotes the first line that c8¥eG to be
entered. You can display the source code for any routine in the call stack (assuming
the routine was compiled with debugging information) by selecting the routine from
the call stack window as describedoge. Each routine is displayed in a separate
window. The routines that are not at the top of the call stack will have their execution
point marked with a brown bar.

You can move around in a source window in a manner that is very similar to a text
editor or word processor. However, tiegt cannot be changedlhe current position

is marked by a cursor, which will initially be on the same line as the execution bar.
You can move the cursor around the source window with the mouse or using the
keyboard.

The right most edge of the source code window contains a scroll bar. You can move
this either by clicking the left mouse button whilst the mouse cursor is in the scroll bar

or by dragging the scroll bar (you drag the scroll bar by pressing the left mouse button
and moving the mouse whilst keeping the left mouse button pressed). To move the
source code up or down one line at a time, click on the arrows at the top and bottom of
the scroll bar. The source window now also contains a horizontal scroll bar.

You can also use the following key presses to navigate the window:

Key Meaning

Left arrow Left one character
Right arrow Right one character
Up arrow Up one line

57

FTN77 User's Guide

Down arrow
Page Up
Page Down
Ctrl+Home
Ctrl+End
Ctrl+Page Up
Ctrl+Page Down
Home

End

Ctrl+O
Ctrl+G
Ctrl+S

Ctrl+A

Down one Line

Up one page

Down one page

Start of file

End of file

Move up the call stack

Move down the call stack
Start of current line

End of current line

Go to instruction point (Origin)
Go to line number

Search for text (case insensitive)

Search for text specified by the 1&itl+S command

The Winl16 and Win32 debuggers have buttons on the toolbar to move up and down
the call stack. They also havebaokmark fadity. This is acessed by selecting
Bookmarks from the Window menu. Bookmarks can be set, used or deleted.

The most common actions performed on source code in a debugger are usually 1

setting breakpoints,

2) single stepping and 3) running the program. Several key

strokes are available to help you do this.

These are summarised in the table below:

Key

F2
Shift+F2
F3

F6

F7

F8

Setting breakpoints

Meaning

Set or reset breakpoint

Set or reset a conditional breakpoint
Get to current line

Run program

Step to next source line

Step to next source line and step over any routine calls

The F2 key acts as a toggle. It will set a breakpoint on a line that has no existing
break point. Alternatively, it will remove a breakpoint if one already exists on the
highlighted line. This only works if the line is an executable statement. So pressing

58

Chapter 7

Using SDBG

F2 when the cursor is over a comment line will have no effect. It will also have no
effect when the cursor is over a declaration. Breakpoints are marked by a white bar.
Once you have set the breakpoints required you can continue the program by pressing
F6. A message box appears if the line is can not be used as a breakpoint.

You should take care when using breakpoints. If the line of code is never executed,
due to arlF condition, the program will not stop.

Setting conditional breakpoints

In most circumstances programs can be successfully debugged by setting breakpoints,
running the program and examining data. There are some problems which are
difficult to debug using simple breakpoints. For example an iterative loop which goes
wrong on the 1563th iteration would be very time consuming to debug. You could
add extra code to the program to allSWBG to activate a breakpoint on the 1562nd
loop. However, a quicker method is to use a conditional breakpoint. A conditional
breakpoint is one which only activates when a given condition is satisfied.

A conditional breakpoint is formed in three parts. Firstly there is an initial delay.
This is the number of times the breakpoint has to be executed before it will activate.
Secondly there is a repeated delay. This allows you to activate a breakpoint at
predetermined intervals. Thirdly, there is an optional expression. When a breakpoint
is about to activate, the expression will be evaluated. The breakpoint will only activate
if the result of the expression is non-zero.

When you pres$hift+F2 an input box will be displayed. You should type into this
box the number of times the breakpoint can be executed before it is activated.
Entering ‘5’ will cause the breakpoint to activated the 5th time this line is executed.
You will then be asked for the number of executions between subsequent breakpoints.
You will finally be given an input box into which you can type an expression that will
control whether a breakpoint activates or not. You can leave this expression blank if
it is not required.

The following table gives examples for the three settings:

Requirement Initial Repeat | Expression
number | number

Stop after the 198th iteration 198 1

Stop after the 7th iteration and every subsequent 7 11

11th

Stop wherepsis greater than 1 1 1 epsl

Stop wherepsis greater than 1 and | know thisis 654 1 epsl

after the 654th iteration

59

FTN77 User's Guide

60

You should note that there is a speed penapBG has to calculate the result of an
expression. Indeed a small speed penalty will result from setting any breakpoint.
This is in direct proportion to the number of breakpoints encountered.

You can set the initial delay to zero. This implies that the breakpoint will never
activate which can be useful when trying to establish how many times a certain point
is reached. You can cancel a conditional breakpoint by moving the cursor to the line
and pressing eithdf2 or Shift+F2. In fact the standard breakpoint is a conditional
breakpoint with the delays set to one. You can display the status of all system
breakpoints with the ‘breakpoints’ command (see page 72).

Run to line

One important variation on the ‘set breakpoints and run’ idea is that of ‘get to here'.
This is achieved by placing the cursor on the line you would like the breakpoint to
appear and pressirie8. SDBG will set a temporary breakpoint at that line, run the
program and then reset the breakpoint. This works in a similar manner to the key
sequencé2, F6, F2. Again you should be aware that your program may not stop if
the code is never executed due to say an IF statement.

Single stepping

Single stepping offers an alternative to setting breakpoints. It allows you to trace the
flow of execution a single line at a time. There are two possible methods of single
steppingstep intoandstep over

The first method qtep intd will enter any function or subroutine which contains
debugging information. This is useful when you want to follow the logical flow
through several routines. You can use step intomethod by pressing7. If you

step into a new subroutine or function a new source window will be opened. This will
display the code for the new subroutine/function. Alternatively, if you execute a
return statement, the current source window will be closed and the window with the
calling line will be made the current window.

The second methodstep ovey will execute the current line but will not enter a
subroutine or function even if debugging information is present. This latter case is
useful when you are sure that a subroutine or function is working correctly and you do
not want to trace the call through the routine. Whilst a new window will never be
opened with thetep ovemethod, it is possible for the current source window to close
due to the execution of a return statement. 3te@ overmethod is performed by
pressing8.

Chapter 7

Using SDBG

Examining variables

The simplest method for examining any of the current active variables is to use the
variableswindow. This window presents a list of all variables that acessible from

the current scope. This list is sorted into scope order and then ascending alphabetical
order. The variables window is made the current window by preBding

If you want to examine a particular variable, you can do this by opendiagaaview
window. Once opened, a data view window will remain open until the variable goes
out of scope or you choose to close it. The contents of the window will be updated
each time a break point (or single step action) is encountered.

The source window provides the user with four methods of examining the contents of
a variable in a data view window.

1. Press the right mouse button over a variable hame in a declaration or executable
statement.

2. Move the cursor to a variable name in a declaration or executable statement and
pressCtrl+P.

3. Mark a block over an expression and either press the right mouse button over the
block or pres£trl+P (this allows the expression to be displayed)

4. Use the ‘print’ command from the command line (this allows complete freedom in
the choice of data shown, see page 70).

Methods 1 and 2 provide a very quick way to access simple variables. Methods 3 and
4 can be used to access more complex information like the current array element in a
loop. Method 3 has the disadvantage that the expression must be present in the
source code. Using the command line (method 4) allows greater flexibility.

To mark a block you can either drag the mouse pointer over the text whilst keeping
the left hand mouse button depressed. Alternatively, you can use the arrow keys with
the shift key held down. The block is shown as blue text on a cyan background.
Pressing an arrow key without holding down the shift key will cancel the block mark.

In addition to the lbove methods for emining variables, the Winl16 and Win32
debuggers provide ‘tooltips’ which appear when the mouse cursor passes over a
variable in the source window. This tooltip takes the form of a small volatile window
containing the value of the given variable.

Profiling information

You can displayrofiling information (i.e. information on how many times each line
has been executed) for a source file by pressingr@ieey. You must have compiled

the source file witHPROFILE. The numbers displayed down the right hand column
give the number of times each line has been executed. You can also display profile
information with the ‘profile’ command (see page 70).

61

FTN77 User's Guide

Only one source file can be compiled wiBROFILE. In addition the profile counts

can be written to a file.

Miscellaneous information

The following table summarises the miscellaneous actions availablSBRB

Key Meaning

F10 Displays assembler output for this source code

F1 Help

Ctrl+F1 Context helpSDBG will examine the textinder the cursor and look in

the help index. If the word exists that topic is displayed

Right mouse Displays context menu-alternatives to some keystrokes

button orlnsert

Variables window

62

The variables window displays a variables list for the current source window (i.e. the

one nearest the top).

If the source window is not in the call stack the variables

window will be empty. You can switch back to the source window by pres<ing
The window contains a highlight bar that shows the currently selected variable. The
type of the variable is displayed in the bottom left corner of the window border.

In addition to using the scroll bar, you can move the highlight bar by using the

following keystrokes:

Key

Up

Down

Page Up
Page Down
Home

End

Right

Left

Meaning

Bar up one

Bar down one

Bar up one page

Bar down one page

Start of list

End of list

Scroll the window to the right

Scroll the window to the left

Chapter 7

Using SDBG

The variables window displays the contents of all the variables in the current scope.
This is usually more than adequate for simple variables. It is often useful to have
commonly accessed variables or more complex variables (such as C structures or
Fortran 90 types) displayed in a separdéta viewwindow (see below). From a
variables window this can be achieved by one of two methods:

1. Presg£nter with the variable highlighted.

2. Double-click the left mouse button over the variable name.

Data viewing windows

The variables window is always available and allows you to quickly see the current
state of variables in a routine. data viewwindow is a window dedicated to one
particular variable (or part of a variable) allowing you to see its contents in isolation.
There are four different types of data viesimple expressigrarray, structure and
memory dump In addition, from one data view window you can also open other.
These five types of data view are described below. You do not have to worry about
which view should be displayed. It is all handled3BBG.

The method used to display a data view window depends upon the current window.
Details are given on page 61 for a source code window, immedidielye dor a
variables window, and on page 68 for an existing data view window.

Simple expression

A simple expressiowindow is displayed in one of two situations:

1. when the result of the variable or expression is a simple data type that can be
displayed in one line, these data types include: integer, logical, real, complex,
string and pointers to pointers;

2. when the variable or expression is in error, in which case an error message will be
displayed.

If the data type is a pointer then you can display another window (that is the result of
dereferencing the pointer) by pressing Exger key. If the data is too long to fit into

the window you can scroll the window to the left or right by pressing the left and right
arrow keys. If you press the right mouse button with the mouse cursor over an
expression window then a menu will appear.

63

FTN77 User's Guide

64

This menu contains the following items:

Menu item Action
Print value Same as pressirignter.
Memory dump at variable Opens a memory dump window located at the address of the

result. For example if the window displayed the value of a
variable calledptr, this would produce a memory dump
showing the physical memory used to sigire

Memory dump using Opens a memory dump window located at the address
contents pointed to by the result of this expression. The result does
not have to be a pointer for this to work.

Set write break on variable Places a write data break on the variable (see page 71).

Set use break on variable Places a use (read or write) break on the variable.

You can close any data view by pressingEke key.

Array

An array viewwindow will be displayed if the variable or expression results in an
array. The array elements are displayed in a column. The window contains a
highlight bar that shows the currently selected element. This can be expanded into its
own data view window by either pressiBgter or double-clicking with the left mouse
button. You can move the highlight bar by dragging the scroll bar. In addition you
can also move the highlight bar by using the following key presses:

Key Action

Up Bar up one

Down Bar down one
Page Up Bar up one page
Page Down Bar down one page
Home Start of array

End End of array

If you press the right mouse button with the mouse cursor over an expression window
you will see a menu appear.

Chapter 7 Using SDBG

The items on the menu are as follows:

Menu item Action
Print value Same as pressirignter.
Set visible range This opens up a dialog that allows the visible range of

subscripts to be set. This means that you need only display
the array section that you are interested in.

Memory dump at variable Opens a memory dump window located at the address of the
result. In this case this would be a memory dump showing
the physical portion of memory used by this array element
(and those around it).

Memory dump using Opens a memory dump window located at the address
contents pointed to by the result of this expression. The result does
not have to be a pointer for this to work.

Set write break on variable Places a write data break on the variable (see page 71).

Set use break on variable Places a use (read or write) break on the variable.

You can close any data view by pressingEke key.

Structure

A structure viewwindow lists the elements of a type (Fortran 90/95), structure (C),
union (C), or class (C++) and their values. Each element resides on its own line in a
manner similar to the array view and variables list.

The window contains a highlight bar that shows the currently selected element. This
can be expanded into its own data view window by either pregsitay or double-
clicking with the left mouse button.

In addition to moving the highlight bar by dragging the scroll bar you can use the
following key presses:

Key Action

Up Bar up one

Down Bar down one
Page Up Bar up one page
Page Down Bar down one page
Home Start of structure
End End of structure

65

FTN77 User's Guide

66

If you press the right mouse button with the mouse cursor over an expression window
a menu will appear.

The items on the menu are as follows:

Menu item Action
Print value Same as pressirignter.
Memory dump at variable Opens a memory dump variable located at the address of the

result. In this case showing the memory taken by this
structure member.

Memory dump using Opens a memory dump window located at the address
contents pointed to by the result of this expression. The result does
not have to be a pointer for this to work.

Set write break on variable Places a write data break on the variable (see page 71).

Set use break on variable Places a use (read or write) break on the variable.

You can close any data view by pressingEke key.

Memory dump

A memory dummvindow shows the individual bytes of memory with no formatting.
The data in this window is displayed in three columns. The first column contains the
start address of a strip of memory. The second column shows the bytes of memor)
that are contained in the memory starting at that address. The third and final columr
contains the ASCII representation of the same strip of memory.

The width of the strip depends on the window size and will automatically be scaled to
the size of the window. In addition you can quickly change the size by pressing one of
the following keys:
Key Width
16 bytes wide
8 bytes wide
4 bytes wide
2 bytes wide

= N~ 00 O

1 byte wide

Data values that read ‘XX’ constitute an invalid address.

One of the data values is highlighted. This is the current address. This is initially set
to the address that you requested to display. The highlighted address is mirrored ir
the ASCII representation.

Chapter 7

Using SDBG

You can move the highlight using the following keys:

Key

Left
Right

Up
Down
Page Up

Page Down

PressingAlt+P will take the byte under the highlight and the following three bytes to
form an address. The window will then be refreshed using this new address. This
allows a pointer to be followed. You can go back to the address at which you pressed
Alt+P by pressincAlt+B. You can nesAlt+P key presses to a depth of 20 and still be

Action

One byte to the left
One byte to the right
Up one line

Down one line

Up one window height

Down one window height

able to return to the starting point usialy+B.

The expression, structure and array view windows all update to show any new values
whenever the program is stepped or run to a new point. Because you may be looking
at a specific area of memory, the memory dump window does not do this automatically

even if the value of the expression used to set the window changes. You can force the

window to reposition itself in memory by pressiagl+O.

If you press the right mouse button with the mouse cursor over a memory dump

window you will see a menu appear.

The items on the menu are as follows:

Menu item Action

16 bytes per line
8 bytes per line
4 bytes per line
2 bytes per line
1 byte per line
Set write break

Set use break

16 bytes per memory strip

8 bytes per memory strip

4 bytes per memory strip

2 bytes per memory strip

1 byte per memory strip

Places a write data break on the address

Places a use (read or write) break on the address

67

FTN77 User's Guide

Data view window

It is possible to open a data view window from a previous data view. This is used
when following pointers etc.. To open one data view from another:

1. presEEnter with the item highlighted or
2. double-click the left mouse button over the item name.

You can close any data view by pressingEke key.

Machine code windows

68

A machine codeavindow displays the instructions that the CPU uses to execute your
program and should only be used by people who understand assembler. A machini
code window will be displayed on the following occasions:

O if you select a routine in the call stack that has no debugging information; these
routines have grey lettering rather than black,

O if you select a routine in Bind window that has no debugging information; these
routines have the words ‘(no debugger information)’ following the routine name,

o if you pressF10 from a source windowHl1l for the Winl6 and Win32
debuggers).

As with source windows the current execution point is shown by a red bar. An
execution point that is not at the top of the call stack is shown in brown.

The window is split into three distinct columns. The first column shows the start
address that the instruction is located at. The second column shows the assemble
instruction at that location and the third column shows the offset of the instruction
into the routine. The following key presses can be used within this window:

Key Action

Up Move up one instruction.

Down Move down one instruction.

Page Up Move up one page of instructions.

Page Down Move up one page of instructions.

Ctrl+Home Move to first instruction in routine.

F7 Step one instruction.

F3 Get to the instruction the cursor is indicating.

F2 Set a machine level breakpoint at the instruction the cursor is
indicating.

Chapter 7 Using SDBG

F10 Display source code if debugging information is available.

Alt+R Display registers window.

Command line

To provide greater flexibility withinSDBG a simple command line facility is
available. The command line iscgssed from the source window. It can be displayed
by pressin@Alt+P in the source window. Alternatively, you can display the command
line by pressing any alphanumeric key (without holding démor Ctrl). In this

case the key press will appear on the command line. You can hide the command line
by pressinqAlt+P again. It is also possible to edit the command line.

The following key presses are permitted when editing a command line:

Key Action

Left Cursor left
Right Cursor right
Home Start of line
End End of line

Backspace Delete character to left

Delete Delete character under cursor

Up Recalls last command line (up to 20 are stored)

Down Recalls next command line (up to 20 are stored)

Enter Execute command line

Esc Clear command line. If the command line is already clear it will be hidden.
Commands

This section contains a list of the valid commands that may be entered on the
command line.

L/text or text
This command performs a search forward within the source windoweftrand
repositions the cursor if the text is found. The search is case insensitive.

69

FTN77 User's Guide

70

BL/text or ?text
This command performs a search backward within the source windotexfoand
repositions the cursor if the text is found. The search is case insensitive.

MOVETO n
Moves the cursor to line. If nis greater than the number of lines within the file then
the command is ignored.

PROFILE
Toggles profile information and has exactly the same effect as pré$sing

PROFILE filename
This will write the source window, together with any profile counts, into the file
filename The profile information must already be displayed.

PRINT expror P expr

Produce a data view window for the expressgpr. The type of data view displayed

is dependent on the expression given and will be automatically adjusted. This
command provides a more general mechanism than displaying individual variables or
marked expressions.

Examples
print machine_data[i] - C syntax
print machine_data(i) - Fortran syntax

print mph*1.6
print *ptr+stru->element - C syntax

PRINTMEM expror PM expr

Produce a memory dump window centred about the valuexpf The given
expression does not have to be a pointer type. It can be an integer or even :
calculation.

VIEW filename

This command opens a new source window and displays tHéefilamein it. If the

file is not an object file that makes up the current program or the relevant object file
does not have debugging information then you will not be able to display expressions
or set breakpoints from it. Any ASCII file can be displayed with this command.

FIND routine

This command will search for routines whose names contain theotgkte If one

match is found that routine will be displayed. If more than one routine name matches
the text given then Bind window will appear displaying all the matches.

Chapter 7 Using SDBG

The window will respond to the following key presses:

Key Action

Up Move the highlight bar up one line

Down Move the highlight bar down one line
Home Move the highlight bar to the top of the list
End Move the highlight bar to the end of the list

Page Up Move the highlight bar up one page
Page Up Move the highlight bar down one page

Enter Display the routine. If the words ‘(no debugging information)’ appear
after the routine name then a machine code window will be displayed.
Otherwise the file appearing in brackets after the routine name will be
displayed.

Esc Close the window

TheFind window will be kept open to allow further selections to be made, although it
will probably be initially hidden by the new source (or machine code) window. You
can easily cycle through all open windows by presailgN.
Example

find init
Could find the routinesnitialise module, AnswerInlteration andDOINIT
WRITE_BREAK expror WB expr

Places a write data break on the address indicated by evalempngrhe break point
will be set on the address of the result. For example:

write_break count breakpoint placed on addresscofunt
write_break *ptr breakpoint placed on value of poinfsr
write_break arr(9) breakpoint placed on ninth elementaof

write break 0x78647292 breakpoint placed on address 0x78647292

USE_BREAK expror UB expr

Places a use (i.e. read or write) data break on the address indicated by evelmting
The break point will be set on the address of the result as is the case with
WRITE_BREAK.

71

FTN77 User's Guide

72

REGS
Displays a window that shows the current values of the CPU registers. The values ar
in hexadecimal. The floating point stack is also shown.

BREAKPOINTS or BPS
Displays a window which contains the status of currently active breakpoints.

STREAMS
Opens a window that lists the currently open Fortran units.

STREAM n
Opens a window showing the status of Fortran mnit

LET expri=expr2

This command allows you to make changes to data without having to recompile. The
value ofexpr2is assigned to the item indicateddxprl exprlmust be an expression

to which a value can be assigned, for exanigle 12=6+a is invalid. If the two
expressions refer to different data types a conversion will be applied to the result of
expr2 to allow it to be used. You should, however, exercise caution when using
differing types.

Examples
let i=10 Simple variable assignment
let arr(j)=arr(count) Array element assignment
let shape.colour=0x0f3229 Structures

DOS cmdline or EXECUTE cmdline or X cmdline (DOS debugger only, not
Winl16/Win32)

This will load the command processor and execute the comamadiihe which may

be a standard .COM’, “.EXE’ or ‘.BAT’ file. The command line may be omitted in
which case the command shell will be started into which you can type commands.
You should type the commarikXIT to return toSDBG. You should not execute
commands which:

O Modify (or attempt to modify) any open files. This includes removing disks
from the floppy drive that your program is using.

O Try to execute Microsoft Windows @osShell.
Execute any TSR program, including network shells.

Run anyDBOS application. This includes Salford compilers and linkers.

Chapter 7 Using SDBG

Customising the debugger

The debugger can be customised in order to change its look and feel. Under DOS the
keystroke Alt+O will display the options. The Win16/Win32 debuggers use an
Options entry in the Tools menu. The options available are:

Automatically open variables window— When checked theariables window will

open automatically when the debugger is entered. When debugging programs with
large numbers of variables it can sometimes be better to not opevarbles
window and just use thaata viewwindows or tooltips. Default is on.

Sort variables window alphabetically — When checked theariables window is
sorted into alphabetical order. When not checked the variables are listed in scope
order, that is, local variables will be listed first followed by globals. Default is off.

Show PARAMETERS in variables window— When checked PARAMETERSs will be
shown in thevariableswindow. When debugging programs with large numbers of
parameters (Windows applications in particular) the parameters can clutter up the
variableswindow, obscuring the variables. Default is on.

Only use one source window With this option turned on the debugger will only use
one window for displaying source files. When turned off the debugger will use a new
window for each routine in the call stack that is shown. Default is off.

Show Tips at Startup— When checked the debugger will show the ‘Tip of the day
window at startup. Default is on.

Debugger is MDI — When checked the debugger windows will be enclosed within a
MDI (multi document interface) window. When not checked the windows will appear
directly on the desktop. Win16/Win32 only, default is on.

Display bubble help— When checked the toolbar buttons will show tooltips when
required. Win16/Win32 only, default is on.

Display variable values in source- When checked popup tooltip help will appear
when the mouse cursor is over a variable name. The tooltip help will contain the
variable’'s name and value. Win16/Win32 only, default is on.

73

FTN77 User's Guide

74

8.

Program development

Diagnostic facilities
FTN77 provides extensive diagnostic facilities which enable programs to be speedily
developed and debugged. Diagnostics can be output
O during compilation,
O during loading,
O at run-time.

These three types of diagnostics are described separately below.

Compilation diagnostics

During compilation, three types of messages can be output:

1) ERROR MESSAGES which indicate that the rules of Fortran 77 have not been
obeyed, for example, that a label has been referenced but not defined. Error
messages are preceded byl (three asterisks).

It is possible (but not recommended) to load and execute a program that contains
compilation errors (if théPERSIST option was used) but unpredictable results
will occur if the parts that are executed contain compilation error&ERSIST

is not used, the compiler will cease code generation once an error has been
reported and the relocatable binary file will be marked to make it unloadable.

Note that certain error conditions become fatal when/AiNSI option is used
otherwise they are classed as warnings.

75

FTN77 User's Guide

76

2) WARNINGS are output for one of two reasons:

O |If the program is correct Fortran 77 but probably contains a logic error. For
example, the following statement is legal but will cause an infinite loop:

10 GOTO 10

In the following example, the compiler will warn that the second statement will
never be executed.

RETURN
A=B
C=0D

O Each time the program uses those extensions to Fortran 77 (see chapter 13
which have been included in order to allow compatibility with Fortran 66.

For example, users converting programs containing Hollerith data will find
their listings annotated with the message:

Warning: The use of Hollerith data is an extension to
Fortran 77.

It is always possible to load and execute a program whose compilation produces
only warnings.

3) COMMENTS are informative messages. They serve to remind the programmer
that there might be a better way of writing a particular statement. As an example,
the statement

A = FLOAT(I)
would cause the compiler to output the message:

COMMENT: FLOAT could be replaced by its generic
equivalent (REAL) throughout this program unit

Most messages are output immediately after the statement to which they refer.

If it is necessary to delay the output of a message or the source listing option (see
page 23) has not been chosen, the message is followed by a line number which refer
to the source file. Certain error messages referringQUIVALENCE statements

are always output (with a line number reference) immediately after the first executable
statement in a program unit has been listed.

Some messages, notably those referring to undefined or unused labels, are not outp
until theEND statement of a program unit has been processed.

Each diagnostic message has an associated error number. It is possible to instruct t
compiler to ignore every occurrence of the error associated with a particular error
number by using th&GNORE compiler option as follows:

Chapter 8 Program development

FTN77 MYFILE /IGNORE <error number>

where <error number> is the number of the error that is to be ignored. This number
can be obtained by using tHERROR_NUMBERS compiler option in an earlier
compilation that exhibits the error. More than d&NORE option can be specified,

if it is desired, in order to ignore several errors.

Note:
If messages other than warnings or comments are ignored, the compiler may generate
incorrect code.

An example of a source listing containing errors, warnings and comments appears in

Figure 8-1.

SALFORD UNIVERSITY FTN77-VER. x.xx C:\PROJECT\MYPROG.FOR

COMPILER OPTIONS: LISTING INTS NOMAP NOCHECK LOGS DYNM OFFSET
NOANSI PAGETHROW NOSILENT NO_OPTIMISE

0001 OPTIONS(NOCHECK)

0002 GOTO 1

0003 DO 10 I-1,6 AT 0022
WARNING - This statement will never be executed

0004.01 J=3 AT 0037
0005.01 I=J+1 AT 003D
**% T js currently in use as a DO or implied DO variable

0006.01 4 K=686 AT 003D
0007.01 10 CONTINUE AT 003D
0008 IF(I.EQ.3)THEN AT Q03F
0009.01 P=0+R AT 003F
0010.01 1 L=7 AT 003F
0011.01 ENDIF AT 003F

**% |label 1 has been referenced from outside the DO-Tloop,
IF, ELSEIF or ELSE block in which it appears

0012 IF(I.EQ.4)THEN AT 003F
0013.01 DO 20 K=3,7 AT 003F
0014.02 A = FLOAT(I)/B AT 003F
0015.02 END AT 003F

**% nterminated DO statement(see Tine 13)
**% nterminated block-IF statement(see Tine 12)
**% |label 20 has not been defined

Figure 8-1Error and warningnessages

77

FTN77 User's Guide

Linker diagnostics

During the loading of a program, the relocatable binary code that has been output by
the compiler is linked with routines from the Fortran 77 library and from other
relocatable binary files and libraries specified by the user. There are a number of errol
and warning messages that can be output by the linker, most of which are self-
explanatory.

A commonly occurring message is one that reports that a routine is missing. A name
can appear as “missing” for either of the following reasons:

1) Aroutine of the specified hame is not available to the loader because:

O an appropriatdlIBRARY directive (see page 41) has not appeared in the
source program or

O the name of a library routine has been misspelt. A commonly occurring error
is the use of the letter O instead of the digit 0 in calls to library routines, for
example, the use ®MO1ANF instead oMO1ANF.

2) The name was intended to be an array element name but has not beer
dimensioned. It has then been used only in a function referen€ALa
statement or on the right hand side of an assignment statement, for example:

B = A(3)
CALL SUB(A(I),X)
C = F(A(I+I))

Fortran is defined in such a way that each of the above would generate a referenc
to a function called\. The name\ would be output by the loader as “missing”.

Note:

If the “missing” name corresponded to a routine in a library compiléegHECK

mode, a run-time error might occur saying that the routine had been called
inconsistently. In the worst case, an appropriate routine with consistent arguments
would be loaded and the program would run with unpredictable results!

Programs with missing routinesan be executedip to the point at which a
missing routine is called.

Run-time diagnostics

Comprehensive run-time diagnostic facilities are provided by the system in such a way
that users can always choose the level of checks that are applied to any part of thei
program.

78

Chapter 8

Program development

During the early stages of program development, it is useful to have all or most of
these checks performed by the system but later, when the program is thought to be
thoroughly tested, it is usual to remove checks in order to achieve the fastest possible
execution speed and smallest possible object program size. If new routines or lines of
code are added to an existing program, it is a simple matter to specify that checks
should be performed only on the program units that have been changed.

The available run-time diagnostic information is controlled by directives which may
appear before any program unit. Note that the default level of checks to be applied
can be set by one of tHeTN77 compile-time optiondCHECK, /FULLCHECK,
/UNDEF or /NO_CHECK. These keywords may also appear as part of an
OPTIONS directive.

For example:

OPTIONS (CHECK)
OPTIONS (UNDEF,FULLCHECK)

Once an error has been detected by the checking mechanism, execution terminates and
the system enters the symbolic debugger to give diagnostic information.

The run-time checks are described more fully in the sections which follow.

Arithmetic overflow checking

No computer permits the storage and manipulation of arbitrarily large quantities. The
following limits apply when usingTN77:

INTEGER*1 -128 to +127

INTEGER*2 -32768 to +32767
INTEGER*4 -2147483648 to +2147483647
REAL (REAL*4) +(1E-37 to 1e+39) (approx.)

DOUBLE PRECISON (REAL*8) +(1D-307 to 1D+309) (approx.)

If a calculation is performed whose resulcesds thesémits arithmetic overflow
occurs.

If a CHECK or FULLCHECK directive appears in the source program, then runtime
checking for overflow is enabled.

If a checked statement does set overflow then execution is terminated and the

interactive debugger is entered (see chapter 7). If a statement sets overflow and is not
checked, then execution continues with an incorrect result in the case of integers, but
terminates in the floating point case.

79

FTN77 User's Guide

When a program is loaded, all numeric variables (except those which have appeare
in a DATA statement) are initialised to an “undefined” value unlesgZEROISE
compile-time option is used (see chapter 6).

In the case of integer variables, the undefined value chosen is -32640 which will not
result in overflow being set as the result of an assignment and, furthermore, overflow
will not always occur when an expression is evaluated which involves an undefined
value.

Undefined variables can be trapped by use ofWiNDEF option (see below).

Note:

Variables and array elements in otherwise uninitialised common blocks are not
initialised to the undefined value.

Argument consistency checking

There are a number of run-time checks associated with the calling of routines. A
subroutine or function compiled with a checking option will produce a run-time error
if one of the following occurs:

1) Arrays used as actual arguments are too small for the declared size.

2) An actual argument which is a constant or a local variable that is in udeGs a
variable is altered by the called routine. For example:

CALL FRED(1.0)

DO 10 I=1,100
CALL FRED(I)

10 CONTINUE
END
SUBROUTINE FRED(N)
N =G
END
Either of the calls t6-RED in the above example would cause a run-time error.

3) A simple character argument is not large enough for its declared size.

In the absence of checking these conditions result in program corruption with
unpredictable results.

80

Chapter 8

Program development

Array subscript checking

The /CHECK option ensures that every array reference lies within the storage
allocated to the array. Each individual subscript expression is only checked if
/FULLCHECK is specified. Consider the following coding:

DIMENSION A(10,10)

I =11
J =17
A(I,Jd) = 0.0

The storage element referenced by the subscripts lies within the declared storage for
the array even though the first subscript is outside its corresponding bound. This is
not valid Fortran 77 (although it is valid Fortran 66). In this example, a run-time
error would only be produced by the use/BULLCHECK. /CHECK would not
produce a run-time error.

Using the abov®IMENSION statement foA, it is apparent that the statement

I =11
J =10
A(I,Jd) = 0.0

would cause a run-time error if either of the compiler options were used.

In general, array bound checking incurs a run-time overhead of both store and
execution speed. Full array bound checking for multi-dimensional arrays is very
costly. The simpler array bound check is less so.

Array bound checking is available for arrays of any type. The array may have explicit
dimensions, for example:

PARAMETER (N=10,M=6)
DIMENSION A(N,M),B(10,20)

or may be passed as arguments with variable bounds, for example:

SUBROUTINE FRED (A,B,C,N)
COMMON/ABC/M
DIMENSION A(M),B(N),C(*)

The checks will work in all cases for both upper and lower bounds.

If checking is not in use, unpredictable effects may occur at run-time. An attempt to
transfer a value from an element outside the bounds of an array can either:

1) assign or use an arbitrary value which might cause overflow, or

2) cause the program to fail with general protection fault which means that the
program has tried to access storage outside the limits available to it, or

3) overwrite a pointer and cause a fault in a different part of the program.

81

FTN77 User's Guide

82

If an attempt is made to transfer data to an element outside the defined bounds of a
array without specifying the checks, the effects are totally unpredictable and will

frequently result in a spurious error when some unrelated part of the program is
executed.

The /OLDARRAYS compiler option allows Fortran 66 programs that contain
constructs such as

SUBROUTINE FRED(A,B,N)
DIMENSION A(1),B(N,1)

to be treated as

SUBROUTINE FRED(A,B,N)
DIMENSION A(*),B(N,*)

Use of this option allows array subscript checking to work according to the size of the
actual argument array.

Checking for undefined variables (/UNDEF)

/UNDEF (which implies/CHECK) causesFTN77 to plant code to check that a
variable or array element used in the circumstances described below has beel
previously given a value.

/UNDEF causes extra code to be planted for a name or array element appearing in th
following circumstances:

O as the right hand side of a non-character assignment,
in arithmetic expressions involving + - / * Of]

in relational expressions involvindlE. .EQ. etc.,

in logical expressions involvingND. .OR. etc.,

as an array subscript,

as a substring expression,

O O O o o o

as the argument to &NSI standard intrinsic function such &N, COS etc.,
O as the expression used within a logical or arithnlétistatement.
/UNDEF currently has no effect on character assignments or concatenations.

All local static variables are predefined to an undefined value. This valudE¥s
80 in every byte. Routines compiled witBHECK also clear their dynamic variables
to this value on entry to the routine. This value is treated as undefined by the

Chapter 8 Program development

symbolic debugger, see page 49. An undefined integer has one of the following
values:

INTEGER*1 -128

INTEGER*2 -32640

INTEGER*4 Z’80808080’
In rare cases, most likely when using integer data, the undefined integer value may be
intended by the programmer and the usBJ)XDEF will cause a spurious error to be

reported. In this case, all that can be done is to compile the program unit(s) in
question withoutUNDEF. Note that:

O The use ofUNDEF causes a significant run-time execution speed penalty.

O It is necessary to compile thmain program with this option if uninitialised
common blocks are to be set appropriately.

ASSIGNED GOTO statement checks

FTN77 ensures that if a local variable is used in an assi@@®@dO statement there
is at least onASSIGN statement for the variable in the program unit. Thus, for
example

CHECK
J=3
GOTO J
would cause a compile-time error. Run-time checks are provided to ensure that:

1) if a label list is present, the integer variable is curreAfsIGNed to a label in
the list and

2) if no label list has been specified, the transfer of control is within the current
program unit.

Note that this check is not watertight and that a program which attenfp@TO® an
integer whose value happens to lie within the range of the routine will go out of
control even ifCHECK mode.

Character data
The checking mechanism provides the following diagnostic checks for character data:

1) That an argument of type character is of sufficient length for its declared dummy
size. For example, iICHECK mode, the following program would cause a run-
time error:

83

FTN77 User's Guide

84

2)

CHARACTER*20 A

CALL CHSUB(A)

END

SUBROUTINE CHSUB(X)

CHARACTER*30 X

END
The error could be prevented in this case by declaXinig the subroutine as
follows:

CHARACTER*(*) X
so thatX would assume the character length of the actual argument.

That substring expressions are valid. There are two possible sources of error tha
may arise when using a substring reference of the Agird):

O either the value ofis greater than the value &for

O the value ofl is less than 1 or the value &fis greater than the declared or
assumed length of the character variable or array element.

All of the character assignment statements in the following program would cause a
run-time error:

CHARACTER*20 A,B(20)

-0

I

J =21
K=14

L=3

A(L:) = °X°

A(1:d) = "XXX’
B(3)(K:L) = "XXX’
END

9.

Optimisation and efficient
use of Fortran

Introduction

This chapter describes tR&N77 local and global optimisation features and indicates
some of the ways in which a programmer can write Fortran programs that will make
the best use of these features.

Optimisation

The /OPTIMISE compiler option

/OPTIMISE selects the optimisation facility described below. For those installations
where/OPTIMISE is the chosen defauWO_OPTIMISE is provided.

The alternative spellinggQPTIMIZE and/NO_OPTIMIZE, are provided for those
who use a well-known alternative version of the English language!

The/OPTIMISE option causes the compiler to make a second pass through the source
code image in order to perform improvements to the object code that will result in
faster execution times for typical programs.

Under DOS/OPTIMISE may be used together with th&EITEK compiler option

Using a coprocessor

The compiler will automatically generate correct code for an Intel compatible numeric
coprocessor. Under DOS, the compileill mlso generate code for WEITEK

85

FTN77 User's Guide

86

numeric coprocessor when thé&/EITEK compiler command line option is used.
Support for the 80287 coprocessor has been discontinued.

DBOS will support both an Intel compatible coprocessor and YMEITEK
coprocessor. However, if you wish to enaBIBOS's ability to use theWEITEK
coprocessor you must add thgEITEK DBOS command line option. No version of
Windows support8/EITEK numeric coprocessors.

Optimisation processes

The improvements in execution speed that are obtained depend upon the style an
content of the source program, for example, whether one- or multi-dimensioned arrays
are used, whether nested loops appear, and so on.

As optimisation can involve source code re-arrangement and a change in the way tha
registers and store locations are used, it is possible that numerical results produced &
an optimised program may differ in some way from those produced by the
unoptimised version of the same program. This effect may be more noticeable with
iterative algorithms and is due to the fact that a more accurate value can be held in :
coprocessor floating point register than can be held in the corresponding store
location.

Some programs may actually execute more slowly when optimised due to non-
executed loops that cannot be detected by the compiler, for example:

DO 10 I=1,N

whereN is zero or negative at run time. In this case code that is moved out of the
loop will be executed once, rather than not at all as would happen if this optimisation
had not been made.

When the compiler optioWOPTIMISE is used, the compiler performs code
optimisation based on rearranging the order of execution of statements which
constitute a program unit (see below). /@PTIMISE is not used, the following
optimisations are typical of those performed by default.

O Constant ‘folding’ and conversion of Fortran type at compile time. Constant
folding is the process of taking a statement such as:

A=1+3+7
and producing code which is the same as for the statement:
A=1+10

This might not appear to be of much use at first glance, since you might not think
that you would write expressions with multiple constants in this way. However,
consider the expressidt*PI*R whereP1 is a parameter - the*PI part would

be evaluated at compile time. In addition to this however, a number of situations
arise for the implicit arithmetic which the compiler plants code for (chiefly array

Chapter 9

Optimisation and efficient use of Fortran

subscript calculation) where this technique results in considerable reduction in the
amount of arithmetic done at run time.

Related to this is the conversion of the type of constants where appropriate. For
example, the statement:

X =4
is compiled as:

X =4.0
thus the need for a type conversion at run time is obviated.

Elimination of common subexpressions within a statement. Again, this applies
equally to expressions which form subscript calculations. Consider the following
assignment:

ACI,J+K) = A(I,J+K) + 3

The code necessary to calculate the offset representéd+)(is only performed
once.

The contents of registers are “remembered” between statements so that redundant
load and store operations are avoided. For example, consider the following
sequence of statements:

K=1+1J
L=K=*1I

For the second statement, the compiler recognises that it has the v&lue af
register, so it does not need to ld&érom store.

Note, however, that it will probably need to reference the vallidrom memory,
since the calculation df+ Jwill have resulted in the loss of the value dfdm a
register.

Even if there were some statements interspersed between the statéoemtthis
optimisation could still take place, so long as:

m the register in question was not used for another purpose in the interim, and
m none of the interim statements w&®TOs, and

m none of the executable statements were labelled (a good reason to dispense with
unused labels in your code).

The compiler tries to avoid using registers which might contain something useful
in a subsequent calculation.

A related technique is used for the coprocessor floating point registers, although
due to the limited size of the hardware register stack, it is not possible to leave a
value in a register just in case it might be useful. Instead, if a recentlyatadtu

87

FTN77 User's Guide

floating point value proves to be useful for a subsequent calculation, the instruction
which places the result in the corresponding memory location is converted from
“store and pop” to “store and don’t pop”. The value is then available somewhere
in the register stack for the susequent calculation.

Note that this floating point register tracking is not performed whefiltBBUG
compiler option is used or implied. Furthermore, the compiler option
/INO_FLOATING_TRACKING can be used to disable this process (see page 94).

O Full use is made of the instruction set. For example, an integer addition or
subtraction of 1 is performed by the appropriate increment or decrement
instruction. Also, some optimisations can be used to perform certain arithmetic

operations a little quicker. For example, evaluatiod *#, wherel is of integer
type, can be performed with the instruction sequence:

MOV EAX%, 1
LEA EAX%, [EAX%+EAX%*4]

which is faster than the corresponding integer multiply. Note however, that this
optimisation is not done IMCHECK mode, since any overflow would go
undetected.

When theOPTIMISE option is used, optimisations performed include the following:

1) Loop invariant motion. This means that any calculations which are constant with
respect to the loop variable may be moved, so that they are performed once and fo
all on entry to the loop. This leads to the actual degradation in performance
mentioned earlier, for the case where the loop is not executed at all. However, in
most cases, particularly when the loop is executed a large number of times,
considerable savings can result.

2) Loop induction weakening. This means that, instead of using multiples of the loop
index, a constant is added to a pseudo variable each time round the loop. Fol
example, consider the following loop:

DOTI =1, N
A(1,I) =0
END DO

The offset into the arraé will be a constant multiple of the loop variable The
constant is related to the size of the first dimension of the @raynduction
weakening will replace multiplication by this constant to produce the array offset
at each iteration of the loop by a faster addition of the constant at each iteration.

3) Elimination of common subexpressions across statements. This is often a
consequence of the optimisations in (1) and (2) : expressions which are taken ou
of the loop as either loop invariant, or as candidates for induction weakening, can
themselves be sub-parts of larger expressions.

88

Chapter 9

Optimisation and efficient use of Fortran

4) In some loops, particularly useful quantities can be “locked” into registers.
“Locking” means that, for the duration of a loop, the value of a program variable,
or perhaps a derived quantity such as an offset into an array, is kept in a register,
and is not stored into its associated store location (if indeed it has one) until exit
from the loop.

Obviously, this requires that exit from the loop cannot be by mean<G@EO
from within itself, and that no subroutine or function is called from within the
loop, as these statements could destroy any value held in the register.

Also, there is some trade-off involved in tying up a register in this way, so
generally locking will only occur for relatively short loops.

Optimisation of the loop in the example given in ®opwe involves induction
weakening and locking the array offset in a register.

5) Some additional optimisations based on the 80486 and Pentium instruction set. In
some cases integer instructions are used instead of floating point instructions. This
often results in different behaviour where the operands are invalid (for example
where they should cause an overflow), but it is assumed that, if optimisation is
being employed, problems such as this have been eliminated.

6) Many cases of a “dot-product” construction are spotted and replaced with faster
code, for example:

DOTI =1, N
SUM = SUM + A(I)*B(I)
END DO

This is particularly efficient when optimisation is used in conjunction with the
/WEITEK option - the Weitek “multiply and accumulate” instruction is used.

7) Many cases of redundant combinations of instructions are eliminated, for example,
jumps to the next line, loads from a register to itself which sometimes are
generated as a result of register locking (see 4 above).

The above list is not exhaustive, and newimjsations will be added during the
course of compiler development.

It is possible to further improve the execution speed of certain programs by using the
/UNSAFE option in conjunction witiOPTIMISE. /UNSAFE allows the compiler to
assume that the following classes of variable and array names can be subjected to code
re-arrangement techniques:

O Equivalenced variables and arrays.

O COMMON variables and arrays.

O Argument variables and arrays.

With each of these categories of objects, there may be more than one way to access the
storage represented by the object. Thus, in the most general case, it is necessary to

89

FTN77 User's Guide

assume that the register from which such a value was recently saved is not necessari
valid, since the storage in question might have been changed via another route
Similarly, any quantity calculated from an object in these classes may not be induction
weakened, locked into a register, and so on. /THESAFE option allows the
compiler to assume that such objects will not be changed by their alternate routes (an
thus requires some care from the programmer).

Helping the optimiser

The success which the optimiser has with your code depends to a large extent on th
code itself. In order to ensure that the object code is correct in all cases, the optimise
takes a conservative approach which can sometimes mean that potential optimisation
are ignored. As a rule of thumb, the more structured the code appears to the
optimiser, the more optimisations it can apply. It is difficult to give hard and fast
rules as to how best to maximise the optimisation which can take place, but a numbel
of general points should be noted:

m GOTOs can often inhibit optimisation. This is particularly the case in tight loops.
You may be able to achieve the effect you want by using a logical variable.

m Function and subroutine calls within loops prevent many optimisations from
occuring. Apart from the fact that no register tracking can take place &zbts
statements and function references (the called routine does not save the registe
set), many of the loop optimisations cannot take place.

Even if theCALL statement or function reference appears to be “loop invariant” in
some sense (for example, all of its arguments are themselves loop invariant), the
CALL statement or function reference cannot be moved because of side effects
which the routine may have, or common variables which it uses which are not loop
invariant.

Thus, it is up to you to remo¥@ALLs and function references which are genuinely
loop invariant from out of your loops.

m Itis a good idea to remove all redundant labels (these are automatically indicated
by FTN77’s compilation diagnostics). See below.

Efficient use of Fortran 77

90

Labels

The compiler outputs a warning message if a label has been set but never usec
Redundant labels should be removed as their presence inhibits optimisation in many
cases. Labels can also often be removed by making small changes to the structure
the program, for example:

Chapter 9 Optimisation and efficient use of Fortran

IF(I.NE.0)GOTO 10

A=B
C=0D
10 4 =1

If label 10 had not been referenced from elsewhere in the program unit, this could be
rewritten more efficiently (and legibly) usingodbock-IF statement as follows:

IF(I.EQ.0)THEN
A=B
C=0D

ENDIF

J =1

The extra efficiency would derive from the fact that the compiler ‘remembers’ that it
hasI in a register when it compiles the stateméni.

Labels may also often be removed from a program by removing arithiketic
statements, especially when two of the labels are the same, for example:

IF(I-3)1,2,2
1 B=23

would be better written:
IF(I.GE.J) GOTO 2
B=3
Intrinsic functions
The following intrinsic functions are compiled as in-line code:

O Type conversion functions such &I, REAL, DBLE, CMPLX, CHAR, ICHAR,
CONJG andDIMAG.

O BITS, AND, OR, XOR, NOT, LS, RS, LR, RR, SHFT, LT, RT, LOC,
CCORE1, COREl1l, CORE2, CORE4, FCORE4 and DCORES.
Note: these functions afl€TN77 extensions.

The MAX andMIN functions.

ABS and its non-generic variants, exc#ABS andCDABS.
LEN andLENG.

LGE, LGT, LLE andLLT.

The long to short conversion functiohdTB, INTS, INTL, LGCB, LGCS and
LGCL.

O Under DOS/Winl16,SQRT (unless you have a 386 with a Weitek 1167
coprocessorthenSQRT is not performed in-line).

O O o o o

91

FTN77 User's Guide

O Under DOS/Win16SIN, COS andTAN (unless a Weitek coprocessor is used).
O INDEX, if the second argument is of length 1, for example:
K=INDEX(MESSAGE,’)

Statement functions

Statement functions are always expanded as in-line code. Efficient execution is
therefore guaranteed and is to be preferred to the supplying of a one line externa
function.

Common subexpressions

In most cases, common subexpressions are evaluated only once. Thus the followin
code could not be improved by the prior assignm&MP=X*Y:

Z = (X*Y)/(1.0+X*Y)

Common subexpressions may sometimes be evaluated more than once in charact
expressions and in arithmetic expressions contained in |d§icdhtements.

Constants

The constant parts of expressions are evaluated at compile-time so that
PARAMETER statements can be used in many cases to make programs more
readable without increasing execution time. For example, consider the following:

PARAMETER (PI=3.14159)

CALL FRED(PI/2.0)

The expressior?1/2.0 is constant and is therefore evaluated at compile-time and
nothing would be gained by replacing the expression with its calculated value.

Dummy array dimensions
It is more efficient to dimension a dummy arvsff) rather thanA(N) if the value of
N implies the whole of arra.

Character variables

The manipulation of long character data has hidden overheads. In particular, conside
the following:

CHARACTER*100 A

A = ’FRED’

92

Chapter 9

Optimisation and efficient use of Fortran

The execution of the assignment statement involves the insertion of 96 blanks to pad
out the variable\ to its declared length of 100. Note, however, that

A - » »
is far more efficient than for example:

DO 1 I=1,100
1 ACL:T) = 7

Format statements

Unlike many Fortran implementation5;TN77 preprocesses ‘constant’ formats at
compile-time. These ‘constant’ formats are as follows:

m A FORMAT statement.
m A format expression that is a character constant or a character constant expression.
m A format expression that is a parameter name.

All formats which include character arrays, array elements or variables are decoded at
run-time. Such non-constant formats require more extensive decoding which leads to
longer execution times.

For example, the following should be avoided wherever possible:
CHARACTER*10 F
F = '(3F10.4)"
WRITE (2,F)X,Y,Z
It could be rewritten as follows:
CHARACTER*10 F
PARAMETER (F=’(3F10.4)")
WRITE (2,F)X,Y,Z
so that the format specifier would be decoded at compile-time.

Note also that the colon (:) edit descriptor and tab facilities can often be used instead
of a run-time format.

93

FTN77 User's Guide

Switching off variable tracking

94

On page 85 it was noted that by default (even when the compiler ¢PFRAMISE

is not used), the use of coprocessor floating point registers is tracked in order to
eliminate unecessary register reloading instructions. However, in certain very
unusual circumstances, the use of variable tracking could have undesirable side
effects. For this reason, the compiler optiN®_FLOATING_TRACKING has been
made available to turn off register tracking for floating point values.

For example in extreme circumstances a problem may arise because a register value
stored with greater precision. The following code illustrates this feature.

X=1.0
Y=X+1E-8
C Normally you would not expect to be able to hold nine
C significant figures using the implied REAL*4.
IF(Y.GT.X)THEN
WRITE(*,*) "The register value has been used for Y’
ELSE
WRITE(*,*) "The stored value has been used for Y’
C /NO_FLOATING_TRACKING or /CHECK has been used.
ENDIF
END

10.

Fortran input/output

Overview

TheFTN77 input/output statements alloWNSI standard-conforming programs to be

written which can:

O open and close files,

O make inquiries about the type and mode of access of a file,

O access data using any combination of formatted or unformatted and sequential or

direct access data transfer statements.

There are nine input/output statements:

OPEN

CLOSE

INQUIRE

BACKSPACE File
SHOMLE Cntements
REWIND

READ

WRITE

PRINT

Each of these statements has a list of specifiers associated, for example:

BACKSPACE
WRITE

(UNIT=7)
(10,REC=9) B,C

Auxiliary
input/output
statements

Data
transfer
statements

95

FTN77 User's Guide

Records

96

OPEN (UNIT=3,FILE="FRED")
READ (UNIT=4,END=20) A
The general form of these specifiers will be obvious from these examples.

A full list of specifiers and the input/output statement(s) to which each applies appears
in Table 10-1. Specifiers marked by an asterisk are extensions AdNBieStandard.

Note that thePRINT statement has been omitted from this table as specifiers are not
permitted.

The input/output statements are described in detail in the remainder of this chaptel
after the FTN77 definitions of records, files and methods afcess have been
explained.

A record is a sequence of characters (for example, a line of text) or a sequence o
values (for example, 3 0 4).

There are three kinds of records:
O Unformatted
O Formatted
O Endfile

They are described separately below.

Unformatted record

An unformatted record consists of a series of values in binary form and may contain
any combination of numeric, logical or character data or indeed no data at all.

The length of an unformatted record is measureBTY77 in bytes and depends on

the output list used when it was written. For unformatted sequential files, each record
also contains a small amount (usually 2 bytes) of “red tape” which delimit one record
from the next (see also page 100).

This means that a file containing (say) 10000 numbers, one per record, will not be as
efficient as one composed of 100 records each holding 100 numbers. The size of th
individual data items in an unformatted record is shown in Table 10-2.

Chapter 10 Fortran input/output

WRITE READ REWIND OPEN INQUIRE | ENDFILE | CLOSE BACKSPACE
ACCESS . .
BLANK . .
DIRECT .
* DRIVER .
END .
ERR
EXIST .
FILE . .
FMT . .
FORM . .
FORMATTED .
NAME .
NAMED .
NEXTREC .
NUMBER .
OPENED .
REC . .
RECL . .
* RENAME .
SEQUENTIAL .
SHARE .
STATUS . .
UNFORMATTED .
UNIT
* NML . .

Table 10-1 Input/output statements and specifiers - allowed combinations are
denoted by

97

FTN77 User's Guide

Type

Number of Bytes

INTEGER*1
INTEGER*2
INTEGER*4

1

REAL*4

DOUBLE PRECISION
REAL*8

2
4
4
8

COMPLEX*8

DOUBLE COMPLEX
COMPLEX*16

16

LOGICAL*1
LOGICAL*2
LOGICAL*4

1
2
4

CHARACTER*n

n

Table 10-2 length in bytes of unformatted data according to type.

Note:

The length in bytes of a numeric or logical variable depends on the chosen default
(/INTS, /INTL, /LOGS, /LOGL and/or/DREAL) for the compilation and also the
type statements used for declaration (see page 178).

Formatted record

A formatted record consists of a sequence of characters chosen froAS@ie
character set. Thiengthof a formatted record is the numberASCII characters in
that record. This length may be zero. The end of the record is indicatedAfyGhie

characteLF (decimal 10).

Endfile record

An endfile record is written by aBNDFILE statement. Such a record may occur only

as the last record of a sequential file.

In the case of disc files, this record is only a

conceptual entity and does not actually exist.

98

Chapter 10 Fortran input/output

Files

A file is a sequence of records. There are two kinds of files:
O External
O Internal

Internal files are described on page 101.

File existence

At any given time there is a set of files that are said to exist for a given program. A
file that is known to the operating system may ratassarily exist for a program, for
example, because it has been given the “hidden” attribute.

A file may exist for a program and contain no records; an example is a newly created
file not yet written.

File names

A file may have a name; if so it is referred to as a named file. Any name, including a
pathname, acceptable to the operating sytem can be used as a file name.

File properties
A file which has been written using formatted, diremtess may subsequently be read
sequentially and/or examined with a text editor. A special comnMAKEDA77, is

provided to convert formatted, sequential files into formatted, diceetsa files, see
page 129.

If it is necessary to alter the contents of a direceas formatted file this is possible
using an editor, provideMAKEDA77 is used to reconstruct the result, (remember
that editors usually compress files by means of tabs and sometimes do not retain
trailing spaces).

Data transferred to or from the screen must be accessed sequentially.

File structure

1. Formatted sequential files

A formatted sequential file consists of zero or more records of the form described on
page 98.

99

FTN77 User's Guide

2. Formatted direct access files
A formatted direct ecess file written byFTN77 contains records of the form
described on page 98. All records in the file are of the length specified in bytes by the
RECL= specifier when the file is opened.

A formatted file created by directe@ess output may be read by sequential input if
desired.

3. Unformatted sequential files
The structure of a record in an unformatted sequential file writtéfTbhy/7 is as fol-
lows:

O For the first record or any subsequent record of more than 240 bytes in length:

1-byte 4-bytes n-bytes 4-bytes 1-byte
FF nn XX.... XX nn FF
indicator record record record indicator
byte size data size byte
O For other records:
1-byte n-bytes 1-byte
n XX....XX n
record record record
size data size

This structure is designed to:

1) Facilitate very long records

2) Minimise the overheads for small records

3) Enable backward repositioninBACKSPACE) without rereading the file.

4. Unformatted direct access files
Each record in an unformatted directess file contains only the raw data written to
it, with no extra “housekeeping” information. All records in the file are of precisely
the length specified in bytes by tRECL= specifier when the file is opened.

An attempt to write to a record an amount of data less than the specified record lengtt
results in the remainder of the record being undefined. An attempt to write more data
than the record can hold results in a run-time error.

File position
A file that is connected to a unit (see page 106) has a position property. The executior
of certain input/output statements affects the position of a file. Circumstances such as
an error condition can cause the file position to become indeterminate.

100

Chapter 10

Fortran input/output

The initial point of a file is the position immediately before the first record. The
terminal pointis the position immediately after the last record. If a file is positioned
within a record, that record is tleerrent recordotherwise there is no current record.

The termspreceding recordand next recordare defined formally in theANSI
Standard; their meanings are self-explanatory for practical purposes.

File access

The two methods of file access aequentialanddirect The method of access is
determined when the file is connected to a unit (see page 106).

An internal file (see below) must be accessed sequentially. Sequectakaneans

that then’th record can only be accessed after the precdgirig records have been
accessed. Direct access means that the records in a file can be accessed in any order;
thus, for example, it is possible to write record 10 even though records 1 to 9 have not
been written.

A file that is connected for formatted@ss may not be accessed by non-formatted
data transfer statements for the duration of the connection, and vice-versa.

A file that is connected for direct access may not be accessed by the sequential forms
of the data transfer statements for the duration of the connection, and vice-versa.

All records of a direct access file have the same length. Each record in a direct access
file is uniquely identified by a positive integer called tteeord numberwhich is
specified in theNVRITE statement when the record is written. This record number is
not stored in the file but once established can never be changed. A direct access
record may not be deleted but may be changed by being rewritten.

Internal files

Internal files provide a means of transferring and converting data from internal binary
format to character format. Internal files have the following properties:

1) The file is a character variable, character array element, character array or
character substring.

2) A record of an internal file is a character variable, character array element or
character substring.

3) If the file is not a character array, that is, it is one of the data items o, at
consists of a single record whose length is the same as the length of the character
variable, character array element or character substring.

4) An internal filerecord becomes defined:

O when it is written (if the number of characters written in the record is less than
the length of the record, the remaining portion of the record is blank-filled),

101

FTN77 User's Guide

Units

102

O by means other than by WRITE statement, for example, by a character
assignment oDATA statement.

5) An internal file is always positioned at the start of its first record prior to data
transfer. This means that only sequential access is available with internal files.

6) List-directed formatting (free format) is not available with internal files according
to the ANSI Standard. HoweverFTN77 does permit this as an extension
providing the/ANSI compile-time option is not used. For example:

CHARACTER*20 NUM

WRITE(NUM,*)I,d

7) An auxiliary input/output statement (iIBACKSPACE, REWIND, or ENDFILE)
can not be used on an internal file.

A unit specifieris a means of referring to a screen or a disc file. Units within the
range 1 to 100 may exist forFAIN77 program. All input/output statements (except
CLOSE andINQUIRE) must refer to one of these units.

A unit has the property of being connected or not connected. Once connected, it refer
to a file or to a slow peripheral. A unit specifier may become connected in one of the
following ways:

O by execution of the Fortran TWPEN statement,

O by preconnection; the standargput and output are preconnected to units 1 and 2
respectively (units 5 and 6 are respective alternatives).

The ANSI Standard states that a unit cannot be connected to more than one file at the
same time and a file must not be connected to more than one unit at the same time
However, theOPEN statement allows the user to change the status of a unit and to
connect a unit to a different file. As an extensiBmN77 allows a file to be opened
more than once provided this is done WBfRFATUS="READONLY".

After a unit has been disconnected from a file by the executiofCbfXSE statement
it may be connected again to the same file or to a different file. After a file has been
disconnected from a unit it may be connected to the same unit or to a different unit.

A preconnected unit can be opened in order to redefine its use. Subsequent closin
does not re-establish the preconnection.

Chapter 10 Fortran input/output

Unit specifier
All the input/output statements (with the exception of the foRPRINT* and
READ?*) use a unit specifier to refer to a unit. It takes one of the forms
UNIT=<unit>
<unit>

where <unit> is known as an external unit identifier and is a constant, name or
expression of typédNTEGER*4, INTEGER*2 or INTEGER*1. (PRINT* refers to
list-directed output on unit 2, which by default is preconnected tsttralard output

but which may have been reconnected to some other file. SiniR&EAD* refers to
list-directed input on unit 1.) The value of <unit> must be in the range 1 to 100 for all
input/output statements except OSE andINQUIRE. A special form of <unit> (an
asterisk) is available with tHREAD andWRITE statements (see page 122).

If the second form is used, <unit> must be the first item in the input/output statement
specifier list, for example:

WRITE (6) A,B,C
This is equivalent to,
WRITE (UNIT=6) A,B,C

Internal file identifier

An internal file identifier is a character variable, character array element, character
array or character substring. It is used in place of an external unit identiR&TAD
or WRITE statements when transferring data to or from an internal file, for example:

CHARACTER*20 RECORD

WRITE(RECORD,100) A,B,I
100 FORMAT(2 F8.3,14)

Error and end-of-file conditions

An input/output statement can execute normally or can result in an error condition.
The error conditions that can occur are listed in chapter 27 They may also be
identified by a suitable call to tRUNERR@ routine. AREAD statement can also
result in an end-of-file condition. An end-of-file conditid®ETAT value -1) exists

if either of the following events occur:

103

FTN77 User's Guide

104

O an endfile record is encountered during the reading of a file connected for
sequential access (in this case the file is positioned after the endfile record),

O an attempt is made to read a record beyond the end of an internal file.

If an error condition occurs during the execution of an input/output statement,
execution of the statement terminates and the position of the file becomes
indeterminate. It is possible for a program to continue execution after an input/output
error has occurred if tHeERR= and/orlOSTAT= specifiers are used (see below).

If an error or end-of-file condition occurs inREAD statement, the entities specified

in the input list and any implieBO variablesbecome undefined (according to the
ANSI Standard), but variables appearing only in subscripts, in substring expressions
and in impliedbO parametergo not become undefined.

In programs compiled witRTN77, items read in before the error will be available in
accordance with thANSI standard. Similarly, any subscript will have the value it
had at the point of the error.

If an error condition occurs during execution dVRITE or PRINT statement, any
implied-DO variablesin the output list become undefined.

It is possible to recover from all input/output execution errors by means of the optional
ERR= andIOSTAT= specifiers. Similarly, end-of-file conditions can be dealt with
using theEND= specifier.

The error specifier has the form:
ERR=<errlab>

where <errlab> is the statement label of an executable statement that appears in th
same program unit as tleRR= specifier. In the example which follows, control is
transferred to the statement labelled 10 if an input error occurs on unit 7:

READ (7,°(3 15)’,ERR=10) I,J,K
10 PRINT *,’data error’
END
ThelOSTAT specifier has the form:
IOSTAT=<ios>

where <ios> is an integer variable or integer array element. When an input/output
statement containing d@STAT specifier is executed, the value returned to <ios> is
as follows:

O zero if neither an error condition nor an end-of-file condition is encountered,

Chapter 10 Fortran input/output

O a positive integer if an error condition is encountered (a library routine,
RUNERR@, is provided to enable the run-time error corresponding to a given
IOSTAT value, to be printed on the screen),

O -1 if an end-of-file but no error condition is encountered.
The following program fragment shows the uséQSTAT:
READ (7,100,I0STAT=I) A,B,X

IF (I) 1,3,2
1 STOP ’end-of-file reached’
2 IF (I.EQ.84) THEN
PRINT *,’No file open on unit 7°
ELSE
PRINT *,°1/0 error ’,I
ENDIF
STOP
3 Y = (A+B)/X

Note that the statement following tHREAD statement is obeyed in this case no
matter what condition is encountered.

ThelOSTAT specifier can be used in conjunction with ERR= specifier as in the
following example:

BACKSPACE (UNIT=10,I0STAT=I,ERR=50)

50 IF (I.GE.200) STOP

In this example, if there is an error, tH@STAT variablel is given a positive (non-
zero) value and control is transferred to the statement labelled 50.

The end-of-file specifier has the form:
END=<endlab>

where <endlab> is the label of an executable statement that appears in the same
program unit as thEND= specifier. For example:

READ (7,10,END=20) A,B,C
10 FORMAT (3F6.2)
20 END

Once the end-of-file is reached on unit 7, control is transferred to the statement
labelled 20 which in this case is the end of the program. Note the comments on page
98 concerning the form of an endfile record.

105

FTN77 User's Guide

Under DOS/Win16, an end-of-file comidn is raised when inputing data from the
screen by th&SCII characteETX (octal code 203).

Under Win32, an end-of-file condition is raised when inputing data from the screen by
the ASCII characteCtrl-Z (decimal 26).

Connecting files

106

A file may be connected during program execution by means @®EN statement.
It is possible to use thOPEN statement to connect a device, such as a standard
printer to a unit.

PreviouslyOPENed files can be disconnected by means of Gh®SE statement.
The properties of a file (connected or otherwise) can be found by usihg@tHRE
statement.

The OPEN statement

It is possible to open a file dynamically (that is, at run-time) by means of the Fortran
77 OPEN statement.

The OPEN statement will cause a file to become connected. It is used to describe the
properties of a connection in addition to performing the connection itself. For
example, in order to open a text file for input, the following statement might appear in
a program:

OPEN(UNIT=5,FILE="FRED")

It will be apparent that the name of the file and a unit number are used together with
some defaults provided by the system in order to open the RileN77 implements
OPEN by calling standard file manipulation routines provided by the operating
system.

The general form of th@PEN statement is
OPEN (<olist>)
where <olist> is a list of specifiers:

UNIT=<unit>
IOSTAT=<ios>
ERR=<errlab>
FILE=<filename>
STATUS=<status>
ACCESS=<access>

Chapter 10 Fortran input/output

FORM=<form>
RECL=<recl>
BLANK=<blank>

* DRIVER=<driver>

* FILETYPE=<filetype>

* SHARE=<access mode>

Note that the specifiers marked * are not in ANS| Standard and are specific to the
FTN77 implementation. As their use is never mandatory, standard-conforming
programs can always be compiled and executed.

<olist> must contain exactly one external unit specifier <unit> and may contain, at
most, one of each of the other specifiers.

Note that any keyword target (an item enclosed in diamond brackets ibaves lest
of specifiers) of typeCHARACTER may be in any combination of upper and lower
case characters.

UNIT=<unit>
<unit> is an integer expression (typically a constant or variable) used as an
external unit identifier (see page 103).

IOSTAT=<ios>
<ios> is an integer variable or array element which is used as an input/output
status specifier (see page 103).

ERR=<errlab>
<errlab> is the label of an executable statement in the current program unit to
which control will be transferred in the event of an error (see page 103).

FILE=<filename>
<filename> is a character expression (typically a constant) whose value is a
filename or pathname acceptable to the afireg sytem. Note that if the filename
part is greater in length than eight characters, then it is truncated. The name may
include a suffix, but none is added automatically.

STATUS=<status>
<status> is a character expression (typically a constant), whose value when any
trailing blanks are removed is one of the following with the effect described:

'OLD’
A FILE= specifier must also be used and <filename> must exist.
"NEW’
A FILE= specifier must also be used and <filename> must not exist. The file

is connected for writing. A sequential file can subsequently be rewound and
used for reading.

"SCRATCH’
A FILE= specifier must not be used. A temporary file with the name

107

FTN77 User's Guide

(F$XXXX) will be created wher&XXXX is a unique 4-digit decimal number
between 0000 and 9999 inclusive. WherS8OP or END statement is
executed, the file is erased.

"UNKNOWN'
If a FILE= specifier is present and <filename> existsNKNOWN’ is
equivalent to MODIFY’. If FILE= is absent, UNKNOWN' is equivalent to
'SCRATCH'. If <filename> does not exist/NKNOWN' is equivalent to
"NEW'. If STATUS= is omitted, UNKNOWN’ is assumed. Thus, normally,
no STATUS specifier will be required.

The following options for <status> are not in tABSI Standard and have been
added to th&TN77 implementation:

'APPEND’
A FILE= specifier must also be used.APPEND’ is allowed for both
formatted and unformatted files opened for sequential access. Output is
appended to <filename> if it exists - if <filename> does not exist, it will be
created.

"MODIFY’
A FILE= specifier must also be used - <filename> need not exist. |If
<filename> does not existMODIFY’ is equivalent to NEW'. If <filename>
exists, MODIFY’ causes the existing file to be truncated and overwritten (see
page 117).

"READONLY’
A FILE= specifier must also be used and <filename> must exist.
READONLY status ensures that any attempt to write a record to <filename>
causes a run-time error. It also enables a file to be opened for reading more
than once.

ACCESS=<access>
<access> is a character expression (typically a constant), whose value (when an
trailing blanks are removed) is eithelSEQUENTIAL" , 'DIRECT’ or
"TRANSPARENT’ (see theFORM specifier below).

ACCESS specifies the method of access for the connection of the file. If the
specifier is omitted, SEQUENTIAL’ is assumed.

FILETYPE=<filetype>
This specifier has been added in BIeN77 implementation in order to give users
access to various devices. <filetype> can take the following value with the effect
shown:

108

Chapter 10 Fortran input/output

"TTY’
Input and output is read from the keyboard and written to the screen via the
appropriate unit number.

Other devices such d€PT1 may be available by simply opening ‘files’ of the
corresponding name. For example, to write directly to the printer from unit 6 it is
often possible to execute:

OPEN(UNIT=6, FILE='LPT1’)

DRIVER=<driver>
<driver> is the name of a subroutine which has been previously declared in an
EXTERNAL statement. IIDRIVER= appears, therrILE=, FILETYPE= and
STATUS= must not appear.DRIVER= is an extension to thANSI Standard.
Its use is described on page 113.

FORM=<form>
<form> is a character expression (typically a constant), whose value is
'"FORMATTED’, 'UNFORMATTED’ or 'PRINTER’ when any trailing blanks
are removed.

FORM specifies whether the data transfer to and from the program will be
formatted, unformatted or in line printer format.

If the specifier is omitted, FORMATTED’ is assumed if the file is being
connected for sequentiat@ss andUNFORMATTED' is assumed if the file is
being connected for direct or transparent access (seAG@RESS specifier

above).

FORM="PRINTER'’ is an extension to th&NSI Standard, and specifies that the
first column of any output record is taken as a Fortran carriage control character.
The Fortran carriage control characters are as follows:

Character | Vertical Spacing before printing
Blank One line
0 Two lines
1 To first line of next page
+ No advance

Carriage return, linefeed, and form feed control characters are output as necessary
to give the effects above.

Note thatFORM="PRINTER’ is only appropriate for files on which output only is
performed

109

FTN77 User's Guide

For ACCESS = 'TRANSPARENT’ and FORM= '"FORMATTED’, no carriage
returns are output at the end of record on output (the user can output carriage
returns with the “/* editing descriptor), and on input precisely the field widths
specified in the input format are read, with no attempt to align to record
boundaries (i.e. after carriage returns).

For ACCESS = 'TRANSPARENT’ andFORM = 'UNFORMATTED’, on output

the values in the I/O list are output to file in their internal format, with no
surrounding record structure (unlike sequential unformatted). Similarly, on input,
the values in the input list are read in direct from file, without any record structure.
This gives a Fortran binding for applications which would previously have called
the I/O primitive subroutine© PENR@, OPENW@, READF@, WRITEF@

etc. directly.

RECL=<recl>

This specifier is used when a file is connected for direct access.

As an extension to the standaRECL may also be specified for a file opened for
sequential ecess. This causes fixed length records to be read from or written to
file and allows 8BACKSPACE to be followed by aWwRITE.

<recl> is an integer expression (typically a constant). It specifies the length of
each record in a file being connected for direct accBECL is always measured
in bytes.

BLANK=<blank>

BLANK must only appear for a file being connected for formatted input/output.

<blank> is a character expression (typically a constant), whose value when any
trailing blanks are removed is eith&ULL’ or 'ZERO".

If the specifier is omitted, a value MULL’ is assumed.

If "NULL’ is specified, all blank characters in numeric formatted input fields on
the specified unit are ignored except that a field consisting of all blanks has a value
of zero. If ZERO' is specified, all blanks, other than leading blanks, are treated
as zeros.

SHARE=<access mode>

110

The operating sytem provides a means whereby a program, when opening a file,
can define the access that other programs are allowed to a file for the period that
the first program has the file open. This mechanism is implemented by
SHARE.EXE, which keeps a track of open files and permits or derdessa as
appropriate. Thus, in order to use this keyword, you should ensure that
SHARE.EXE is loaded.

This file sharing mechanism applies for multiple instances of the same file opened
by a particular program, for two or more programs running on the same machine

Chapter 10

Fortran input/output

(e.g. in different “DOS boxes” under Windows 3.1 and Windows 95 and different
“console windows” under Windows NT), or by two or more programs running on
different machines (e.g. access via a shared disk on a network).

When a program opens a file, it can specify that it requires read access, write
access, or read and write access. In addition to this, it can specify dtessa
mode> that other programs are permitted while it still has the file open.

<access mode> is a character expression whose value is one of the following:
'COMPAT’ Compatibility mode - equivalent to opening the file with no

sharing attributes. No other program will be abledreas the
file while this program has it open.

'DENYRW’ Exclusive - no other program can access the file while it is
open.
'DENYWR’ Other programs cannot access the file for write or read/write

access, but can open the file for read only access.

'DENYRD’ Other programs cannot access the file for read or read/write
access, but can open the file for write only access.

'DENYNONE’ Other programs can access the file for read, write or read/write
access.

Note that a second or subsequent program attempting to open the file will be
denied access in all cases if it attempts to open the file in compatibility mode. All
attempts to open a file that may be in use by another program must use one of the
other modes, and thereby must specify the access to be granted to other programs
trying to access the file subsequently.

It will be seen from thelmve specifiation of OPEN that there is a large number of
possible combinations of specifiers (and defaults). @REN statement can be used:

O in order to connect an existing file (scratch files or non-existent files are
automatically created bQPEN),

O in order to connect a user specified device driver (see page 113).

Examples of the use GPEN:
1) A file may be connected from within the program as follows:
OPEN(5, FILE="DATAFILE’, STATUS=’0LD")
The above statement could be written to includdXNET= specifier thus:
OPEN(UNIT=5, FILE=’DATAFILE’, STATUS=’0LD’)
In this example the fileDATAFILE’ must exist.

111

FTN77 User's Guide

2) If blanks in numeric fields were to be treated as zerosP®EN statement in
Example 1 would be written as follows:

OPEN(5,FILE="DATAFILE’ ,BLANK="ZERO’,STATUS =’0LD’)

Note: The BLANK= specifier must specifyZERQO’ when running a Fortran 66
program whose data contains significant blanks in numeric fields.

3) As a result of the followin@PEN statement:
OPEN(4,FILE="0UTPUT’,STATUS="NEW")

unit 4 would be connected to a previously non-existent file c@d@iPUT. The
details of the connection would be as follows:

STATUS = ’"NEW’
ACCESS = ’SEQUENTIAL’
FORM = °*FORMATTED’

4) If a program containing th@PEN statement from example 3) were subsequently
rerun without first deletin@ UTPUT, a run-time failure would result as the use of
STATUS='NEW’ means that the file must not exist.

The STATUS="UNKNOWN’ keyword avoids this problem, as in the following
example:

OPEN(4, FILE="OUTPUT’, STATUS="UNKNOWN’)

If OUTPUT does not exist, the abov@PEN statement is identical to that in
example 3). If, howeverQUTPUT exists (perhaps as the result of a previous
run), it will be emptied if the first operation isVERITE. If STATUS is omitted
completely, the default valldNKNOWN’ is assumed.

5) If OUTPUT does not exist, the following statement is equivalent toQREN
statement in example 3):

OPEN(4, FILE="OUTPUT’, STATUS=’APPEND”)

If OUTPUT does exist, any output will be appended and its previously existing
contents left unchanged.

Notes:
O STATUS='APPEND’is anFTN77 extension to th&NSI standard.

O |If the specified file is subsequently rewound it will be positioned at record 1,
that is, all the records in the file will be available for reading.

6) The followingOPEN statement would create a scratch file for use only during the
program run:

OPEN(3, STATUS=’SCRATCH’)

112

Chapter 10 Fortran input/output

A temporary file would be created and erased at the end of the program run. The
properties of the connection would be those listed in example 3).

7) In order to open a file calleBRANDOM for direct access, the followin@PEN
statement should be used:

OPEN(5,FILE="RANDOM’ ,ACCESS="DIRECT",
+ STATUS="0LD’, RECL=20)

Notice the default forFORM is 'UNFORMATTED’' when the statement
ACCESS='DIRECT’ is specified. The connection would establish the following
properties:

STATUS="0LD"
ACCESS="DIRECT"’
FORM="UNFORMATTED"’
RECL= 20 (bytes)

In other words, the file would be used for direct access without any compression of
blanks taking place.

8) In order to open a file calledlIXUP for formatted direct ecess, the following
OPEN statement should be used:

OPEN(6, FILE="MIXUP’, ACCESS=’DIRECT’,
+ STATUS="MODIFY’, FORM=’FORMATTED’, RECL=80)

The record length for a formatted directess file is specified in characters. The
properties established by the connection would be as follows:

STATUS="MODIFY"’
ACCESS="DIRECT"’
FORM="FORMATTED"’
RECL= 80 (bytes)

9) In order to open a scratch file for unformatted, sequential access:

OPEN(3, STATUS=’SCRATCH’,
+ FORM= °UNFORMATTED’, ACCESS=’SEQUENTIAL’)

A scratch direct access file could ®®ENed as follows:
OPEN(4,STATUS="SCRATCH’ ,ACCESS="DIRECT’,RECL=64)

User-supplied input/output device drivers

TheDRIVER= keyword has been provided for use with @REN statement in order
to allow the use of user-supplied device drivers. This facility means that all the
Fortran 77 input/output statements can be used to refer to a “device” such as a non-

113

FTN77 User's Guide

114

standard printer, plotter etc., as well as providing facilities such as output to the screer
and file simultaneously.

The facility can be used with any combination of formatted or unformatted, sequential
or direct access input and output. Any Fortran unit can be connected to a device
driver as in the following example:

EXTERNAL MYDEV
OPEN(5, DRIVER=MYDEVY)

Here MYDEV is a user supplied subroutine which will handle formatted, sequential
input or output on unit 5. In general, the target oDREVER= keyword is the name
of a subroutine with the following specification:

SUBROUTINE driver_name(BUFF, BSIZE, BLEN, ACTION,
+ IFAIL)
INTEGER*2 BSIZE, BUFF(BSIZE), BLEN, ACTION, IFAIL

ACTION is specified in Table 10-3.

IFAIL is set to zero when the user-supplied routine is called by the input/output
system. IfIFAIL is given a non-zero value by the driver routine, BiN77 error
trapping mechanism will be invoked on exit from that routine. (Thus, depending on
whether thelOSTAT= keyword has been used in the corresponding Fortran
input/output statement, the run-time traceback mechanism will be invoked or the
program can take action for a non-zed&TAT value.)

Value of Corresponding Fortran statement
ACTION

1 FORMATTED SEQUENTIAL READ

2 FORMATTED SEQUENTIAL WRITE

3 ENDFILE

4 REWIND

5 BACKSPACE

6 OPEN

7 CLOSE

8 INQUIRE

9 UNFORMATTED SEQUENTIAL READ

10 UNFORMATTED SEQUENTIAL WRITE

11 FORMATTED DIRECT ACCESS READ

12 FORMATTED DIRECT ACCESS WRITE

13 UNFORMATTED DIRECT ACCESS READ

14 UNFORMATTED DIRECT ACCESS WRITE

Table 10-3, Effect oACTION in User-supplied input/output, device drivers

Chapter 10

(@] OO0

(@]

(@]

Fortran input/output

The IOSTAT value returned for a non-zetBAIL value is always 155. In order to
obtain a more specific error message on error exit from a driver routine, a common
block variable should be used to return an appropriate error code to the calling
program unit.

Note that it is not possible to perform Fortran input/output in a driver routine.

BUFF, BSIZE andBLEN are only relevant for values &CTION corresponding to
the READ and WRITE statements.BUFF(BSIZE) is an array which is used as a
buffer. It holds either two characters p&NTEGER*2 word for formatted
input/output or is used to hold binary information for unformatted input/output.

The value oBLEN depends on whether the driver routine is being used for input or
for output as follows:

O READ statementACTION = 1). The driver routine must $8LEN as follows:
Formatted input:BLEN is the number of characters that have been input.
Unformatted inputBLEN is the number of bytes that have been input.

O WRITE statementACTION = 2). The value dBLEN is set on entry to the driver
routine as follows:

Formatted outputBLEN is the number of characters to be output. Note ti@ERa
or LF character is not added by the input/output system prior to entry to the driver
routine.

Unformatted outputBLEN is the number of bytes to be output.

It is recommended that driver routines are written in the following manner to ensure
that all possible values &CTION are catered for in a program:

SUBROUTINE MYDRIV(B,NB,NCH,ACTION,IFAIL)
INTEGER*2 B(NB),NCH,ACTION,IFAIL

Use a computed GOTO to allow for all values of
ACTION even though we only expect the routine to
be entered for the OPEN, READ and WRITE statements

GoTO0 (1,2,3,3,3,4,3,3,3,3,3,3,3,3),ACTION
Error exit
IFAIL = 999
RETURN
READ
RETURN
WRITE
RETURN

115

FTN77 User's Guide

116

OO0

OPEN (NEEDED AS THE DRIVER ROUTINE IS CALLED
IMMEDIATELY FROM THE Fortran 77 OPEN STATEMENT WHEN
DRIVER= IS USED)

RETURN

END

The CLOSE statement

The general form of thELOSE statement is:
CLOSE (<clist>)
where <clist> is a list of specifiers:

UNIT=<unit>
IOSTAT=<ios>
ERR=<errlab>
STATUS=<status>
RENAME=<newname>

Note:
The RENAME specifier is not in theANSI Standard and has been added to the
FTN77 implementation.

The variables or array elements represented by <unit>, <ios> and <status> may be c
typeINTEGER*4, INTEGER*2 or INTEGER*1.

Notes:
O Itis possible to execute@GLOSE statement that specifies a unit that neither exists
nor has a file connected to it. Use of sucBL®OSE statement has no effect.

O All files are automatically closed by the input/output system when a program
terminates.

UNIT=<unit>
<unit> is an external unit identifier (see page 103). If the value of <unit> is less
than or equal to zer&@LOSE produces a run-time error.

IOSTAT=<ios>
<ios> is an input/output status specifier (see page 103) which must be an integel
variable or array element.

ERR=<errlab>
<errlab> is the label of an executable statement in the current program unit to
which control will be transferred in the event of an error (see page 103).

STATUS=<status>
<status> is a character expression (typically a constant) whose value when any
trailing spaces are removed ISEEP’ or 'DELETE’. The character expression
may comprise any combination of upper and lower case characters.

Chapter 10

Fortran input/output

If the STATUS specifier is omitted, the assumed valuedEEP’ for a named file
or 'DELETE’ for a scratch file.

If "KEEP’ is specified or assumed, the file continues to exist afterClh@SE
statement has been executed.

If ' DELETE’ is specified or assumed, the file is erased byGh®SE statement.

RENAME=<newname>
<newname> is a character expression (typically a constant) which must represent a
pathname. This specifier permits the file opened on <unit> (which may be a
scratch file) to be renamed on being closed. No error is issued if
STATUS='DELETE".

Example:
CLOSE (UNIT=4, STATUS=’DELETE’)

would close the file currently connected to unit 4. All trace of the file would be
removed from the system.

The INQUIRE statement

INQUIRE allows the user to find out the properties of a particular named file or of the
connection or availability of a particular unit. THEQUIRE statement may be
executed before, while or after a file is connected to a unit. All values assigned by the
INQUIRE statement are those that are current at the time the statement is executed.

Note that all value assignments are done in accordance with the rules for assignment
statements so in the case of character information, truncation or padding with blanks
will occur. This can be used to advantage, for example:

CHARACTER*11 F
INQUIRE (UNIT=6, FORM=F)

would return F with either the value FORMATTED’ or the value
"UNFORMATTED'. If F were declared as

CHARACTER F
its value would be returned as eithEr or *U’.
TheINQUIRE statement takes one of the following forms:
Inquire by file: INQUIRE (FILE=<filename>, <inglist>)
Inquire by unit: INQUIRE (UNIT=<unit>, <inglist>)

117

FTN77 User's Guide

118

where <filename> is a character expression whose value when trailing blanks are
removed is a filename (acceptable to the afieg sytem) which is the subject of the
inquiry. The named file need not exist or be connected to a unit. Note that a file may
be referred to by pathname.

<unit> is an external unit identifier (see page 103) of type eitNBIEGER*1,
INTEGER*2 or INTEGER*4. The specified unit need not exist or be connected to a
file. If it is connected to a file, the inquiry is being made about the connection and the
file connected. <inglist> is a list of specifiers chosen from:

IOSTAT=<ios>
ERR=<errlab>
EXIST=<exist>
OPENED=<opened>
NUMBER=<number>
NAMED=<named>
NAME=<pname>
ACCESS=<access>
SEQUENTIAL=<seqg>
DIRECT=<dir>
FORM=<form>
FORMATTED=<fmtd>
UNFORMATTED=<unf>
RECL=<recl>
NEXTREC=<next>
BLANK=<blank>
FUINT=<filehandle>

A variable or array element that may become defined or undefined as a result of its ust
as a specifier in alNQUIRE statement must not be referenced by any other specifier
in the saméNQUIRE statement.

If no error condition occurs in either dNQUIRE by file or INQUIRE by unit
statement, <exist> and <opened> always become defined. If an error condition occur:
during the execution of either type GRQUIRE statement, all of the specifier
variables and array elements except <ios> become undefined.

Execution of anINQUIRE by file statement causes the specified variables or array
elements <named>, <pname>, <seg>, <dir>, <fmtd> and <unf> to be assigned value:
only if the value of <filename> is acceptable to the apeg sytemas a file name and

if the specified file exists. The specified variables <number>, <access>, <form>,
<recl>, <next>, <funit> and <blank> become defined only if <opened> becomes de-
fined with the valueTRUE.

Execution of thdNQUIRE by unit statement causes the specified variables or array
elements <number>, <named>, <pname>, <access>, <seg>, <dir>, <form>, <fmtd>,

Chapter 10

Fortran input/output

<unf>, <recl>, <next>, <blank> and <funit> to be assigned values only if the specified
unit exists and is connected to a file.

The variables or array elements represented by <ios>, <number>, <recl>, <next> may
be of typeINTEGER*4, INTEGER*2 or INTEGER*1. Similarly, the variables or

array elements represented by <exist>, <opened> and <named> may be of type
LOGICAL*4, LOGICAL*2 or LOGICAL*1.

A full description of the list of specifiers follows below:

IOSTAT=<ios>
<ios> is an input/output status specifier (see page 103).

ERR=<errlab>
<errlab> is the label of a statement to which control is to be transferred in the
event of an error (see page 103).

EXIST=<exist>
<exist> is a logical variable or logical array element.

Execution of anINQUIRE by file statement causes <exist> to be assigned the
value TRUE. if there exists a file with the specified name; if not, <exist> is
assigned the valuEALSE.

Execution of anINQUIRE by unit statement causes <exist> to be assigned the
value TRUE. if the specified unit exists; if not, <exist> is assigned the value
.FALSE.

OPENED=<opened>
<opened> is a logical variable or logical array element.

Execution of anNQUIRE by file statement causes <opened> to be assigned the
value TRUE. if the file specified is connected to a unit; if not, <opened> is
assigned the valuEALSE.

Execution of ariNQUIRE by unit statement causes <opened> to be assigned the
value TRUE. if the specified unit is connected to a file; if not, <opened> is
assigned the valuEALSE.

NUMBER=<number>
<number> is an integer variable or integer array element that is assigned the value
of the external unit identifier of the unit that is currently connected to the file. If
there is no unit connected to the file, <number> becomes undefined.

NAMED=<named>
<named> is a logical variable or logical array element that is assigned the value
.TRUE. if the file has a name anBALSE. otherwise.

NAME=<pname>
<pname> is either a character variable or character array element that is assigned
the value of the (path)name of the file, if the file has a name; if not, it becomes

119

FTN77 User's Guide

120

undefined. If this specifier appears in BNQUIRE by file statement, its value
need not be the same as the name given iRItte= specifier.

ACCESS=<access>
<access> is a character variable or character array element that is assigned th
value SEQUENTIAL’, 'DIRECT' or 'TRANSPARENT’ depending on the
current mode of access. If there is no connection, <access> becomes undefined.

SEQUENTIAL=<seqg>
<seq> is a character variable or character array element that is assigned the valu
'"YES' if SEQUENTIAL is included in the set of allowedt@ss methods for the
file, 'NO’ if SEQUENTIAL is not included in the set of allowedcgss methods
for the file, and UNKNOWN' if the processor is unable to determine whether or
not SEQUENTIAL is included in the set of allowed access methods for the file.

DIRECT=<dir>
<dir> is a character variable or character array element that is assigned the value
'"YES' if DIRECT is included in the set of allowed@ss methods for the file,
"NO’ if DIRECT is not included in the set of allowedcass methods for the file,
and UNKNOWN' if the processor is unable to determine whether oDIBRECT
is included in the set of allowed access methods for the file.

FORM=<form>
<form> is a character variable or character array element that is assigned the valu
"FORMATTED’ if the file is connected for formatted input/output, and is assigned
the value UNFORMATTED' if the file is connected for unformatted input/output.
If there is no connection, <form> becomes undefined.

FORMATTED=<fmtd>
<fmtd> is a character variable or character array element that is assigned the valu
"YES’ if FORMATTED is included in the set of allowed forms for the fil8O’
if FORMATTED is not included in the set of allowed forms for the file, and
"UNKNOWN' if the processor is unable to determine whether or not
FORMATTED is included in the set of allowed forms for the file.

UNFORMATTED=<unf>
<unf> is a character variable or character array element that is assigned the valut
'YES' if UNFORMATTED is included in the set of allowed forms for the file,
"NO’ if UNFORMATTED is not included in the set of allowed forms for the file,
and UNKNOWN'’ if the processor is unable to determine whether or not
UNFORMATTED is included in the set of allowed forms for the file.

RECL=<recl>
<recl> is an integer variable or integer array element that is assigned the value of
the record length of the file connected for direct access. The length is measured ir
bytes. If there is no connection or if the connection is not for direct access, <recl>
becomes undefined.

Chapter 10 Fortran input/output

NEXTREC=<next>
<next> is an integer variable or integer array element that is assigned the value
n+1, where n is the record number of the last record read or written on the file
connected for direct access. If the file is connected but no records have been read
or written since the connection, <next> is assigned the value 1. If the file is not
connected for direct access or if the position of the file is indeterminate because of
a previous error condition, <next> becomes undefined.

BLANK=<blank>
<blank> is a character variable or character array element that is assigned the
value NULL' if null blank control is in effect for the file connected for formatted
input/output, and is assigned the valdERO’ if zero blank control is in effect for
the file connected for formatted input/output. If there is no connection, or if the
connection is not for formatted input/output, <blank> becomes undefined.

FUINT=<filehandle>
<filehandle> is an integer variable that is assigned to the internal file handle of an
already opened file (fdDBOS and Win16ClearWin+ applications this is also the
system file handle). This value can be used in calls to the Salford library routines
READF@, WRITEF@, WRITEFA@, FPOS@ andRFPOS@ but should not
be used WitlCLOSEF@.

Examples:
O INQUIRE by file. In order to find out if a file calledISFILE exists:

CHARACTER*1 SEQ,FMT
LOGICAL EX,OPND

INQUIRE (FILE=’HISFILE’,NUMBER=N,EXIST=EX,
+ OPENED=0PND,SEQUENTIAL=SEQ, FORMATTED=FMT)
C ensure the file exists and has not been opened
IF (EX.AND..NOT.OPND) THEN

C if it does, and it has not been opened,
C and its properties are suitable, open it
C for formatted, sequential access (using defaults)

IF (SEQ.EQ.’Y’ .AND.FMT.EQ.’Y”) THEN

OPEN (UNIT=4,FILE="HISFILE’)
ENDIF
ENDIF

O INQUIRE by unit. To find the name of a file connected to a unit:

CHARACTER*20 FNAME
LOGICAL OPND,NAMED

121

FTN77 User's Guide

N =14

INQUIRE (UNIT=N,NAME=FNAME,NAMED=NAMED,OPENED=0PND)
IF (OPND) THEN
IF (NAMED) THEN
PRINT *,FNAME,’ connected to unit °,N

ELSE
PRINT *,’unnamed file connected to unit ’,N
ENDIF
ELSE
PRINT *,°UNIT ’,N,’ not connected’
ENDIF

Data transfer statements

This section gives the formal definitions of the data transfer statenREAD,
WRITE andPRINT. Their use is explained more fully on pages 128 to 130. The
statements have the following general form, where items in square brackets are
optional :

READ (<cilist>) [<iolist>]
READ <fmt> [, <iolist>]
WRITE (<cilist>) [<iolist>]
PRINT <fmt> [, <iolist>]

where
<iolist> is an input/output list (not described further).
<fmt> is a format identifier (seeMT=<fmt> in the description of <cilist> below).
<cilist> is a control information list chosen from the following:

UNIT=<unit>

FMT=<fmt>

NML=<nlist>

IOSTAT=<ios>

ERR=<errlab>

END=<endlab> (only allowed witiREAD)
REC=<recno>

A control information list must contain @NIT specifier. The remaining specifiers
are optional.

122

Chapter 10 Fortran input/output

UNIT=<unit>
<unit> is one of the following:

O An integer constant, variable or expression with a value that is an external unit
identifier (see page 103).

O A character variable, array name or array element name, or a substring that is
an internal file identifier (see page 103).

O An asterisk, denoting an external unit provided by the system. FThg7
implementation uses 1 or 5 for input and 2 or 6 for output.

If the optional charactetdNIT= are omitted, the specifier must be the first one in
<cilist>.

FMT=<fmt>
<fmt> is format identifier and must be one of the following:

O The statement label ofRORMAT statement that appears in the same program
unit as the format identifier.

O An integer variable name that has be&8SIGNed the statement label of a
FORMAT statement that appears in the same program unit as the format
identifier.

O An asterisk, specifying list-directed formatting. The default edit descriptors for
list-directed output for the different variable types are as follows:

Integer Logical Real Double Precision
112 L3 1PG16.6 1PD27.12

Note that complex and double complex variables are equivalent to a pair of
variables of type real or double precision respectively and are output, separated by
a comma, and enclosed in parentheses.

O A variable, array name, constant or expression of type character.

O A non-character array name (only if the compile-time opfNSI is not in
use).

In cases where the format specification is decoded at run-time, inner format
specifications may not be nested beyond a depth of 10. In other EaA$ES/
imposes a nesting limit of 20.

If the optional character&MT= are omitted from this specifier, the format
identifier must be the second item in <cilist> and the first item must be the unit
specifier without the optional charactéidliT=. In other words, the statement:

WRITE (3, 100) X

is valid Fortran 77.

123

FTN77 User's Guide

NML=<nlist>

124

Namelist-directed I/O is a common Fortran 77 extension which is implemented in
FTN77. It provides a powerful mechanism for input and output of variables,
associating values directly with variable names. Namelist-directed I/O can be
performed for any file connected for formatted sequentieéss. Formatted, list-
directed, and namelist-directed I/O can be freely mixed for a file connected for
formatted sequentiakaess, although the syntax of the input record must always be
suitable for the intended operation.

The first element in using namelist-directed 1/O is to define a namelist. This is
done by a statement syntactically similar t6@MMON statement, associating a
group of variables with a particular namelist name:

NAMELIST / <namelist-name> / <variable-list>
for example:
NAMELIST / DIMENSIONS / HEIGHT, WIDTH, DEPTH

A particular variable may belong to more than one namelist within a program unit.
The namelist name is local to the program unit in which RPEMELIST
statement appears. The name used for the namelist must not be used for any othe
object in the program unit in question.

A NAMELIST statement specifying a namelist which has already appeared in an
earlier namelist statement specifies that the variables specified therein are to be
appended to the namelist in question. In this respect the behaviour of the namelis
statement is analogous to that of tB®MMON statement, where subsequent
COMMON statements for the same common block append the specified variables
to the common block.

Namelist-directed input is accomplished by specifing the namelist name as part of
the control list for the read statement. No I/O list is either required or permitted.
Thus, a namelist-directéd®EAD for the example above could be:

READ(7 ,NML=DIMENSIONS)
or
READ(7,DIMENSIONS,END=99)

Note in the second case that the namelist name can be used in the position that
format specifier would be used for a formatted I/O transfer. “HND=" and
“IOSTAT=" specifiers can be used as normal.

The rules for the form of the input record are as follows:

O The record must begin with the namelist name preceded by an ampersand
(&)

Chapter 10

Fortran input/output

O Input is then taken in the form “<variable> = <value>" for variables specified
as members of the namelist in question in the correspondigELIST
statement.

O The record is terminated by a slash character (/).

O Variables do not have to appear in the same order within the input record as
they appear in thAMELIST statement.

O Every variable in theNAMELIST statement does not have to appear in the
input record. Variables which do not appear in the input record are left with
their values unmodified.

O Variables can appear more than once in the input record. Value assignments
take place in the order they appear in the input record, so that assignments
appearing later in the record take precedence.

O Values for character variables must by delimited by apostrophes, as for list-
directed I/O.

O The form of the input record is quite flexible, with spaces allowed where they
do not break up the namelist name, variable names etc. The record itself can
be split across several lines, so the term “record” here is used somewhat
differently from the case for standard formatted sequential I/O.

Thus, a suitable input record for tREAD statement above could be:

&DIMENSIONS
DEPTH = 12.4
HEIGHT = 16.5

/

Note thatWIDTH does not appear in the above, and would be left unmodified.

When a namelist-directddEAD statement is executed, the input file is scanned
for a suitable input record, and all input is discarded until one is found. Thus, if
you mis-spell the namelist name in the input record, the likely symptom of this
will be that the namelist-directd®@EAD will encounter end-of-file as it reads past
the intended record.

Arrays can be read either by specifing a particular element, or by supplying values
for all the elements in the arrayAssigment to arrays is performed in row-major
order. Multiple values can be specified by means of a repeat count, for example
“10*3", and values can be skipped over by specifying a “null” value in that
particular position in the list of values. A repeat count can also be applied to a null
value.

For example, consider:

INTEGER IARR(10)
NAMELIST / EXAMPLE / IARR

125

FTN77 User's Guide

DATA TARR / 10*0 /

READ (8, EXAMPLE)
with the input record:

&EXAMPLE
IARR =1, 2, , 4, 3*5, 2%, 10
IARR(7) =7

/

This would result in the arrdyARR taking the values:
1, 2, 0, 4, 5, 5, 7, 0, 0, 10

Note that the initial assignment tARR(7) is overridden by a later assignment
specifically to that element.

The usual substring notation can be applied to character variables in the input
record. For example:

&EXAMPLE?Z
CH(2:3) = XX’
/

WhereCH is a member of the namelBXAMPLE?2.

For namelist-directed output, a record is output in a syntax similar to that
described above, with the valuesatifvariables in the namelist output in the order
the variables appear in the namelist declaration. For example, for the namelist
DIMENSIONS given above, the namelist-directed output statement:

WRITE (9,DIMENSIONS)
might produce the output record:

&DIMENSIONS
HEIGHT = 12.3000
WIDTH = 16.2000
DEPTH = 13.3000

/

IOSTAT=<ios>
<ios> is either an integer variable or array element used as an input/output status
specifier (see page 103).

ERR=<errlab>

<errlab> is the label of a statement to which control is to be transferred in the
event of an input/output error (see page 103).

126

Chapter 10

Fortran input/output

END=<endlab>
(Only allowed with theREAD statement.)

<endlab> is the label of a statement to which control is to be transferred in the
event of an end-of-file condition (see page 103). <endlab> can, of course, be the
same as <errlab>.

REC=<recno>
<recno> is an integer variable, constant or expression which specifies the number
of a record that is to be read or written in a file connected for direct access.

If <cilist> contains a format specifieFiT=), the statement is a formatted input
output statement; if not, it is an unformatted input/output statement.

If <cilist> contains a record specifieREC=), the statement is a directcass
input/output statement; if not, it is a sequential input/output statement.

It is important to note that the fir®/RITE statement for a file opened for sequential
access will remove any previous contents unE&$aTUS= 'APPEND’ was used
when the file was opened.

Clearly, there are four combinations of file access that are specified by the standard:

1) FORMATTED, SEQUENTIAL
This is available for all disc files and sequentiallgessed peripherals. It is the
method of access used for example to read a text file and to print lines of text.

It is the only file access method allowed by PRINT statement and the simple
form of theREAD statement (i.eREAD*,). Files are written without th®OS
end of file marker €trl-Z). Files containingCtrl-Z will be read correctly but the
marker will be ignored. On reading, tabs are replaced by spaces.

2) UNFORMATTED, SEQUENTIAL
This is the traditional means of intermediate output for large programs.

3) FORMATTED, DIRECT
It is possible to use direct access to read a file of text that could have been created,
for example, by typing at the keyboard using an editor.

Files are written without thBOS end of file marker Ctrl-Z) and will cause an
error on reading if they contain this marker.

Files created other than by &TN77 program must, however, be converted to
fixed length uncompressed records by means oMAKEDA77 command (see
page 130).

4) UNFORMATTED, DIRECT
These files are created (written) without any ‘red tape’ information and should,
therefore, be readable by nBiiIN77 programs. FTN77 can read any file created
in this ‘raw’ form, provided that the file length is an exact multiple of the record
length.

127

FTN77 User's Guide

The remainder of this section describes the various forms of the data transfer
statements in more detail, together with examples where appropriate.

Formatted, sequential access

A file must be connected to a unit and@PENed before an input/output statement
can refer to that unit.

When theOPEN statement is used, tHeCCESS and FORM specifiers must either
be omitted (defaults used) or specified as:

ACCESS="SEQUENTIAL’
FORM="FORMATTED"’

Examples:

1) The following statements:
OPEN(4,FILE="FRED’,STATUS="NEW’)

wRiTé(4,’(F12.3)’) X
would write the value oX to file FRED opened on unit 4.
2) The statements:
OPEN(7,FILE="OLDFILE")
kEAD&7,100) A,B,C
100 FORMAT(3 F10.2)
would read three values from an existing file opened on unit 7.
3) The program fragment:
N=17
ASSIGN 10 TO IFORM
10 FORMAT (3 I3)
ﬁEAD&N,IFORM) I,d.K
would read three values from unit 7 using B@RMAT statement labelled 10.
4) The statement:
PRINT *, X,Y,Z

would use list-directed formatting to output three real values to unit 2 (the external
unit used byPRINT). The statement:

WRITE (*,*) X,Y,7

128

Chapter 10

Fortran input/output

would have the identical effect. The first asterisk is the unit number provided by
the system for formatted output (unit 2) and the second asterisk implies list-
directed formatting.

The statements:
CHARACTER*20 X
Y = 4.321417
WRITE(X, (F20.6)) Y

would useX as an internal file. The value ¥f would be converted to character
form in X which could then be used, for example, in a character assignment.

Unformatted, sequential access

Files are made available to the program byQREN statement.

TheOPEN statement should spec&CCESS="SEQUENTIAL’ (or use this default)
andFORM="UNFORMATTED'.

Example:

Unformatted output to file may be achieved as follows:

DIMENSION A(30)
OPEN (3,FILE="UNFILE’,STATUS='NEW’,FORM="UNFORMATTED’)

WRITE (3) A

As a result, arrayA would be written to the disc filENFILE.

Formatted, direct access

Files created in this way may be listed in the ordinary way. A file required for direct
access can hl@PENed.

If the OPEN statement is used®CCESS='DIRECT’ and FORM="FORMATTED’
must be specified. For example:

INTEGER PARTNO
CHARACTER*80 RECORD,ANS*1
OPEN(CL1,FILETYPE="TTY")
open file of card images:
OPEN(UNIT=3,FILE="STOCKLIST’ ,ACCESS="DIRECT’,
+ FORM="FORMATTED’ ,RECL=80)
read part number:
READ (1,°(I3)’) PARTNO
IF (PARTNO.LE.O) STOP
read details from stocklist and print:

129

FTN77 User's Guide

130

READ(3,’ (A)’,REC=PARTNO,ERR=3) RECORD
WRITE(2,’ (*’PART’",13,1X,A)’) PARTNO,RECORD
PRINT *,’update required? answer Y or N’
READ(1,’ (A)’) ANS
IF (ANS.EQ.’Y’) THEN
PRINT *,’type updated record’
READ(1,’(A)’) RECORD
write updated record to direct access file:
WRITE(3,’(A)’,REC=PARTNO) RECORD
ELSETF(ANS.EQ.’N’) THEN
STOP
ELSE
PRINT *,’answer Y or N’
GOTO 2
ENDIF
GOTO 1
WRITE (2,°(’” INVALID PART NUMBER ’’,I3)’) PARTNO
GOTO 1
END

This simple program would read a part number from the keyboard (unit 1) and use it
to access a record of a direct access file opened on unit 3. This record would then b
printed and the user would be asked whether the record was to be updated. If the
answer were yes, the updated record would be typed and it would be written to the
direct access file. This file could be listed after the program run was complete.

Note that theMAKEDA77 command should be used if a user wishes to change a
formatted file acessed sequentially into one capable of being used for doeetsa

The following sequence indicates the interactive nature of the command (user
responses are printeditalic type):

MAKEDA77

Enter desired record length: <n>

Enter sequential source pathname: <7nput pathname’>
Enter direct access output pathname: <output pathname>

The record length in characters)>, must be a positive integer less than 2001. The
input and output pathnames are truncated to the first 100 characters (filenames may
of course, be specified instead of pathnames).

Unformatted, direct access

An unformatted directaess file can be made available to a program bYODEN
statement.

If the OPEN statement is used, the statemBAICESS="DIRECT’ must be specified
(note thaFORM="UNFORMATTED’ is the default for direct file access).

Chapter 10 Fortran input/output

Example:

DIMENSION A(60)
OPEN(UNIT=7,FILE="INPUT’,STATUS="0LD",

+ FORM="UNFORMATTED’)
OPEN(UNIT=8,FILE="OUTPUT’,STATUS="MODIFY"’,
+ ACCESS="DIRECT’,RECL=128)
N=1

1 READ (7,END=3)A
WRITE(8,REC=N,ERR=2)A

N=N+1

GOTO 1
2 PRINT *,’error writing file’
3 END

The above program would read records from a seailignwritten file in order to
create a direct access file.

File positioning statements

The forms of the file positioning statements are:

BACKSPACE <unit>
BACKSPACE (<list>)
ENDFILE <unit>
ENDFILE (<list>)
REWIND < unit>
REWIND (<list>)

where <unit> is an external unit identifier (see page 103). <list> is a list of specifiers
as follows:

UNIT=<unit>
IOSTAT=<ios>
ERR=<errlab>

where <unit>, <ios> and <errlab> are as described previously. Note thidtTa
specifier must be present.

A BACKSPACE, ENDFILE or REWIND statement may refer to any disc file open
for sequential ecess. These statements may also refer to sequential input/output read
from the keyboard or written to the screen.

131

FTN77 User's Guide

BACKSPACE statement

Execution of BACKSPACE statement causes the disc file connected to the specified
unit to be positioned before theepeding record. If there is no preceding record, the
position of the file is unchanged. If theepeding record is an endfile record, the file
becomes positioned before the endfile record.

Backspacing over records written using list-directed formatting is prohibited.

ENDFILE statement

Execution of arENDFILE statement writes an endfile record as the next record of an
disc file.

The file is then positioned after the endfile record. After execution &NDFILE
statement, either BACKSPACE or REWIND statement, as appropriate, must be
used to reposition the file prior to execution of any data transfer input/output
statement.

An endfile record for a file is in fact a ‘dummy’ record which enables the Fortran 77
input/output system to detect that a file is positioned at end-of-file so that a run-time
error can be produced if an attempt is made to write to that file before it has been
backspaced or rewound. Nothing is actually written to the file as a result of an
ENDFILE statement (except that file truncation may occur if the file is currently posi-
tioned somewhere other than at the end) and thus the statement is only of use whe
writing portable Fortran programs which might run on a system where endfile records
are physically read and written.

REWIND statement

Execution of aREWIND statement causes the specifidisc file pointer to be
positioned at its initial point. ISTATUS='APPEND’ is used in theOPEN
statement which connected the file, the initial point is not the point at which data had
been added should the file not originally have been empty.

If a file is already positioned at its initial point, tREWIND statement has no effect.

Extensions to the standard

132

This section summarises tR@N77 input/output extensions. They are all available

by default but some extensions may cause a compile-time warning. UsdARBie
compile-time option will cause all the extensions described here to cause either a
compile-time or a run-time error.

Chapter 10 Fortran input/output

Extensions to the OPEN Statement

The OPEN statement has three extra options to tB&@ATUS= specifier,
"APPEND’, 'MODIFY’' and 'READONLY’, together with the extra specifiers
FILETYPE= andDRIVER=.

The DRIVER= keyword is provided for use with thH@PEN statement in order to
allow the specification of user-supplied device driver routines for both formatted and
unformatted input/output.

The RECL= specifier may be specified for files to be accessed sequentially. This
allows unrestricted use of tBBACKSPACE statement in conjunction witWRITE.

These extensions are fully described on page 106.

Extensions to the CLOSE Statement

The CLOSE statement has an extra specifiBENAME=. This extension is fully
described on page 116.

Input/output of binary, octal and hex. values

FTN77 provides the extra edit descriptors Ow.m, Zw.m and Bw.m to facilitate the use
of octal, hexadecimal and binary values for input and output. These descriptors are
described on page 183.

The handling of list-directed input has been extended to support octal, hexadecimal
and binary values.

The following list indicates the various number formats for decimal -1 :

Octal Hexadecimal Binary
o7777 Z’FFFF B’'1111111111111117

In addition, character data may be read into non-character variables either in list-
directed or non list-directed input mode.

Business Editing
Business editing is intended for accounting programs in which the following features
are desirable:

O Filling of number fields, thus preventing subsequent modification, for example
when printing cheques.

O Suppression of leading zeros and plus signs.
O Printing of trailing minus signs (accounting convention).

O Conversion of trailing minus signs to GRindicate credit entries.

133

FTN77 User's Guide

134

Business editing is controlled by thesHit descriptor which has the form:
B’<string>’

where <string> can contain the following characters:
+-$,*Z#.CR

The field width is indicated by the number of characters in <string>. If the field width
is too small for the number in question, then the output field will be filled with
asterisks.

The characters have the following significance:

PLUS (+)
"FIXED SIGN': if the first character of <string> is a single plus (+), then the
actual sign of the number (+ or -) is printed as the first character on the left in the
output field.

"FLOATING SIGN': if there are multiple plus (+) signs at the beginning of
<string>, then these will be replaced in the output field by printing characters and
the actual sign of the number (+ or -) will be printed on the extreme left in the
output field.

"TRAILING SIGN': this is the plus (+) sign on the extreme right of <string>. The
actual sign (+ or -) of the number will be printed in that output field position.

MINUS (-)
This works in the same way as tReUS sign. However, for a positive number a
blank is printed instead of ‘+'. This BLUS sign suppression.

DOLLAR SIGN (%)
A DOLLAR SIGN sign may not be preceded by anything except a fixed sign.
'"FIXED DOLLAR’ is a single dollar sign which will be printed in the
corresponding position in the output number.

"FLOATING DOLLAR’: these are multiple dollar signs which are replaced by
printing digits in the output number. A single dollar sign will be printed as the
first character on the left.

ASTERISK (¥)
If the output number has a digit where there is an asterisk, this digit will be
printed. Otherwise, an asterisk (*) will be printed - this is field filling. An
asterisk may be preceded only by a fixed sign and/or a fixed dollar.

ZED (2)
This indicates leading zero suppression. In other words, if the digit in the output
number is a leading zero, it will not be printed and a blank space will appear
instead.

Chapter 10

Fortran input/output

NUMBER SIGN (#)
Digit positions indicated by #'s are not subject to leading zero suppression.

COMMA (,)
If a comma occurs in the asterisk field, then a “*" will be printed. If a comma is
preceded by a significant character (which is not a sign oHlar dign) then a “,”
will be printed in the output field. Otherwise, a blank space will be printed.

Commas must follow any leading characters and preceed decimal points.

CREDIT (CR)
The characters CRiay only appear as the last two characters of <string>. In the
output “CR” will be printed following the number if it is negative, otherwise, two
blanks will be printed.

DECIMAL POINT (.)
decimal point in the output number. The only characters allowed to follow the
decimal point are #, CRBr trailing signs.

The examples in Table 10-4 illustrate the use oBtleglit descriptor.

135

FTN77 User's Guide

136

Number B-Format Output

147 B dHHHE 0147

14789 B fHHHE Fkkx

0 B fHHHE 0000

147 B*Z711’ 147

1478 B*Z711’ 1478

0 B*Z711’

0 B ZZ1#’ 0

6.089 B’ #.dHE 6.09

0 B’ #.dHE 0.00

9876.34 B*777,7717,717#.#HF 9,876.34
987654.34 B*777,7717,717#.#HF 987,654.34
0 B*272,717,17# .4 0.00
8 B +iHHE +008

-8 B +iHHE -008

8 B’ -zz#’ 8

-8 B’ -zz#’ - 8

126 B* 277771+’ 126+

-126 B* 277771+’ 126-

126 B*77771-" 126

-126 B*77771-" 126-

45678 B’77Z,ZZ{CR’ 45,678

-45678 B’77Z,ZZ{CR’ 45,678CR

308 B’ +++,++F . HE +308.00
-308 B+, it HE -308.00

99 B*$777777#’ $ 99

99 B $$5555%4 $99
308126 B §hnk ok kft JHp $*%%%308,126.00

Table 10-4 Business editing examples

Chapter 10 Fortran input/output

Miscellaneous Input/Output Extensions

O A*“$ or “\" edit descriptor is provided to facilitate the output of requests to the
screen for information, without generating a new line. The descriptor must
terminate the format specification. The commecpeding “\" is optional (like it
is with the “/” descriptor). For example:

WRITE(*,1)K
1 FORMAT(’01d K=’,1I5, Enter new value’,$)

O The use of list-directed input and output with internal files is permitted.

O The use of non-character arrays containing formats is permitted. It is not
recommended that this facility be used in new programs.

O The specification of those edit descriptors which involve integer constants has been
extended to permit the replacement of any integer by an expression (in diamond
brackets) involving integer constants and BAYRAMETER names.

For example:
PARAMETER (IR=3,IW=9,1D=4)

WRITE(*,10)A,B,C
10 FORMAT (KIR>F<IW>.<ID>)

137

FTN77 User's Guide

138

11.

Intrinsic functions

Introduction

The ANSI Standard defines a wide variety of functions that operate on data of type
INTEGER, REAL, DOUBLE PRECISION, COMPLEX and CHARACTER.
FTN77 provides all the intrinsic functions defined in tA&lSI Standard together
with functions that provide bit-by-bit logical operations, shifts, determination of the
storage address of a data itemcessing of integer data directly using its storage
address, and operations on @@MPLEX*16 data type.

Non-ANSI intrinsic functions

All the intrinsic functions provided bifTN77 can be used without declaration and
can be referenced at any point in any program unit, provided that the intrinsic
function name has not been used for some other purpose in that program unit. It is,
however, recommended that the name of each intrinsic function used in a program
unit should appear in dNTRINSIC statement for two reasons:

1) so that the programmer has a complete record of all intrinsic functions used in a
program unit,

2) so that a diagnostic should be output if the program is transferred to another
computer system whose Fortran compiler does not provide the name of any
FTN77-specific intrinsic function that has been used.

It is also recommended that tBXTERNAL statement is used for all functions that
are not intrinsic, for similar reasons.

Two further points should be noted regardingRA®&l 77-specific intrinsic functions:

139

FTN77 User's Guide

1) If the /ANSI compile-time option is usedsTN77 outputs a warning message if
the name of aRTN77 intrinsic function appears in dNTRINSIC statement.

2) Other Fortran 77 compilers may provide m&NSI intrinsic functions whose
names are the same as those provide8Ty77 but whose argument types and
results may be defined differently.

Generic and specific names

Many intrinsic functions can be referenced in two ways:

1) by using a pecific name whose associated function definition requires a specific
type of argument and which will return a result of a specific type,

2) by using ageneric name with a particular type of argument=TN77 then
determines, from the argument type, which equivalent specific function is
required. This is possible because the arguments used with any reference to al
intrinsic function must be of the same general type, that is, all integer
(INTEGER*1, INTEGER*2 or INTEGER*4) or all real etc..

The following pairs of function references have the same effect:

IMAX = MAXO(I,J,K)
IMAX = MAX(I,J,K)

HereMAXO is a specific name whil$lAX is a generic name. In order to assist users
who wish to remove obsolete specific function narR@$77 outputs comments such
as

MAXQO could be replaced by its generic equivalent
(MAX) throughout this program unit

If this comment appeared at the end of a program unit, the programmer could safely
use the editor to replace the naMaX0 by the namévAX throughout that program
unit.

Intrinsic function names as actual arguments

In order to use an intrinsic function name as an argument, it must appear in an
INTRINSIC statement in the calling program unit. Only specific function names can

140

Chapter 11 Intrinsic functions

be used in this way. If the generic and specific function names are the same, the
specific function is passed as an actual argument. For example

INTRINSIC LOG10, SIN, ALOGI1O
REAL LOG10

C wvalid use of intrinsic name (SIN is specific):
CALL FRED(SIN)

C dinvalid use of intrinsic name (LOG10 is generic):
CALL FRED(LOG10)

C valid use of intrinsic name (ALOG10 is specific):
CALL FRED(ALOG10)

The following ANSI-specific intrinsic function names must not be used as an actual

argument:
INT IFIX IDINT FLOAT SNGL REAL CMPLX
LGE LGT LLE LLT MAXO0 AMAX1 DMAX1
AMAX0 MAX1 MINO AMIN1 DMIN1 AMINO MIN1

In addition, the following=TN77-specific intrinsic function names must not be used
as an actual argument:

DFLOAT LENG LEQ LNE AND OR XOR
NOT INTB INTS INTL CCORE1 CORE1 CORE2
CORE4 FCORE4 DCORE8 LGCB LGCS LGCL RS

LS RR LR RT LT SHFT LOC
BITS DREAL DCMPLX DIMAG

Integer arguments and function results

The ANSI Standard does not defifBI TEGER*1, INTEGER*2 and INTEGER*4
data (only typdNTEGER) and thus nANSI intrinsic function definition refers to
either of these non-standard data types.

All INTEGER data should bdNTEGER*4 data for full ANSI-conformity, and
programs should be written using the Fortran keyWNTEGER (not INTEGER*4)

and compiled with thé&NTL option (this is the default under Win32). However, for
reasons of efficiency, storage, history and so on, many programs will contain
INTEGER*1, INTEGER*2 data and possibNTEGER*4 data as well. All the
FTN77 intrinsic functions that require integer arguments wittept any combiation

of INTEGER*1, INTEGER*2 andINTEGER*4 arguments.

141

FTN77 User's Guide

The length of the result of an integer intrinsic function is determined as follows:

O For functions that have non-integer arguments (for exarRRifé\L) the result is
INTEGER*2 when the compile-time option/INTS (the default under
DOS/Winl16)is used andNTEGER*4 when the compile-time optioAINTL is
used.

O For functions that have integer arguments (for exanifeX0) the result type is
INTEGER*2 unless one or more of the argumenttNSEGER*4 in which case
the result type iNTEGER*4.

Full details are given for each function in the table and notes on pagaad48.

Logical arguments and function results

The ANSI Standard does not defind®DGICAL*1, LOGICAL*2 and LOGICAL*4
data (only typeLOGICAL) and thus ndANSI intrinsic function definition refers to
either of these non-standard data types.

All LOGICAL data should bd OGICAL*4 data for full ANSI-conformity, and
programs should be written using the Fortran keywd@@GICAL (not LOGICAL*4)
and compiled with théLOGL option (the default under Win32). However, many
programs will containLOGICAL*1 and LOGICAL*2 data possibly mixed with
LOGICAL*4 data.

The length of result of a logical function is determined as follows:

O The result isLOGICAL*2 when the compile-time optiolL OGS (the defualt
under DOS/Winl16) is used andOGICAL*4 when the compile-time option
/LOGL is used.

Full details are given for each function in the table and notes on pagaad48.

Intrinsic function descriptions

The table which follows, used in conjunction with its accompanying notes, give a full
description of each intrinsic function provided BiN77. An FTN77-specific
function is indicated by an asterisk following its name in the table.

142

Chapter 11 Intrinsic functions

Definition Generic Specific Type of Type of No. of
and notes name name arguments function arguments
Conversion INT - Numeric Integer 1
from numeric INT Integer Integer
to integer IFIX Real Integer
(1,32,34,35,38) IDINT Double Integer
- Conplex Integer
Complex*16 Integer
Conversion INTB* - Numeric Integyer*1 1
from numeric
to byte
integer
(2,34,36,38)
Conversion INTS* - Numeric Inteyer*2 1
from numeric
to short
integer
(2,34,36,38)
Conversion INTL* - Numeric Inteyer*4 1
from
numeric to
long integer
(2,34,36,38)
Conversion REAL - Numeric Real 1
from FLOAT Integer Real
numeric to SNGL Double Real
real
(3,34,35,38)
Conversion DBLE - Numeric Double 1
from DFLOAT* Integer Double
numeric to DREAL* Conplex*16 Double
double
(4,34,35,38)
Conversion CMPLX - Numeric Conplex lor2
from
numeric to
conmplex
(5,34,35,38)
Conversion DCMPLX* - Numeric Conplex*16 lor2
from
numeric to
conmplex*16
(6,34,36,38)

143

FTN77 User's Guide

144

Definition Generic Specific Type of Type of No. of
and notes name name arguments function arguments
Conversion LGCB* Logical Logical*1 1
from logical
to logical*1
(36,43)
Conversion LGCS* Logical Logical*2 1
from logical
to logical*2
(36,43)
Conversion LGCL* Logical Logical*4 1
from logical
to logical*4
(36,43)
Conversion ICHAR Character Intger 1
from character
to integer
(7,32,34)
Conversion CHAR Integer Character 1
from
integer to
character
(7,34)
Truncation AINT AINT Real Real 1
(39) DINT Double Double
Nearest ANINT ANINT Real Real 1
whole DNINT Double Double
number
(8)
Nearest NINT NINT Real Integer 1
integer IDNINT Double Integer
(9,32)
Absolute ABS IABS Integer Integer 1
value ABS Real Real
(10,35,40) DABS Double Double

CABS Conplex Real

CDABS* Complex*16 Double
Modulus MOD MOD Integer Integer 2
(11,33) AMOD Real Real

DMOD Double Double
Transfer of SIGN ISIGN Integer Integer 2
sign SIGN Real Real
(12,33) DSIGN Double Double

Intrinsic functions

Definition Generic Specific Type of Type of No. of
and notes name name arguments function arguments
Positive DIM IDIM Integer Integer 2
difference DIM Real Real
(33,42) DDIM Double Double
Double DPROD Real Double 2
precision
product
Choosimgy MAX MAXO0 Integer Integer =2
largest value AMAX1 Real Real
(33,34) DMAX1 Double Double

AMAXO0 Integer Real =2
(32,34) MAX1 Real integer
Choosimgy MIN MINO Integer Integer >2
smallest AMIN1 Real Real
value DMIN1 Double Double
(33,34)

AMINO Integer Real =2
(32,34) MIN1 Real Integer
Declared LEN Character Intger 1
length of
character
argument
(13,32)
Significant LENG* Character Intger 1
length of
character
argument
(36,37)
Location INDEX Character Intger 2
of substriny
(argument 2)
in string
(agument 1)
(14,32)
Realpart REAL Conplex Real 1
of Conplex DREAL* Conplex*16 Double
argument
(15,16,34,35)
Imaginary AIMAG AIMAG Conplex Real 1
part of DIMAG* Conplex*16 Double
Conplex
argument
(16,34,35)

145

FTN77 User's Guide

146

Definition Generic Specific Type of Type of No. of
and notes name name arguments function arguments
Conjugate of CONJG CONJG Conplex Conplex 1
Conplex DCONJG* Conplex*16 | Conplex*16
argument
(16,35)
Square SQRT SQRT Real Real 1
root DSQRT Double Double
(17,35) CSQRT Complex Cormmplex
CDSQRT* Complex*16 | Complex*16
Exponential EXP EXP Real Real 1
(35) DEXP Double Double
CEXP Conplex Cormmplex
CDEXP* Complex*16 | Complex*16
Natural LOG ALOG Real Real 1
logarithm DLOG Double Double
(18,35) CLOG Cormmplex Cormmplex
CDLOG* Complex*16 | Complex*16
Common LOG10 ALOG10 Real Real 1
logarithm DLOG10 Double Double
(18)
Logarithm LOG2* ALOG2* Real Real 1
to base 2 DLOG2* Double Double 1
(18,36,41)
Sine SIN SIN Real Real 1
(19,21,35) DSIN Double Double
CSIN Conplex Cormmplex
CDSIN* Complex*16 | Complex*16
Cosine COS COS Real Real 1
(19,21,35) DCOS Double Double
CCOS Conplex Cormmplex
CDCOS* Complex*16 | Complex*16
Targent TAN TAN Real Real 1
(19,21) DTAN Double Double
Arcsine ASIN ASIN Real Real 1
(20,22) DASIN Double Double
Arccosine ACOS ACOS Real Real 1
(20,23) DACOS Double Double
Arctangent ATAN ATAN Real Real 1
arctan(al) DATAN Double Double
(20,24)
Arctan(al/a2) ATAN2 ATAN2 Real Real 2
(20,24) DATAN2 Double Double

Chapter 11 Intrinsic functions

Definition Generic Specific Type of Type of No. of
and notes name name arguments function arguments
Hyperbolic SINH SINH Real Real 1
sine DSINH Double Double

(19)

Hyperbolic COSH COSH Real Real 1
cosine DCOSH Double Double

(19)

Hyperbolic TANH TANH Real Real 1
tangent DTANH Double Double

(19)

Lexically - LGE Character Lgical 2
greater than

or equal

(25,34)

Lexically - LGT Character Lgical 2
greater than

(25,34)

Lexically - LLE Character Lgical 2
less than

or equal

(25,34)

Lexically - LLT Character Lgical 2
less than

(25,34)

Lexically - LEQ* Character Lgical 2
equal

(25,34,36)

Lexically - LNE* Character Lgical 2
not equal

(24,25,34,36)

Extraction of - BITS* Integer Integer 3
bit field

(34,36,44)

Bitwise AND - AND* Integer Integer >2
(26,34,36,46) IAND*

Bitwise OR - OR* Integer Integer >2
(26,34,36,46) IOR*

Bitwise XOR - XOR* Integer Integer >2
(26,34,36,46) IEOR*

Bitwise NOT - NOT* Integer Integer 1
(27,34,36)

Left shift - LS* Integer Integer 2
(28,34,36)

147

FTN77 User's Guide

Definition Generic Specific Type of Type of No. of

and notes name name arguments function arguments

Right shift RS* Integer Integer 2

(28,34,36)

Left rotate LR* Integer Integer 2

(28,34,36)

Right rotate RR* Integer Integer 2

(28,34,36)

Shift SHFT* Integer Integer 20r3

(29,34,36)

Left truncate LT* Integer Integer 2

(30,34,36)

Right truncate RT* Integer Integer 2

(30,34,36)

Obtain LOC* Any Integer*4 1

address

(31,36)

Obtain CCORE* Integer*4 Character* 1

contents CORE1* Integer*4 Integer*1 1

of address CORE2* Integer*4 Integer*2 1

(34,36,45) CORE4* Integer*4 Integer*4 1
FCORE4* Integer*4 Real 1
DCORES* Integer*4 Double 1

Notes for the table of intrinsic functions

148

In the following notes the names of data types are given in lowercase; uppercase i
reserved for intrinsic function names.

1) The generi¢NT discards the fractional part of its argument, producing a truncated
(unrounded) integral value. The result will BdTEGER*2 in a program unit
compiled with/INTS, andINTEGER*4 in a program unit compiled withNTL.

2) INTB, INTS andINTL are similar tdNT, differing only in that the result-type is
determined by the function selected rather than the compiler option in effect.

3) For x of type real,REAL(X) is x. For x of type integer or double precision,
REAL(x) is as much precision of as a real datum, can contain. oof type
complex,REAL(X) is the real part of.

4) For x of type double precisionDBLE(x) is x. For x of type integer or real,
DBLE(x) is the value ofx in double precision form. Fax of type complex,

Chapter 11

5)

6)

7)

8)

9)

Intrinsic functions

DBLE(X) is the real part of in double precision form.

CMPLX may have one or two arguments. If there is one argument, it may be of
type integer, real, double precision, or complex. If there are two arguments, they
must both be of the same type and may be of type integer, real, or double precision.

For x of type complex,CMPLX(x) is x. For x of type integer, real, or double
precision,CMPLX(X) is the complex value whose real parREAL(X) and whose
imaginary part is zero.CMPLX(x1,x2) is the complex value whose real part is
REAL(x1) and whose imaginary partREAL(X2).

DCMPLX is similar to CMPLX, except that aCOMPLEX*16 number is
produced.

Every character is representedAlN77 as a sequence of eight bits ranging from
00000000 - 11111111 (decimal 0 to 255). Any such sequence can be interpreted
either as a character or as an intege€HAR and ICHAR provide a means for
converting between the two interpretations.

ICHAR operates on a single character. It returns an integer between 0 and 255,
representing the decimal equivalent of the bit pattern for that character.

CHAR operates on any integer. If the integer is between 0 and 255, it is used
directly. Otherwise, it is converted to the range 0 to 255 by truncating all but the
eight rightmost bits (the lowest order byte).

Following conversion, if required;HAR returns the character whose bit pattern
corresponds to the binary equivalent of its argument.

The ASCIl character set is used byTN77 for formatted CHARACTER
input/output operations and f&HARACTER constants.

ANINT(X) is defined as:

REAL(INTL(x+.5)) if x =0
REAL(INTL(x-.5)) if x<O0

DNINT(X) is defined as:

DBLE(INTL(x+.5)) if x = O
DBLE(INTL(x-.5)) if x<0

NINT(x) andIDNINT(x) are defined as:

INT(x+.5) if x 20
INT(x-.5) if x <0

10)The argument ttABS may belNTEGER*1, INTEGER*2 or INTEGER*4. The

result will be of the same type as the argument.

149

FTN77 User's Guide

11)MOD vyields the remainder when its first argument is divided by its second

argument. Both arguments must be of the same type; the result will also be of that
type.
The three variants dlOD are defined as follows:

MOD(x1,x2) = x1-INTL(x1/x2) * x2)

MOD(x1,x2) =REAL(x1 - INTL(x1/x2) * x2))

MOD(x1,x2) =DBLE(x1 - INTL(x1/x2) * x2))
The result foMOD, AMOD, andDMOD is a “Division by Zero” error when the
value of the second argument is zero.

12) This function combines the magnitude of its first argument with the sign of the
second. If the value of the first argument is zero, the result is zero, which is
neither positive nor negative.

The variants o65IGN produce the following result:
X1 if x220; -|x1] if x2<0
wherexland x2 are the two arguments.

13) The value of the argument of the functldeN need not be defined at the time the
function reference is executed.

14)INDEX(x1,x9 returns an integer value indicating the starting position within the
character stringl of a substring identical to stringR. If x2 occurs more than
once inx1,the starting position of the first occurrence is returned.

If x2 does not occur irl, the value zero is returned. Note that zero is returned if
LEN(x1) < LEN(x2).

15)TheREAL function for real-part extraction is the same specific function that is
selected when the generic functiREAL is given aCOMPLEX*8 argument.

The DREAL function for real-part extraction is the same specific function that is
selected when the generic functibBLE is given aCOMPLEX*16 argument.

REAL and DREAL for real-part extraction cannot be passed as arguments in
Fortran 77 because they are specific type-conversion functions. To provide
symmetry with AIMAG and DIMAG imaginary-part extraction, which can be
passedFTN77 allowsREAL andDREAL passed as arguments.

16)A complex value is expressed as an ordered pair of rgabd),(wherexr is the
real part andi is the imaginary part.

17)The value of the argument®QRT andDSQRT must be greater than or equal to
zero. The result oc€ESQRT and CDSQRT is the principal value with the real
part greater than or equal to zero. When the real part of the result is zero, the
imaginary part is greater than or equal to zero.

150

Chapter 11

Intrinsic functions

18) The value of the argument ALOG, DLOG, ALOG10, DLOG10 and DLOG2
must be greater than zero. The value of the argume@LOG and CDLOG
must not be (0.,0.). The result @.OG and CDLOG is the principal value, i.e.
the range of the imaginary part of the result is

- TI< imaginary part< 1t

The imaginary part of the resultisonly when the real part of the argument is less
than zero and the imaginary part of the argument is zero.

19)All angles are expressed in radians.
20) The result will be expressed in radians.

21)The absolute value of the argumentSiN, DSIN, COS, DCOS, TAN, and
DTAN is not restricted to be less than 2

22)The absolute value of the argumentA&IN and DASIN must be less than or
equal to 1. The range of the result is:

- %s result < %

23)The absolute value of the argumen®AGfOS and DACOS must be less than or
equal to 1. The range of the result is:

O<result<m
24)The range of the result f&MAN andDTAN is:

- %s result < %

If the value of the first argument &fTAN2 or DTANZ2, (they coordinate in the
cartesianx,y pair) is positive, the result is positive. If the value of the first
argument is zero, the result is zero if the second argument is positiveifatie

second argument is negative. If the value of the first argument is negative, the
result is negative. If the value of the second argument is zero, the absolute value of

the result is%.
The arguments must not both have the value zero.

The range of the result f&«TAN2 andDATAN?2 is:
-m< result <mn

25)LGE(x1,x3 returns the valueTRUE. if x1 = x2or if x1 follows x2in the collating
sequence described in American National Standard Code for Information Inter
change, ANSI X3.4-1977 (ASCII), and otherwise returns the v&INESE.

LGT(x1,x9 returns the valueTRUE. if x1 follows x2 in the collating sequence
described in ANSI X3.4-1977 (ASCII), and otherwise returns the vR&IESE.

151

FTN77 User's Guide

LLE(x1,x2) returns the valueTRUE. if x1 = x2 or if x1 precedex2 in the
collating sequence described AINSI X3.4-1977 (ASCII), and otherwise returns
the value FALSE.

LLT(x1,x9 returns the valueTRUE. if x1 precedex?2 in the collating sequence
described in ANSI X3.4-1977 (ASCII), and otherwise returns the vRBIESE.

LEQ(x1,x9 returns the valueTRUE. if x1 = x2 and otherwise returns the value
.FALSE. LEQ is anFTN77-specific intrinsic function.

LNE(x1,x2 returns the valudRUE. if x1is not equal t&2 and otherwise returns
the value FALSE. LNE is anFTN77-specific intrinsic function.

If the operands foLGE, LGT, LLE, LLT, LEQ, andLNE are of unequal length,
the shorter operand is considered as if it were extended on the right with blanks to
the length of the longer operand.

The result-type foL GE, LGT, LLE, andLLT will be LOGICAL*4 in a program
unit compiled with/LOGL, and LOGICAL*2 in a program unit compiled with
/LOGS.

As FTN77 uses thSCII collating sequence, the use of these functions produces
exactly the same result as a comparison of x1 and x2. Thus, for example,

LLE(C1,C2) and C1.LE.C2

are equivalent but the same may not be true for other Fortran implementations.
ThusLLE, LLT, LGE andLGT should always be used in portable programs where
the collating sequence used for comparisons must be known exactly.

26)AND, OR, andXOR perform the bitwise logical function named on a list of long,

short and byte integers. The result will be a long integer if any argument is long;
otherwise it will be a short integer. When byte, short and long integers are mixed,
the byte and short integers will be sign-extendedzero-extended.

27)Performs a bitwise logicd8OT function (ones complement) on a long, short or

byte integer. The result has the type of the argument.

28)LS, RS, LR andRR take two arguments; each argument may be either a long or a

152

short integer. These arguments are calB&1 andARG?2 in the following.

LS shifts ARGL1 to the left by the number of bits specified ARG2. The result

has the type oARG1, that is, no type change occurs. Vacated places are filled
with zeros. IfARG2 is zero, no shift occurs. KRG2 is negative, the effects of
the operation are undefined.

RS is identical toLS, except that the shift is to the right.

LR rotates the bits iMRG1 by the number of bits specified ARG2. The result
has the type oARG1, that is, no type change occurs. Bits are removed from the
left hand end oARG1 and replaced at the right hand end.

Chapter 11 Intrinsic functions

RR is similar toLR except that the rotation takes place in the opposite direction;
bits from the right hand end are replaced at the left hand end.

29)SHFT is similar toLS andRS, except that it can shift in either direction, and can
perform two shifts rather than one. The additional shift occurs if a third integer
argumentARG3, is given.

If ARG2 is negative, the shift is to the left; if it is positive, the shift is to the right;
if it is zero, no shift occurs.

If ARG3 appears, the shift specified by it will be carried out after the shift
specified byARG?2 is complete. The rules are the same as foARE2 shift.

Note that the sense of the shift specified by a positive or negative valiRGH#
or ARG3 is not the same as that defined for the equivalent functions provided by
IBM and DEC Fortran (77) compilers.

30)LT takes two arguments; each argument may be either a long or a short integer.
These arguments are callaBG1 andARG2 in the following.

LT preserves the l[efARG2 bits of ARG1, and sets the rest to zero (left
truncation). The result has the typeA&RG1 - that is, no type-change occurs. |If
ARG2 < 0, no bits are preserved.

RT is identical toL T, except that the righlRRG2 bits are preserved.

31)LOC operates on an item of any data type. The result INAREGER*4 value
representing the memory address where the first byte of the data item is located.

32)An integer result produced by this function willlDB M EGER*2 in a program unit
compiled with/INTS, andINTEGER*4 in a program unit compiled withNTL.

33)When this function operates on integers, the arguments may be a mixture of
INTEGER*1, INTEGER*2 andINTEGER*4. The result will have the type of
the longest argument.

A special case arises wh&lBS, MOD for integers|SIGN, or IDIM is passed as

an actual argument to a subprogram. In this case, the invoking program unit has
no opportunity to examine the argument list on which the function will operate.
Therefore it cannot select the version of the function that will implementbthe a

rule. For compatibility with th&NSI Standard, the following rule is used instead:

WhenIABS, MOD for integers,ISIGN, or IDIM is passed as an actual argument
to a subprogram, the function passed witept and producNTEGER*4 values

if the invoking program unit was compiled wittNTL, andINTEGER*2 values if

it was compiled witHINTS. This is the only case in which integer types cannot be
mixed in the argument list of an integer intrinsic function.

34)This function cannot be passed as an argument to a subprogram.

153

FTN77 User's Guide

35)The specific function accepting tHeEOMPLEX*16 data type is anFTN77
extension.

36) This function is afFTN77 extension.

37)LENG(X) returns an integer in the range OUWBN(X). It is the length of the
character argumemtafter any trailing blanks have been removed.

38)“Numeric” means any oREAL, INTEGER*1, INTEGER*2, INTEGER*4,
DOUBLE PRECISION, COMPLEX or COMPLEX*16.

39)AINT(X) is equivalent to REAL(INTL(X)). DINT(X) is equivalent to
DBLE(INTL(X)).

40)CABS andCDABS are defined as follows:

Vxr2+xi’

wherexr and xi are, respectively, the real and imaginary parts of the complex
number.

41)DLOG2 is anFTN77-specific intrinsic function.

42)The variants obIM produce the following result:

x1 - x2 if x1>x2
0 if x1<x2
wherex1 andx2 are the two arguments.

43)The result oEGCB(X) is LOGICAL*1, the result o£ GCS(x) is LOGICAL*2 and
the result ofLGCL(X) is LOGICAL*4. These functions are provided so that
logical subroutine and function arguments can be converted to the correct length
(cf. INTB, INTS andINTL).

44)BITS(i,n,m) extracts a bit field from integérwhich can be eithdNTEGER*2 or
INTEGER*4. The result of the function is an integer of the same lengihhea
contains, as its least significant bits, bitso m inclusive ofi. The remaining bit
positions of the result are set to 0.

n andm should be in the range 1 to 8, 1 to 16 or 1 to 32, respectivelypfdype
INTEGER*1, INTEGER*2 or INTEGER*4. n should not be greater than.
Values ofn and m that do not conform to these rules will produce undefined
results. For example:

INTEGER*2 12,A2

INTEGER*4 14,A4

A2 = :3b /* same as 0°35°
12 BITS(A2,14,15)

154

Chapter 11 Intrinsic functions

A4 :100 /* same as 07100’
14 = BITS(A4,26,26)

would result inl2 and 14 having the values 2 and 1 respectively. Wherever
possible BITS is implemented by means of in-line code.

45)CCORE1, CORE1, CORE2, CORE4, FCORE4 and DCORES are used to
manipulate data using addresses that are known to the programmer (for example,
by using LOC). Each function takes ontNTEGER*4 argument that is an
address.

The functions can appear on the right hand side of an assignment statement if they
are declared in alNTRINSIC statement. For example:

INTRINSIC COREZ

INTEGER*4 14

I4 = LOC(J)

COREZ2(I4) = COREZ2(I4) + 1

The second assignment statement is equivalent to:
J=4J+1

This trivial example illustrates ho@ORE1, CORE2 andCORE4 might be used
in software that involves data structures containing addresses.

46) An alternative name, which will have the correct implied type, is listed for this
function.

155

FTN77 User's Guide

156

12.

Fortran 77 character
handling facilities

The character handling facilities of Fortran 77 are a major feature of the language. It
is possible to manipulate data of tyB&lARACTER in a way which enables truly
portable programs to be written. Ty@#ARACTER is not the same as Hollerith
data but is intended to replace the many forms of Hollerith data manipulation that are
available in the various implementations of Fortran 66.

Character statements

The CHARACTER statement is used in the same way as any other type statement.
For example:

CHARACTER A,B,C

declares variablea, B and C to be of typeCHARACTER. Every variable of type
CHARACTER has associated with it a length (the variables in thavea example
each have length 1) which must be specified explicitly or implicitly in the
CHARACTER statement. In generalGHARACTER statement consists of

O The keywordCHARACTER

O An optional length specification which takes the fdtength
O A comma which is optional and therefore usually omitted
O

A list of names and array declarators. A name may be that of a variable, an array,
aPARAMETER (symbolic name of a constant) or a function. Each name or array
declarator may be optionally followed Hength.

For example:

CHARACTER*10 W,X,Y*3,Z(10)*4

157

FTN77 User's Guide

declaredVV, X, Y andZ to be of typeCHARACTER. The length specification *10 is
applied to each name in tHeHARACTER statement in the absence of further
specifications. Thus

W s of length 10

X is of length 10

Y s of length 3 (*3 overrides the statement default of *10)
Z

each element of the arrdyis of length 4

It is not possible to tell merely from the type statements wh&theX andY are the
names of variables, arrays or functions (the same is true tTHeGER, REAL etc.
type statements). In generdengthin aCHARACTER statement may be one of the
following:

O

Omitted, for example:
CHARACTER A,B,C*3

If *length does not follow the keywor@dHARACTER a length of 1 is assumed for
each name in the list which does not have its own specification. Conversely, if
*length does not follow a particular name, the statement default is used.

O An unsigned, non-zero integer constant (as in the examples above).

O An integer constant expression which has a non-zero positive value. The

expression must be enclosed in parentheses, for example:

INTEGER L1,LZ2
PARAMETER (L1=6, L2=9)
CHARACTER*(L1+4L2) C1*(L2), C2*(L1), C3

O declaresC1 to be of length 9C2 to be of length 6 an@3 to be of length 15.

O An asterisk enclosed in parentheses (*). This length specification can only be used

158

with a name of one of the following types:

m Parameter name: In this case, the actual length of the name is determined by
the length of the defining character constant expression.

m Dummy argument name: In this case, the length assumed by the dummy
argument is that of the associated actual argument used whenever the
subroutine or function is invoked.

m Function subprogram name: In this case, the length assumed by the name is
that which has been specified in the calling program.

Chapter 12 Fortran 77 character handling facilities

Character constants

A character constant is written as a non-empty string of characters enclosed in

apostrophes. For exampleABCDE’ is a character constant of length 5. The initial
and final apostrophes do not form part of the constant and are not stored. Space
characters occurring in a character constant are significant so that, for example:

"BEAR MOUNTAIN’
is a character constant of length 13 but
"BEARMOUNTAIN’

is a character constant of length 12. The two constants clearly have different values.
If an apostrophe is required as part of a character constant, each significant
apostrophe should be represented by two consecutive apostrophes in the source
program. For example:

"THE LION’’S DEN’

is a character constant of length 14. The value of this constBREisSLION"S DEN

which shows that the way a constant is written and its value areenessarily the
same thing. A final example shows the rather cumbersome notation required when
the value includes surrounding apostrophes:

>’ *THE MOUSETRAP’*”’
The value of this constant ISHE MOUSETRAP’ - its length is 15.

Character expressions

A character expression is one of the following:

1) A character constant

2) The symbolic name of a character constB&tRAMETER)
3) A character variable name

4) A character array element reference

5) A character substring

6) A character function reference

7) An expression formed by combining two or more of items 1 to 6 by means of the
concatenation operataf as follows:

159

FTN77 User's Guide

<first string> // <second string>

The value of this expression is <first stringoncatenated on the right with <second
string>. For example:

Expression Value
"ALPHA’ //’BET” ALPHABET
"PEACHES’//” AND °//’CREAM’ PEACHES AND CREAM

The second example above shows that any number of coatiatenmay appear in an
expression. Note that any combination of items 1 to 7 can be used to form an
expression and that brackets may be used freely so that the following are exactly
equivalent to the second example given above:

("PEACHES’//’ AND ’)//’CREAM’
"PEACHES®//(* AND *//’'CREAM")

The brackets never have any effect.

Notes:
O The length of the expression resulting from a concatenation is the sum of lengths
of the character operands.

O Trailing spaces are not removed by concatenations.

Character expressions can appear in character assignment statements, relation
expressions and as actual arguments to subroutine and function calls.

Character assignments

160

A character assignment has the following form:
ch = character expression

wherech can be a character variable name, a character array element or a characte
substring. The effect of this statement is to assign the vatlaoicter expressioto

ch. If the length otharacter expressiois less than the length oh, the result inch

is padded to the right with spaces. If the lengtlithadracter expressiois greater

than the length ofh, the result is truncated on the right. The following Fortran 77
fragment illustrates some simple character assignments:

CHARACTER REGNO*8,MAKE*10,MODEL*10,0WNER*20,
+ CAR*25,DETAILS*30, INDEX*3

Chapter 12

(@]

Fortran 77 character handling facilities

assignment of a constant value:

MAKE = °FORD’

MODEL "CORTINA’

REGNO = *XYZ 123W’

OWNER = *JACK THE RIPPER’

concatenation and assignment

CAR = MAKE//MODEL
DETAILS = REGNO//’ ’//0WNER
INDEX = REGNO

After these assignment statements have been exe@A&d,DETAILS andINDEX
would have, respectively, the following values:

FORDOOOOOOOCORT INAOOOOOOOO
XYZO123WOJACKOTHEORIPPEROOOOO
XYZ

The character¥ here, and in the examples which follow, denotes a space. Notice
that padding spaces have been used in the assignni@iRtand that the assignment
to INDEX has resulted in truncation.

Character expressions in parameter statements

ThePARAMETER statement can be used to define a symbolic name for a constant of
type character. Any character constant expression (that is an expression involving
only character constants and symbolic names for character constants) may appear in
such aPARAMETER statement. For example:

CHARACTER*5 NAMEL1, NAME2, OPTION*(*)
PARAMETER (NAME1="SMITH’ ,NAME2="JONES’)
PARAMETER (OPTION=NAME1//’ OR ’//NAME2)

After thesePARAMETER statements have been process¢8iIME1, OPTION, and
NAMEZ2 would be symbolic names for the following constants respectively:

SMITH
JONES
SMITH OR JONES

161

FTN77 User's Guide

Note that the length oOPTION is now 14 as a result of thEARAMETER
statement. These symbolic names could be used anywhere in the remainder of th
program unit to represent the values listed above so, for example:

X = °SMITH’
X = NAME1

are identical assignment statements.

Character arrays

The reader is assumed to be familiar with the concept of an array. An array name is
just a collective name for a number of related items of storage, each of which holds a
value of the same type. A character array follows the general rules for arrays of other
types. A character array in Fortran 77 can have up to 7 dimensions. Character array
can either be defined by means ofC’lARACTER statement or by means of
CHARACTER, DIMENSION andCOMMON statements, for example:

CHARACTER A(10)*5, B(20,20)
CHARACTER*30 NAMES
DIMENSION NAMES(100)

The above example definésto be an array of 10 elements each of 5 charactiis.
an array of 400 elements (20 x 20) each of 1 chara®&MES is a 100 element
array, each element being 30 characters in length

Character substrings

162

It is often necessary to use only part of a character variable or array element. Conside
the following:

CHARACTER*6 FLTNO
FLTNO = ’BA 748’

Suppose that the first two character$bTNO are needed for some reason. There is

a need for a notation that refers to these two characters and yet treats them as a sing
entity. It might be possible to redefife TNO as a 6-element array of 1-character
elements.

Thus:
CHARACTER FLTNO(6)

Chapter 12

Fortran 77 character handling facilities

but this raises the problem of assigning the v8lie748. Returning to the previous
definition of FLTNO, substring notation can be used to extract the desired characters.

CHARACTER FLTNO*6,AIRLN*2,NUMBER*3
FLTNO = ’BA 748’

AIRLN = FLTNO(1:2)

NUMBER = FLTNO(4:6)

FLTNO(1:2) is referred to as a substring name consisting of characters 1 and 2 of
FLTNO. FLTNO(4:6) consists of characters 4 to 6 FHETNO. A substring name

can also be formed using an array element name as in the following example, in
which the previous simple character variables have been redefined as character arrays:

FLTNO(10) = *BA 748’
AIRLN(10) = FLTNO(10)(1:2)
NUMBER(10) = FLTNO(10)(4:6)

A substring name can be formed from an array element of any number of dimensions,
for example ,TABLE(5,6)(10:20)

Data statements involving character entities

A DATA statement can be used to initialise a character variable, character array
element or character substring. The program fragment below gives some examples:

CHARACTER A*6,B*3,C*8,D(10)*4,E*20
C initialisation of simple variables

DATA A/’ABCDEF’/ B /’WXYZ’/ C /’PQR’/
C use of implied DO-loop

DATA (D(J),1=1,6)/3*"XXXX",2*°YYYY", K * 77711/
C substring initialisation

DATA E(10:20)/’SECOND HALF’/

When the above program is loaded, the variaBleB and C would have the values

ABCDEF, WXY andPQROOOOO respectively. Note that if the length of the variable
and defining constant are not the same, then padding or truncation takes place as in
the case of assignment statements. The first 6 elements of th®armayd have the

valuesXXXX, XXXX, XXXX, YYYY, YYYY andZZZZ respectively but the remaining
four elements would be undefined. Characters 10 to 20 of vaEakérild be defined

with the valueSECOND HALF but characters 1 to 9 would be undefined.

Note:
Fortran 77 does not allow an impli&D-loop variable to be used to initialise a

163

FTN77 User's Guide

character substring. The character substring expressions must always be constal
expressions in RATA statement.

Input and output of character data

164

List-directed input/output is the simplest way to read and print character data. It is
only necessary to use an appropriate character entity in the input/output list of a
READ or PRINT statement for its value to be transmitted. For example:

CHARACTER C*10,DAY(7)*9

DATA C/’ TODAY IS °/

DATA DAY /’MONDAY’,’TUESDAY’, WEDNESDAY’,
+ *THURSDAY ', FRIDAY’,’SATURDAY’, ’SUNDAY’/

READ *,NDAY

IF (NDAY.LT.1.OR.NDAY.GT.7) THEN

PRINT *,”ERROR IN NDAY VALUE’

GOTO 1

ENDIF

PRINT *,C,DAY (NDAY)

In the above example, the firBIRINT statement outputs the character constant

ERROR IN NDAY VALUE. The input/output list of the secoRINT statement
consists of two character entities: a character variable and a character array element.

The rules for list-directed input of character information are slightly more
complicated. Consider the statements:

CHARACTER*10 C
READ *,C

The character data item on the input record correspondi@grast have the form of

a character constant, that is, the actual value must be enclosed in apostrophes. Spac
are significant and, if an apostrophe character is required as part of the value, it mus
be represented by two apostrophes on the data record. For example, th@@&lues

andD0G’S would be supplied as data, respectively, as
'DOG”
'DOG’’S’
If either of these values were read by the alREAD statement, the resulting value

held inC would be padded on the right with spaces as the length (IDjsofreater
than the length of the constant in each of the above cases. In general, the rules al

Chapter 12

Fortran 77 character handling facilities

exactly those for character assignment. Suppose that the following constants were
supplied as an item of data for the abB¥AD statement:

*0123456789ABCDE”

then the resulting value assigned @ would be 0123456789. The leftmost
characters of the character constant are retained if the len@hisofess than the
length of the data item. Character variables can, of course, appear in input/output lists
together with variables of other types. Character values on data records can be
repeated like any other value so, for example:

CHARACTER C(10)*5
INTEGER N
READ *,N,(C(I),I=1,N)

could be used to read the following record
6,6*"EMPTY’

Six elements of the arrdy would be initialised to the valueMPTY by means of this
statement.

Note:

TheFTN77 compiler will not @cept repeated character constanlis sper more than

one record. This violates the Fortran 77 standard, but is not a serious restriction in
practice.

Formatted input/output of character data requires the use éflegliting descriptor.

In general, if the length of the character item in the input/output Iisttisere are a
number of differing effects for input and output depending on the relative values of
andc. These effects are summarised by the table below.

Input Output
w>c The rightmostc characters of The value of the output list item |s
the specified field are trans-transferred to the output field
ferred to the list item receded byv - ¢ space characters
w<c The w characters of theThe leftmostw characters of the

specified field are transferrgdvalue of the list item are transferrgd
to the list item padded on theo the output field
right byc - w spaces

womitted | A field width ofc is assumed so that characters are transferrgd
to/from the specified field

The examples below illustrate the use of this descriptor and some of the problems that
it can cause.

165

FTN77 User's Guide

166

CHARACTER C*10
READ (1,7 (A10)’)C

Ten characters would be transferred from the input record to va@iable

CHARACTER CA(10)
READ (1,7 (A10)’)CA

Ten records would be read; the first character of each of these records would be use
as a value for the elements. 1 to 10 of aGay

CHARACTER SMALL*5,BIG*10
READ (1,20) SMALL
READ (1,20) BIG

20 FORMAT (A80)

Suppose the data records corresponding to the &BEX® statements were

ALPHABET
CABBAGES

after theREAD statements had been executeMALL would have the valuBABET

and BIG would have the valu€ ABBAGESOO. Note that the effect obtained for
SMALL is exactly the opposite to that for list-directed input and is, indeed, the reverse
of one’s expectation.

CHARACTER SMALL*5,BIG*10,0K*8
READ (1,20)SMALL
READ (1,20)BIG
READ (1,20)0K
20 FORMAT (A)

In the above example, no field width is specified followiAgin the FORMAT
statement. In this case, the width assumed is the length of the corresponding
character variable or array element in the input/output list. Thus, with data records

ALPHABET
CABBAGES
KINGS

the values obtained iISMALL, BIG and OK after execution of the aboy@EAD

statements would be, respectively,PHA, CABBAGESOO andKINGSOOO as might
be expected intuitively. The following examples assume unit 2 is connected to a file
which does not require carriage control characters.

CHARACTER BUFOUT*80
WRITE (2,7 (A80))BUFOUT

80 characters would be transferred from the character vaAatiol¢he output record.

Chapter 12

Fortran 77 character handling facilities

CHARACTER LITTLE*10,LARGE*26
LITTLE = °0123456789°
LARGE = *ABCDEFGHIJKLMNOPQRSTUVWXYZ’
WRITE (2,10)LITTLE
WRITE (2,10)LARGE
10 FORMAT (A15)

The output records produced by the WRITE statements would be

0123456789
ABCDEFGHIJKLMNO

If the FORMAT statement in the above example were replaced by
10 FORMAT (A)
the output records would be

0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Comparing character strings

There are a number of applications where character strings must be compared, for
example:

CHARACTER*5 CONTRL(3),KEY

DATA CONTRL/’START’,’STOP’, WAIT’/
6 READ (1, (A)’)KEY

DO 4 I=1,3

IF (KEY.EQ.CONTRL(I))GOTO(1,2,3),1

4 CONTINUE

PRINT *,’invalid control card’

GOTO 6
1
2
3

In this example, the actual internal codes used by the system for the character values
do not matter as the test is only for equality of two character strings. Many programs
involve the sorting of data using some form of key which is frequently alphanumeric
but need not necessarily be so. Sorting implies comparisons of the form ‘is the value
of A less than the value &7’ or ‘is the value o greater than the value Bf?’. This

type of comparison implies a need for some rules for ordering character values.

167

FTN77 User's Guide

168

Everyone would intuitively place the wor88G, CAT, RABBIT andMONKEY in the
following order:

CAT
DOG
MONKEY
RABBIT

Suppose that the phraR&BBIT*S FOOT is to be inserted into the above sequence.

Clearly, it would followMONKEY but should it followRABBIT? Most people would
probably answer ‘yes’ to this question but what would happen if this operation were
part of a Fortran 77 program? The answer is that the ordering would depend on the
exact details of the collating sequence used by the implemeRBbN77 uses the
ASCII collating sequence but the Fortran 77 Standard only defines the following
collating sequence.

1) 0<1<2...<9

2) A<B<C...<Z

3) 9<A or Z<0 (in other words, all the digits must either precede A or follow Z)
4) Space <0 and space <A

So, whilst many Fortran 77 implementations do useMB€ll collating sequence, the
above miimal rules can lead to non-portable programs unless one of the intrinsic
functionsLLT, LLE, LGE or LGT is used.

In general, when comparing the values of two character expresdiansdc2 in a
relational expression, the shorter expression is assumed to be padded on the right wit
spaces. A character relational expression has the general form:

cl .op.c2

wherecl andc2 are character expressions aong. is one of LT. .LE. .EQ. .GE.
.GT. or NE.

Note:
The effect of EQ. and NE. is independent of the collating sequence used.

The example below shows some relational expressions:

CHARACTER C*(*),C1%5,C2*4,C3*9
LOGICAL L

PARAMETER (C="APPLE’)
PARAMETER (L=C.GT.’A")

C3 = Cl//C2
C does C3 start with an alphabetical character?
IF (C3.GE.’A’) THEN

Chapter 12 Fortran 77 character handling facilities

IF (C3.LE.”Z’) GOTO 10
ENDIF
C no - is it numeric?
IF (C3.GE.’0’) THEN
IF (C3.LE.”9’) GOTO 20
ENDIF
C 1is it blank?
IF (C3.EQ.”) GOTO 30

Intrinsic functions for handling character data

There are eight very useful Fortran 77 intrinsic functions provided specifically to
simplify the manipulation of character data. The functiond@HAR, CHAR, LEN,
INDEX, LLE, LGE, LGT andLLT.

Conversion from character to integer and vice-versa

ICHAR(C) returns the position of characterin the collating sequence used by the
system.

CHAR(i) returns theath character in the collating sequence used by the system. Note
thati starts at 0, not 1, and that a single character is returned. The maximum value
fori when using=TN77 is 255.

FTN77 uses théASCII collating sequence but other Fortran 77 implementations may
not, so use of these functions does not necessarily lead to portable programs.

Example:

CHARACTER VALUE

READ *,I

IF(I.LT.0.0R.I.GT.9) THEN
PRINT *,’ERROR’
STOP 999

ELSE
VALUE = CHAR(I)

ENDIF

This example converts the value of the single digit integer to character form. Note
that:

I =46
VALUE = CHAR(I)

169

FTN77 User's Guide

170

would not produce the character value 4€H#R only returns a single character.

INTEGER ASTART, ZERO, SPACE
ASTART = ICHAR(’A")
ZERO ICHAR(C’0")
SPACE ICHARC™)

This example finds the position of the charaderzero and space in the collating
sequence.

Length of a character entity

It is often useful to know the length of a character entity, particularly in a subroutine
or function where an argument of type character can have an assumed length passe
with it. In generalLEN(c) returns the length of the character expressionFor
example:

CHARACTER A*10, B(5)*4, C*20
I = LENCA)

J = LEN(B(1))

K = LEN(C(11:20))

After these statements had been executellandK would have the values 10, 4 and

10 respectively. Note that the length returnedLBN is the declared or assumed
length of the character expression and not the length of the expression once trailing
spaces have been removed. (HIN77 compiler provides the functiohENG for

this latter purpose: see chapter 11.)

Locating a substring

The functionINDEX(C, CSUB) returns the starting positioreX) of the substring
CSUB in the stringC.

If CSUB is not a part ofC, INDEX returns the value 0. If there is more than one
occurrence o£SUB in C, the starting position of the first occurrence is returned. For

example, in order to read a card and establish whether the kefWBRDUTINE
appears in column 7 or later, the followipggram fragment might be used:

INTEGER POS
CHARACTER CARD*80, NAME*6
READ (1,10) CARD
10 FORMAT (A)

POS = INDEX (CARD, SUBROUTINE’)

C subroutine found

C ensure only blank characters precede it
IF (CARD(1:P0S-1) .NE. *) THEN

PRINT *, *invalid card’

Chapter 12

Fortran 77 character handling facilities

ELSE
C look for name of subroutine
C LEN (’SUBROUTINE’) is converted to a constant at
C compile-time in the FTN77implementation
C so there is no loss of efficiency here
DO 30 I=POS+LEN(’SUBROUTINE®),80
IF(CARD (I:I) .NE. ° °) GOTO 20
30 CONTINUE
C assume name has no embedded spaces
20 NAME = CARD(I:I+5)
ENDIF

Portable character comparisons

The results of character comparisons which B&€ and NE. are independent of the
collating sequence used but the results of character comparisonsLsirige. .GE.

and GT. depend on the collating sequence used. To overcome this problem,
Fortran 77 provides four logical intrinsic functions which useABEIll character set

for character comparisons:

Function Equivalent to
LLT (cL,c2) Ccl.LT.c2
LLE (cl,c2) cl.LE.c2
LGE (c1,c2) cl.GE.c2
LGT (cl,c2) cl.GT.c2

As FTN77 uses theASCIl collating sequence, there is no need to use Howea
functions unless a portable program is being written. For example, the value of the
relational expression

"KEY1A’ .GT. KEYAL"’
depends on the relative position of 1 @nih the collating sequence.
LGT(’KEYIA’, KEYAL’)

will always return the valuecFALSE. as the character 1 precedes the char#cter
the ASCII collating sequence.

171

FTN77 User's Guide

Character functions

172

The FTN77 library contains some functions of type character, one of which is
DATE(). This function must be declared in the calling program unit as

CHARACTER DATE*8

It returns today's date as a character value in the form mm/dd/yy. The following
statements could be used to print the date:

CHARACTER DATE*8
PRINT *,DATE()

This character function has no arguments. In general, it is possible to write a
character function with argument(s) of any type. FRINCTION statement has the
general form:

CHARACTER*len FUNCTION fundarglist)
Where:
O funcis the function name
O arglistis an argument list which may or may not be present

O If the form (*) is used folden, the length of the result returned by the function
depends on the length specified for the name in the calling program unit.

The following example is of a character function which returns a number of characters
of the alphabet starting at a position specified by its argument

CHARACTER*(*) FUNCTION SLICE(N)
INTEGER N
CHARACTER*26 ABET
DATA ABET/ ABCDEFGHIJKLMNOPQRSTUVWXYZ’/
IF (N.LT.1.0R.N.GT.26)
+ CALL ERROR (’N out of range’)
SLICE = ABET(N:N+LEN(SLICE)-1)
END

This function could be called as follows:

CHARACTER*3 SLICE
PRINT *,SLICE(1),” *,SLICE(24)

In this case, the length assumed &kICE would be 3 and th&RINT statement
would output

ABCOXYZ

SLICE could, of course, be used to return character values of a different length by
declaring it appropriately in any calling program.

Chapter 12 Fortran 77 character handling facilities

Characters as dummy and actual arguments

Character entities may appear as arguments to subroutines and functions. Whilst the
basic rules for dummy and actual argument association are the same as those for
arguments of other types, there are a number of rules which apply specifically to
arguments of type character which come about because every character entity has a
length associated with it. This length must either be specified explicitly or as *(*) in
the subroutine or function. The table below gives the rules for dummy and actual
argument association.

Dummy argument Actual argument
Variable Variable
Array element
Substring

Character expression

Array Array name
Array element
Array element substring

For a dummy argument which is a variabld]lifs the length of the dummy argument
andal is the length of the actual argument, tlitrmust not exceedl. |If dl is less
thanal, then the leftmosal characters of the actual argument are associated with the
dummy argument. A length of *(*) can be specified for the dummy argument to
ensure that the lengtlad anddl will always be the same for that argument. Suppose
thatSIMPLE had been defined as follows:

SUBROUTINE SIMPLE (C1,C2)
CHARACTER C1#*8,C2*(*)

The following program fragment shows the effect of some cal8MPLE:

PROGRAM MAIN
CHARACTER A*8,B*6,C*10

C argument C2 of simple assumed length 6
CALL SIMPLE(A,B)

C invalid CALL : length of actual argument
C B is less than declared length of C1
CALL SIMPLE(B,A)

C the first 8 characters of C are used
CALL SIMPLE(C,A)

173

FTN77 User's Guide

174

C the actual arguments must not
C be changed by this statement
CALL SIMPLE(’ABCDEFGH’,A//B)

END

For a dummy argument which is an array, the length of the dummy argudiinisnt
defined to be the length in characters of the entire dummy array. The length of the
actual argumerdl is defined as follows:

Actual argument type

Length in characters

Array name
Array element

Array element substring

The length of the entire array

The length of the array from the
element to the end of the array

The length of the substring

It is not essential for the declared character length of the dummy array element to be
the same as that declared for the corresponding actual argument array. If a length c
() is declared for a dummy argument array, the length assumed for the actual array

is as follows:

Actual argument type

Length assumed for dummy
declaration of *(*)

Array name
Array element
Array element substring

Length of the actual array
Length of element
Length of the substring

Suppose that subroutiDdESSY had been defined as follows:

SUBROUTINE MESSY (A1,A2)
CHARACTER AL(10)*3,A2(6)*(*)

END

The following program fragment shows the effects of some calt=EdESY::

PROGRAM MINE

CHARACTER A(10)*3,B(20)*6,C(3,2)*5

C straightforward association
C the first 6 elements of B are used

CALL MESSY (A,B)

[Nl

the whole of C (30 characters) is
associated with A - the Tength assumed

C for dummy argument A2 is 3 (the substring length)

Chapter 12 Fortran 77 character handling facilities

C and thus only the first 3 elements of B are used

CALL MESSY (C,B(1)(1:3))

END

Character entities in common blocks

A common block must either contain character data or non-character data. The
Fortran 77 Standard does not allow the two types to be mixed in one common block.

FTN77 allows character and non-character data to be mixed in common blocks if the
/ANSI compile-time option is not used.

175

FTN77 User's Guide

176

13.

Language extensions

FTN77 was used for its own development. As a consequence, in order to be able to
produce executable code that is optimal in core requirements and execution speed, a
number of language extensions are made available by the compiler. Other extensions
are provided to aid the porting of programs from other systems. It is emphasised that
these extensions are not part of &SI Standard and their use is likely to result in
non-portable programs.

The list of extensions below is only available ifANSI directive has not appeared in
the program source andANSI compile-time option has not been specified.

O Long and short integer and logical data &@UBLE COMPLEX data
Data initialisation in type statements

Hollerith data

Use of @, $ and _ characters in names and common block names
Long names

Octal, hexadecimal and binary values

WHILE statements

DO WHILE statements

END DO statements

Extra intrinsic functions and subroutines

Internal procedures

In-line 32-bit assembler

Numeric checking of variables and array elements

Special form of thé®ATA statement

Conditional compilation

0O O OO OODO QOO OO OO oo oo o o

Input/output extensions (see page 132)

177

FTN77 User's Guide

O IMPLICIT NONE

O Interrupt subroutines

INTEGER and LOGICAL data types

TheANSI standard specifies that integer and logical variables should occupy the same
number of storage elements as real variables but, in programs which manipulate large
quantities of integer and logical data, this can be wasteful of storage Jpakg.7
provides three mechanisms for controlling the storage requirements of integer and
logical variables:

1) The default settings for a whole compilation can be chosen by usingNih®,
/INTL and/LOGS, /LOGL compile-time options.

Note that, under DOS/WIin1@INTS and/LOGS are the compiler defaults when
the compiler is distributed.

To establish the defaults on your machine, issueFtid77 command with the
/HELP option.

2) Any combination of INTS, INTL, LOGS and LOGL must appear in an
OPTIONS directive before the start of a program unit in order to specify the
default for the whole of that program unit.

3) The following alternative forms of thtN\TEGER and LOGICAL statement are
allowed:

INTEGER*1
INTEGER*2
INTEGER*4
LOGICAL*1
LOGICAL*2
LOGICAL*4

Note: Under Win32,INTEGER*1 parameters must not be used when declaring
the size of an array.

*1, *2 or *4 overrides or confirms the current default for the program unit. For
example:

OPTIONS(INTS, LOGS)
INTEGER*4 I,IA(10)

END
OPTIONS(CINTL, LOGL)

178

Chapter 13 Language extensions

SUBROUTINE Y(L,M)
INTEGER*4 M
LOGICAL*2 L,L1(3,3)

END
declares the variablésandM to be four bytes in length, and the variabl® be 2

bytes in length. Each element of the adi@ywould occupy 4 bytes; each element
of the arrayL1 would occupy 2 bytes.

REAL and DOUBLE PRECISION data types

Parallel toINTEGER*2 and INTEGER*4 declarations there exist the alternative
forms, REAL*4 and REAL*8, of declarations for floating point variables. These are
synonymous withREAL and DOUBLE PRECISION respectively. The size
specifiers *1, *2, *4, and *8 can also immediately follow individual variable names in
the declaration list, overriding the length the variable would otherwise have (the
syntax is analogous to that f@HARACTER declarations in this respect). Thus, for
example, the following statements:

REAL*4 X*8,Y
INTEGER I,J*4

would declareX to beREAL*8 (double precision)Y to beREAL*4 (single precision),
| to be of type default integer (set by use/MTS and /INTL options or the
OPTIONS(INTS) and OPTIONS(INTL) directives) andJ to be of type
INTEGER*4.

Data initialisation in type statements

It is possible simultaneously to declare and to initialise local variables and arrays as in
the following examples:

INTEGER I/3/,4
REAL A(5)/1,2,3,4,5/
CHARACTER*2 C/’ XX’/

179

FTN77 User's Guide

Hollerith

180

The syntax for the data initialisation part of the statement is identical to that used for
DATA statements except that each initialising value must immediately follow its data
item and not all variables need be initialised.

Notes:
O Variables initialised in this way are assigned to static storage.

O If an array is initialised in this way, data values must be specified for the whole
array.

O If a CODE/EDOC section follows an initialisation, then tHeODE statement
should be preceded byGDNTINUE statement.

data and ENCODE/DECODE

Hollerith data andENCODE/DECODE are not part of the Fortran 77 standard
although they were included in Fortran 66.FIFIN77 they have been implemented as
extensions to the Standard. Occurrences of Hollerith data are flagged as a warning b
the compiler. New programs should not use these two extensions.

Note: Hollerith editing in formats is still part of the Standard.
For example:

10 FORMAT (4HFRED)
is equivalent to:

10 FORMAT (’FRED’)

Hollerith data is stored as two 8-bit characters per word, any unused character
positions being blank-filled.

The number of characters contained by each type of variable is as follows:

Number of
Type Hollerith
Characters
INTEGER*1 1
LOGICAL*1
INTEGER*2 2
LOGICAL*2
INTEGER*4 4
LOGICAL*4
REAL
DOUBLE PRECISION

Chapter 13 Language extensions

Hollerith data is allowed iFTN77 as follows:

1) In DATA statements for variables and arrays of ty§d EGER, REAL and
DOUBLE PRECISION. For example:

DOUBLE PRECISION A(3)

INTEGER*4 IB(2)

DATA A/24HABCDEFGHIJKLMNOPQRSTUVWX/
DATA IB/8H01234567/

Note that apostrophes can be used as an alternative to the nH form.
2) As data read bREAD andWRITE statements; for example:

READ (1,10)I
10 FORMAT (A2)

An Aw edit descriptor is used to specify te8ClIl chara-ters are to be read into or
written from the specified variables which may be of tyYNdEGER, REAL,
DOUBLE PRECISION or LOGICAL. FTN77 allows the formA (alone) where
wis assumed to be the numbeASCII characters that will fit into the variable in
the input/output list. For example:

INTEGER*2 I

REAL R

LOGICAL*4 L

READ (1,10)I,R,L
10 FORMAT (3A)

would read, from a single record, 2 characters in# characters intR and 4
characters intd.

3) In assignment statements where the left hand side is an arithmetic variable or
array element, for example:

I = "AB’
R = "1234°

Note the use of apostrophes in these examples.
4) In subroutine calls or function references, for example:

CALL PIANO(5HFORTE)
I = RS(1HA,8)

A run-time error will be generated when using either of the compile-time options
/CHECK or /FULLCHECK if a Hollerith string is passed as an actual routine
argument and the corresponding dummy argument is not oChipeRACTER.

181

FTN77 User's Guide

Use of @, $ and _ characters in names

It is often useful to be able to name a subroutine or common block in such a way that
it will not clash with names chosen by everyday use of the com@e&N77 allows
the @, $ and _ (underline) characters as any non-initial character of a Fortran name.

Example:

SUBROUTINE PRINT$(I)
COMMON/COM@/A,B,C(100)
EXTERNAL Fl@,F2@
INTEGER Fl@

CALL MY _SUB(Fl@)

No guarantee can be given that use of a name containing an @ character will no
cause unpredictable results as a result of a clash wiTB@7 library name or other
reserved name. However, no system name contains a $ character.

Long names

FTN77 permits, as an extension, the use of variable names of up to 32 characters.

Octal, hexadecimal and binary values

Constants

An octal constant takes the form of a digit string enclosed in apostrophes and
preceded by the letter O, for example:

071234~

The number of digits as well as the magnitude determines the |éNGEBGER*2 or
INTEGER*4) of the constant so that, for example, the above constant is an
INTEGER*2 constant (as long as the short integer default is in use), but:

0*7777777°
0°0000007°

are botHNTEGER*4 constants.

182

Chapter 13 Language extensions

Hexadecimal constants consist of a string enclosed in apostropheseaedegrby the
letter Z, for example:

L’FF’

The length of the constant is determined by the number of digits so that, for example,
with the short integer default in operation, the above INaAEGER*2 constant, but:

Z’0000FF"
is anINTEGER*4 constant.

Binary constants consist of a string of 0’'s and 1's enclosed in apostrophes and
preceded by the letter B, for example:

B’101101°

The number of binary digits, and whether the short or long integer default is in
operation, determine whether the constalNiIBEGER*2 or INTEGER*4.

Input and output

FTN77 provides O, Band Zedit descriptors for the input and output of octal, binary
and hexadecimal values. The edit descriptors have the following general form:

owv.m
Bry.m
ZAv.m

The effect of O, Bor Z edit descriptors parallels that of the Iw.m descripteris the
field width, andm is the minimum number of digits that must be outpuh can be
omitted if desired - the default value foris 1. m must not be greater thanand has
no effect for input.

The list item corresponding to an O,dB Z edit descriptor must be of type integer.
For example:

C read a 4-digit octal value
READ (1,10)1
10 FORMAT (04)
C write a 10-digit binary value and
C include all leading zeros
WRITE (5,20)K
20 FORMAT (B10.10)

Octal, hexadecimal and binary constants can appear instead of integer constants as
items for list-directed input. The allowed forms that these constants may take are as
described for constants (see page 182).

183

FTN77 User's Guide

WHILE statement

FTN77 offers aWHILE statement as an alternative tol&n.. GOTO construct or a
DO statement. Its general form is

WHILE (logical expression) DO
ENDWHILE
The WHILE-block may contain any executable Fortran statemelt$ILE-blocks

may be nested within each other or withiR-, ELSE-, and ELSEIF-blocks and/or
DO statements. The rules of nesting are the same as those for théHxtatement.

An ENDWHILE statement can be labelled but may only be referenced from within the
WHILE block.

Example:

J=20
WHILE(I.NE.O)DO
I = LIST(I)

J = J+1
ENDWHILE

DO WHILE statement

184

FTN77 offers aDO WHILE statement as an alternative to th® statement. Its
general form is

DO WHILE (logical expression)

TheDO WHILE-block may contain any executable Fortran statemdn€.WHILE-
blocks may be nested within each other or wittin ELSEIF- and ELSE-blocks,
WHILE-blocks and/oiDO statements. The rules of nesting are the same as those for
the blockiF statement.

An END DO statement can be labelled but may only be referenced from within the
associateddO WHILE block.

Example:

J=20
DO WHILE(I.NE.O)

Chapter 13 Language extensions

—
|

= LIST(I)
J = J+1
END DO

END DO statement

FTN77 offers anEND DO statement as an alternative to the usual form of the Fortran
DO statement, which requires a terminating label. Its general form is

DO <do-var>=<initial>,<final>,<step>

The DO/END DO-block may contain any executable Fortran statemeB&/END
DO-blocks may be nested within each other or withtn, ELSEIF- and ELSE-
blocks, WHILE-blocks and/or standaddO statements. The rules of nesting are the
same as those for the blotfk-statement.

An END DO statement can be labelled but may only be referenced from within the
associatedO block.

Example:

K=20
DO I=1,10
J LIST(I)
K = K+1
END DO

Extra subroutines and intrinsic functions

A number of intrinsic functions have been provided which are not in the Standard.
These are defined together with #SI intrinsic functions in chapter 11.

185

FTN77 User's Guide

Internal procedures

186

FTN77 provides internal procedures to allow even a few lines of coding to be used as
a “subroutine” without the run-time overhead th&Ad L statement produces.

Internal procedures have been implemented in a way which is straightforward to use
and yet makes it easy to replace any internal procedure call by some standard featur
such as a\SSIGN statement and an assign@@®TO statement if a program is later
transported to a system which does not support internal procedures.

As its name suggests, an internal procedure is local to the program unit in which it
appears. FTN77 provides four statements to deal with internal procedures:

INTERNAL PROCEDURE <list of int-proc-names>
INVOKE <int-proc-name>
PROCEDURE <int-proc-name>

EXIT <int-proc-name>

The INTERNAL PROCEDURE statement

INTERNAL PROCEDURE is a specification statement and must appear before any
executable statement in a program unit. The general form is:

INTERNAL PROCEDURE <list of int-proc-names>

where <list of int-proc-names> is a list of internal procedure names separated by
commas. Every internal procedure name used in a program unit must first appear ir
anINTERNAL PROCEDURE statement.

The PROCEDURE statement

The PROCEDURE statement is used to define the start of an internal procedure. It
has the form:

PROCEDURE <int-proc-name>

An internal procedure has no argument list; any local or external nhame available to
the program unit in which the internal procedure appears is available for use within
the procedure.

Note:

When defining an internal procedure, it is up to the programmer to ensure that there
is no possibility of control “flowing into” the procedure. It is suggested that internal
procedure definitions are grouped together followilREA URN or GOTO statement

at the end of a program unit, for example:

Chapter 13 Language extensions

RETURN
PROCEDURE P1
PROCEDURE P2
END

The EXIT statement

The EXIT statement is used to exit from an internal procedure. It may appear
anywhere in an internal procedure definition and takes the form:

EXIT <int-proc-name>

An EXIT statement can appear wherever an executable statement is allowed (for
example, at the end of &R statement).

The only effect of afEXIT statement is to transfer control to the statement following
the INVOKE statement used to invoke the internal procedure.

More than onéEXIT statement can appear in an internal procedure definition. The
EXIT statement need notegessarily be the last statement in a definition so that
remarks made at the end of the previous section again apply here.

A program may also exit an internal procedure by executiREBURN statement,
which also leaves the parent routine.

The INVOKE statement

The INVOKE statement is used to “call” an internal procedure. It has the general
form:

INVOKE <int-proc-name>

and can appear anywhere that an executable statement is allowed. The only effect of
anINVOKE statement is to transfer control to the specified internal procedure.

Example of the use of an internal procedure
INTERNAL PROCEDURE ERROR
N =7
INVOKE ERROR
N = 80
INVOKE ERROR

187

FTN77 User's Guide

PROCEDURE ERROR
IF (N.LT.50) THEN
CALL ERRORL(N)
ELSE

CALL ERROR2(N)
ENDIF
EXIT ERROR

END

In-line 32-hit assembler

This feature of the compiler is fully described in chapter 15.

Numeric checking of variables and arrays

188

It is possible to specify an upper and lower limit for the value assigned to any variable
or array element by means of an extension to the syntax ifTieGER, REAL and
DOUBLE PRECISION statements as in the following examples:

REAL A[1.0:100.0]
specifies that the variable can take values in the range 1.0 to 100.0.
INTEGER I[-1:+1]
specifies that the variable | can take values in the range -1 to +1.
INTEGER K(10)[0:10]
specifies that the elementskofcan take values in the range 0 to 10.
The general form of the limit check is:
[<lower>:<upper>]

where <lower> and <upper> are arithmetic constant expressions. Conversion take:
place to the type of variable or array name, as appropriate. Thus the following are
equivalent:

REAL A[1:10]
REAL A[1.0:10.01]

Chapter 13

Language extensions

Arithmetic constant expressions can, of course, indRAIRAMETER names making
the feature very flexible, in addition to its being simple to use.

The variable or array whose range is being checked can be local, common or an
argument.

If a range check is present it is always processed by the compiler but it is only used if a
/CHECK or /FULLCHECK is in force. Errors can be detected by the range check
either at compile-time or at run-time.

An error will be detected at compile-time for an assignment whose right hand side is
constant. For example:

REAL A[5.0:12.0]
A=20.0

would result in a compile-time error.

Care should be taken when using real and double precision range checks to allow for
the effects of rounding error. For example:

REAL A[2.2:5.275]
A=23.1
A= A+2.175

might generate a range check error. The upper limit should be specified as 5.2751.

An error will be detected at run-time for all other assignments and statements such as
DO andREAD which imply assignments. Such errors produce the message:

(ID User-specified range check error

Note:
Statements such as:

DO 10 I-=1,20

imply a final assignment todf the value 21. Any range check used fehould take
this fact into account.

Special form of the DATA statement

This facility, which permitsINTEGER*4 variables to be given address values, is
described on page 199.

189

FTN77 User's Guide

Conditional compilation

190

FTN77 provides conditional compilation by means of 8l RECIAL PARAMETER
statement, théSPARAM compile-time option and th€lF, CELSE and CENDIF
statements.

SPECIAL PARAMETER and /SPARAM

The specification statement
SPECIAL PARAMETER <name>

defines <name> to be of type integer. <name> must not appear in a type statemen
and is local to the program unit in which tB®ECIAL PARAMETER statement
appears. The value represented by <name> is set by means (SPABRAM
compile-time option as follows:

/ISPARAM <integer>
where <integer> is the required value.

Any number of SPECIAL PARAMETER names are allowed per program unit but
they are all assigned the same value.

CIF, CELSE and CENDIF

CIF, CELSE andCENDIF are used to select the statements in a program unit that
are to be used during a particular compilation. Their general forms are:

CIF (<name>.EQ.<constant>) THEN

CELSE

CENDIF
where <name> is 8PECIAL PARAMETER and <constant> is an integer constant.
CIF etc. begin in column 7 or after.
CIF andCENDIF must appear in pairs: their appearance constitutds-#lock.

The actual value assigned to the special parameter <name> is compared with th
integer constant <constant>. If the two agree, the statements foll@hagre
compiled until aCELSE or CENDIF statement is found.

If the two disagree, statements are ignored un@ELSE or CENDIF statement is
encountered. Such statements are denoted by a back-slash character in the listing file

OnceCENDIF is encountered, th€lF-block is complete.CELSE causes the reverse
effect to that specified by the precedidtF statement.

Chapter 13 Language extensions

CIF..CENDIF blocks can be nested ar@ELSEIF may be used to replace the
sequenc€ELSE, CIF,.....CENDIF as in the Fortran 7IF-statement.

IMPLICIT NONE

This is a compiler directive that causes the compiler to fault the subsequent use of a
variable which has not been given an explicit type. It appears in column 7 or
afterwards and should be placed in every subprogram were it is needed and before all
executable statements in that subprogram.

An alternative is to us@PTIONS(IMPLICIT_NONE) at the head of a file and this
will then apply to the whole file. Another alternative is to configure the compiler
using the compiler optioACONFIG and to seiMPLICIT_NONE as the compiler
default.

INTERRUPT subroutines

TheSET_TRAP@ routine enables a program to catch a number of program events
(see theFTN77 Library Referencenanual or the on-line Help system for details of
this routine and other routines mentioned in this section). Certain events, such as the
QUIT trap, can interrupt a program at an arbitrary point. The routine which is used
to catch such an interrupt must be specially written to cater for this. On page 206 an
assembler technique is described for this purpose. While this technique offers the
greatest flexibility, theNTERRUPT SUBROUTINE offers a simpler mechanism
which is normally adequate.

An interrupt subroutine must have no arguments and is normally terminated by
stopping STOP or CALL EXIT) or by callingJUMP@ to return to a label in an
earlier routine. The following program illustrates this technique:

EXTERNAL QUITH

INTEGER*4 X

COMPLEX*16 LABEL

COMMON LABEL

CALL LABEL@(LABEL,*1)

CALL SET_TRAP@(QUITH,X,0)
1 READ *,N

DO 2 I-=1,N
2 PRINT *,N

191

FTN77 User's Guide

192

PRINT *,’END OF LOOP”’

GOTO 1

END

INTERRUPT SUBROUTINE QUITH
COMPLEX*16 LABEL

COMMON LABEL

CALL COU(’Quit trapped!’)
CALL JUMP@(LABEL)

END

By pressingCtrl Break you can force this program to abandon the loop in progress,
print a message, and return to read more data. Clearly this technique is of great valu
in writing interactive programs.

It is possible on return from aNTERRUPT SUBROUTINE to continue from the

point at which execution was interrupted, provided that the subroutine neither

performs Fortran input/output calls nor any other system routine. For example, such &
subroutine might simply set a flag in a common block and return to the calling

program.

If the INTERRUPT SUBROUTINE either calls a system routine or performs
input/output, and the interrupt takes place from within a system routine or the Fortran
input/output system, then unpredictable effects can result after return from the routine.
However, control can be passed back to the program using ABEL@ and
JUMP@ routines.

14.

The in-line assembler

Introduction

This chapter explains how to write 32-bit assembler instructions in Fortran programs.
It may be omitted by readers who have no interest in the details of the Intel
microprocessor environmentEFTN77 users wishing to code at the assembler level
should obtain a copy of a Programmer’s Reference Manual published by Intel. For
details of theDBOS execution environment see page 314.

The execution environment (Win32)

Each process executes in its own 32-bit virtual address space. This gives 2Gbytes for

the combined code and data spaces (the remaining 2Gbytes are reserved for the
operating system). Using the advanced features of the 486 chip, each process address
space is protected from modification by other processes executing within the system.

The CODE/EDOC facility

The CODE statement switches the compiler into a mode in whichaegts Intel 32-

bit assembler instructions rather than Fortran statements. The compiler is returned to
normal by theEDOC statement. ACODE/EDOC sequence may appear anywhere
that an executable Fortran statement is permitted. For example:

CHARACTER*10 L
CODE

193

FTN77 User's Guide

LEA EDI%, L ;EDI gets address of L
MOVB AL%,="*’ :Asterix in AL
MOV ECX%,=10 ;Count in ECX
REP ;Rep prefix coded as
+ ; a separate instruction
STOSB ;This fills L with asterisks
JMP $10 ;dump to label 10
EDOC
PRINT *,’This should not be printed’
STOP
10 PRINT *,’L = ’°,L
END

This example is artificial in that there is no real point in performing operations in
assembler that can be done in Fortran, however it illustrates that code is written
according to the following conventions:

O Instructions refer to Fortran objects or explicitly to the registers

O Register names are followed be a ‘%’ to distinguish them un-ambiguously from
variable names.

O Instructions must start in column 7 or beyond.

O Only numeric (Fortran) labels are permitted.

O Comments may be included provided they are preceded by a semi-colon characte
)

O Some mnemonics are followed by an ‘H' to indicate halfword (16-bit) operation or
by ‘B’ to indicate a byte operation. This is discussed in more detail below.

Mixing of Intel 32-bit Assembler and Fortran

194

Assembler programs should nalter registerEBX% (pointer to local static data),
EBP% (pointer to local dynamic data), ®&SP% (stack pointer). Other general
registers can be used freely.

Under DOS/Win16, in césin cases (notably in conjunction wiBVC's) it may be
necessary to altéeBP% or EBX%. In this case the contents should be pushed prior
to the operation and restored afterwards with a pop instruction.

The coprocessor will be empty and in rounding mode when control is passed to
assembler, and it must be in the same state afterwards. It is possible to jump from
Assembler to labelled Fortran statements and vice-versa.

Chapter 14

Labels

The in-line assembler

As in the above example, labels are Fortran labels and are referred to by preceding the
numeric label by a dollar character thus:

JMP $7

Conditional jumps are coded in 32-bit form wheecessary, so these may be used
without considerations of range. Th®OP instructions, which do not have 32-hit
forms, are not supported by the assembler.

Referencing Fortran variables

Variables are referenced using the following scheme.
O Local dynamic variables are addressed uEiBg§%.
O Local static variables are addressed u&iBx%.

O An argument can only be referenced by its address. For example, in order to load
the argument into AX% use:

SUBROUTINE FRED(L)
INTEGER*2 L

CODE
MOV EAX%,=L :Get address of L
MOVH AX%,[EAX%] ;Load halfword

O References to common or external variables are constructed using a full 32-bit
address.

These rules mean that local variable references may be indexed by one extra register,
and common variables may have two indexing registers if necessary. For example:

INTEGER*4 L(200)

CODE
MOV EAX%,=8
MOV LLEAX%],=0 :This sets L(3) to 0

Variable references may be offset. For example:

195

FTN77 User's Guide

Literals

CHARACTER*10 FOO
CODE
MOVB FOO+3,=32 :Sets FOO(4:4)=" "~

Indices can also contain multipliers of 1 (default), 2, 4, or 8. For example:
ADD [EAX%+ECX%*4], =6

An instruction operand may be a constant (literal). In this case the constant must be
preceded by an ‘='". Fhding point instructions may have literal arguments, which are
placed in memory and addressed, since there is no immediate form of these
instructions.

Literals may contain any constant expression (which will be evaluated using the
standard Fortran 77 rules) and may be of any type. For example:

FLD =5.0
DFADD =5.0D0 :Note REAL*8

; constant needed
MOV EAX%,=(4*5) ;:Load 20 into EAX%
TEST FRED,=Z’FEFFFFFF’ :Hex constant

Halfword and byte forms of instructions

196

In standard (16 bit) assembler notation, many instructions have two forms depending
on whether the operand is of type byte or word. In 32-bit assembler, instructions may
have three forms - full word (32-bit), half word (16-bit) and byte (8-bit).

Rather than follow the Intel convention that the instruction is defined by its operand
(something which is hard to define in the context of Fortran variables), each distinct
instruction has a different mnemonic. The conventional Intel mnemonic refers to the
32-bit form of the instruction, and we append an ‘H’ to refer to a half word instruction
(constructed using an operand size prefix) or a ‘B’ to refer to a byte instruction where
available. Thus for example we have the following string move instructions:

MOVS :Move a full word
MOVSH :Move a half word
MOVSB :Move a byte

Chapter 14 The in-line assembler

A similar scheme is used with the memory reference coprocessor instructions. Thus
we have for example four types of memory reference floating point additions:

FIADDH I :Add an integer half word
FIADD L :Add an integer full word
FADD R :Add a short real (4 bytes)
DFADD D :Add a long real (8 bytes)

Using the coprocessor

Coprocessor stack operands are referred to using the following notation:

ST(0) ;Stack top
ST(1) ;Next to stack top
etc.

Stack reference instructions use the short real form of the mnemonic (for example,
FADD) but the actual calculations are performed to the full precision of the
coprocessor. The coprocessor stack must be returned empty and with the control word
unchanged. Coprocessor instructions do not contain an imphatlr. WAIT
instructions are only necessary after results are returned to the 32-bit Intel chip
(FSTP, or FSTSWAX for example), and even then only if the result will be used
before another coprocessor instruction is started.

If you are writing code that might be used in an another environment, you should
ensure that any coprocessor mnemonics you use are appropriate to that environment.

Under DOS, Weitek mnemonics are supported for atpmrs for the 1167 and 3167
coprocessors on a 386 and for operations for the 4167 coprocessor on a 486.

Instruction prefixes

The following prefixes are available as pseudo instructions coded on the line above :

REP

REPE

REPNE

FS :Appends the FS: prefix
GS :Appends the GS: prefix

197

FTN77 User's Guide

For example:

FS ;Source operand from FS
REP
MOVSB

or
MOV FS:0,ESP%
would be coded as

FS
MOV 0,ESP%

Other prefixes are rarely needed, however they are available usirigBtheseudo
instruction to code an arbitrary byte. For exampledBeprefix could be coded as:

DB Z°0F’

Other assembler facilities

198

In general, the assembler pseudo-instructions and macros are not available, a
equivalent or more powerful facilities are available usiHigN77. The following
pseudo instructions have been provided:

O In-line data may be inserted usii@B, DW, or DD pseudo instructions. For
example:

DD Z’FEFFFFFEF’ ;4 bytes
DW 45 ;2 bytes
DB -1 ;1 byte

O Under DOS/Winl6, th&sVC pseudo instruction has been provided to facilitate
calls toDBOS. The onlySVC calls of general interest aB/C/3 and SVC/26.
SVC/3 is described in detail belowSVC/26 is used to set théOPL (I/O
permission level) of the program. HAX%=1 user I/O is enabled, EAX%=0
user 1/O is inhibited (default). After using th&/C it is possible to uséN and
OUT instructions to control peripherals (or crash the machine if you are not
careful!).

O Do not try to select the coprocessor rounding mode by using an efgiiREW,
as this will invalidate the independent control of arithmetic precision. Each of the
following pseudo instructions is snapped on first use to the appropli&t€wW
command referencing a table of suitable control words:

FROUND ;: Select rounding mode
FCHOP ; Select chopping towards 0

Chapter 14 The in-line assembler

FCHOPM ; Select chopping towards - infinity
FCHOPP ; Select chopping towards + infinity

Calling MS-DOS and BIOS

See page 316.

Other machine-level facilities

It is always inconvenient to have to descend to assembler, even in the form of a
CODE/EDOC sequence, and a number of special Fortran constructions have been
introduced for convenience.

O The intrinsic functionsCCORE1, CORE1, CORE2, CORE4, FCORE4 and
DCORES are available to examine the contents of a given location.

Each function takes diNTEGER*4 argument. COREL1 returns thdNTEGER*1
byte at that addres§ORE2 returns theNTEGER*2 word at that address and
CORE4 the correspondindNTEGER*4 value, FCORE4 the corresponding
REAL value andDCORES the correspondindOUBLE PRECISION value.
CCOREL1 returns a single byte (as a character).

These functions must be declared in IANRINSIC statement before they are
used. They may also be used on the left hand side of an assignment. For example:

COREZ2(L) = CORE2(L)+1
CCORE1(P)=" "~
CORE1(PTR)=123

If an argument to a routine is one of these functibesactual address is passed
for example:

INTEGER*4 L
INTRINSIC LOC,CORE2
K =14

L = LOC(K)

CALL FRED(CORE2(L))
PRINT *,K

END

SUBROUTINE FRED(M)
M=M+ 2

END

199

FTN77 User's Guide

would print 6.
O A special form of th6&UBROUTINE statement is available thus:
SPECIAL SUBROUTINE JACK

Special routines must have no arguments, and contain no preamble to set
EBX%,EBP% etc. They can only really be followed &YDDE/EDOC sequences,

and no reference to dynamic variables must be made in such a routine. Static
variables may be referenced and will use the full address form of the instruction
(rather thanEBX% relative). Special subroutines may contain additional entry
points coded as special entries:

SPECIAL ENTRY BILL

Special routines may not contain ordinary entry points and vice-versa. The return
from a special subroutine must be vidRET instruction and not as a result of
executing aRETURN or END statement. The main purpose of the special
subroutine is as a routine which can be called from assembler without altering the
contents of the registers.

An additional use of this facility is in conjunction with teer_Trap@routine. A
control break or floating point fault can take place at an arbitrary point in a
program, and it is important to be able to save the registers etc. before they are
overwritten. Although this can be done with an interrupt subroutine without the
use of CODE/EDOC, the latter offers the ability to inspect and alter the contents
of the registers if desired.

O INTEGER*4 variables may be giveaddress valuesn DATA statements. For
example:

DATA L/%K/

would givel the value of the address §f The address must be of a local static,
external or common variable.

O Circular shifts are available as intrinsic functions and thus do not require the use
of assembler.

O TheLOC intrinsic function returns the address of its argument as a 32-bit number.

Error messages

Owing to the syntax of assembler, use of unpaired apostrophes and parentheses |
comments inCODE/EDOC sequences will cause the compiler to output apparently
spurious messages concerning the mismatching.

200

15.

The In-line assembler and DBOS

FTN77 programs and the DBOS environment

This chapter gives some information about what basic forms of instructions are used to
access different storage classes of data, and also discusses the subroutine linkage
conventions used ByTN77. This will help both with recognition and understanding

of some of the instruction sequences emittedFBN77, and also with writing
CODE..EDOC in-line assembler sequences under DOS/Win16.

Segment selector registers

The segment selector registef$S, DS and SS (code, data and stack segments
respectively) are set up to point to the entire virtual address space with no offset (i.e.
they all point to virtual address zero with a 4-gigabyte segment limit).

TheES selector is used by some string instructions which require it. FBheelector

is not dedicated for any particular use, and so it is available for temporary use for
special applications (for example, see the description of the use BIABEOM@
routine in theFTN77 Library Referencenanual). ThésS selector is set up to point

to the memory space mapped onto the Weitek coprocessor when one is installed.

Variable storage
FTN77 programs make use of tB#8P% register to address local dynamic variables.

Scalars are allocated at positive offsets freBP%, while arrays are allocated at
negative offsets. This arrangement is used so as to maximise the number of objects
(and hence hopefully the number of instructions) which require only a one-byte offset
to access them. For example, if an array of size more than 128 bytes were allocated at
offset 0 from EBP%, then no other objects allocated relativeBBP% could be
referenced with a one-byte offset, thus effectively wasting some code space on
instructions which would then need multi-byte offsets.

201

FTN77 User's Guide DOS/Winl16

202

When not operating ilfOPTIMISE mode, theEBX% register is used to point to the
static data space (i.e. saved variables). Scalars are allocated at negative offsets fro
EBX%, again to increase the number of objects which can be referred to with short
offsets. Note that the scheme can be used either way around. The range of offset
which are accessible with one byte is -128 to 127, since the offset is treated as signec
FTN77 does not use a more optimal allocation strategy due to the constraints of its
single-pass nature.) Where constants cannot be compiled into immediate mode
instructions (for example, where they appear as subroutine arguments), they are
placed relative t&BX%.

When /OPTIMISE is in effect, theEBX% register is not used in this way. All
references to static objects are planted as absolute address references (which are
course re-located appropriately by the linker). In this wayEBX register becomes

free to be used for more general purposes. When optimisation is in effect the
availability of another register is especially beneficial, due to the extra sophistication
of the register allocation algorithms used.

Thus, the instructions output for an assignment of a static short integer scalar to &
dynamic short integer scalar might be of the following form:

MOVH CX%,DS%:[EBX%-021]
MOVH SS%:[EBP%+08],CX%

(Note that the syntax used here for segment register references is not directly
acceptable to thETN77 in-line assembler. In fact, sinE% andSS% point at the

entire real mode address space, it would not be necessary to specify them explicitly
when assembling instructions such as those above.)

Arguments to routines are passed as pointers, which are stored reld&B€%o in

the initialisation code for the routine (usually from offset 0 onwards for a main
entrypoint). Thus the code to load a short integer argument intAXBe register
might be of the following form:

MOV ECX%,S55%:[EBP%+04]
MOVH AX%,DS%: [ECX%]

Note that even when refering to an object which is an argument by name in an in-line
assembler sequence, it is necessary to perform the de-referencing described abov
Failure to do so will result in the error message “lllegal memory reference” at compile
time.

Common variables (and static variables WH@RTIMISE is in effect) are fixed up to
an absolute address by the linker, and thus are not referenced relative to any bas
register. A common reference might look something like the following:

MOVH AX%,DS%:[+000201001]

Chapter 15 The in-line assembler and DBOS

Linkage to subroutines

There are three aspects to this topic - the code to call a subroutine, the code executed
at on entry to the subroutine, and the code to return from the subroutine. The scheme
has to achieve four things:

O Transfer of the arguments to the procedure.

O Setting up the required value BBX% for the called routine’s static data space,
and reinstating its value on return.

O SettingEBP% to point to a new “stack frame”, or local dynamic data space.

O Transfer of control to the procedure and return to the point immediately after the
procedure invocation afterwards.

Of course, the most natural mechanism to use for the last of these requirements is the
CALL instruction, together with a correspondiR&T instruction. This implies that

the system stack, with stack poinEe6P% is used, so the value &BP% is set up

with respect t&ESP%.

As an example, we will look at a call to a subroutine which takes two short integer
arguments. The code to call the subroutine is as follows:

PUSH 0000009E

LEA EAX%,SS%: [EBP%+101]
PUSH EAX%

MOV ESI%.ESP%

CALL 000000A0

ADD ESP%,00000008

The first PUSH puts a pointer to the second of the two arguments onto the stack
(arguments are always pushed in reverse order). In this example, since the argument
is an absolute address, we can deduce that the argument in question is either a static or
common variable, or an external. The secBitEH is of a local dynamic variable -

its address has to be obtained at runtime byL&#& instruction since, unlike static

and common variables, its address cannot be determined at link time.

Next, theESI% register is loaded with the value of the stack poiEt8P%, and the
routine is called. Thus on entry to the called rouEi§¢% contains the address of the
start of the argument pointers, which appear in order in ascending memory address
(since the stack builds downwards as values are pushed onto it). Upon return, the
ADD instruction effectively pops the argument pointers off the stack (the value 8
reflects the two 4-byte argument pointers).

For the case of character arguments, a 32-bit length is passed for each of the character
type arguments in the argument list, and these appear after all of the pointers for the
actual arguments in the argument list (that is, theyP&l8Hed onto the stack before

the actual arguments to the procedure).

203

FTN77 User's Guide DOS/Winl16

204

On entry to the subroutine, code such as the following is planted:

PUSH EBX%

PUSH EBP%

SUB ESP%,00000044

LEA EBP%,S5S5%: [ESP%+30]
LEA EBX%,DS%:[+EQ]

MOV ECX%,=00000002

LEA EDI%,SS%:[EBP%]
REP MOVS

First of all, EBX% andEBP% are pushed onto the stack, so that they can be returned
to the required values for the caller on return. Next the stack poE®#%, is

moved down sufficiently to make space for the called procedure’s stack frame, and
EBP% is set up relative to this new value BSP%. In the example, the called
procedure has a 20-element local dynamic short integer array, and one local shor
integer scalar, and two arguments. The allocation relatiieSe% is as follows
(offsets in hex):

EBP%-28 to EBP%Z-01 array

EBP%+00 to EBP%+03 argument pointer for first argument
EBP%+04 to EBP%+07 argument pointer for second argument
EBP%+08 to EBP%+09 local short integer scalar

To write CODE..EDOC in-line assembler sections it is not strictly necessary to
understand the storage allocation scheme beyond a very general levalce$® any

given object in an instruction, it can be specified by name, and its address is fixed up
by the compiler, possibly with the help of the linker, in the same way as it would be
dealt with in a Fortran statement. For those that are interested, the actual storag
allocation of variables is given in the listing produced by AM&P compilation
option.

Next the EBX% register is fixed up to point to the local static data space (this
instruction is fixed up by the linker when the space is allocated - the object file
specifies how big a space is needed, and the linker allocates the requested amount
space).

The remaining instructions deal with copying the argument pointers from the location
given byESI% (set up prior to th€ALL instruction), to a known offset in the stack
frame, usually from offset zero relativeEBP%. The case where this may not occur

is when a procedure has entrypoints, and the same arguments may appear in differel
positions in the argument list. However, as far as possible contiguous strips of
argument pointers are maintained (so that these can be copied by instructions with th
REP prefix). It is at this point that any character lengths are dereferenced, and their
values stored in a space allocated from the called procedure’s local dynamic storage.

Chapter 15

The in-line assembler and DBOS

If extra arguments are present on the call, their corresponding pointers are not copied
(the number of fullwords copied is equal to the number of arguments specified in the
subroutine declaration). If too few arguments are supplied then the pointers for those
not present are given by undefined memory locations, and attemptsetss ahese

may simply give meaningless arguments, or may cause a general protection exception,
or for floating point quantities may cause a coprocessor fault.

However, if both the calling and the called procedure are compiled wWitlCHECK

or the /[FULLCHECK compiler options, then the mismatch in the number of
arguments is picked up by the argument checking mechanism. (We will not describe
the checking mechanism in any detail here, since it is assumed that if the program
being debugged has been compiled with one of the checking options then it does not
violate any of the rules.)

The code to return to the calling procedure simply restores the value of the stack
pointerESP% to its value at the start of the procedure just after the callers local static
and dynamic space pointers have been restored, pops these from the stack, and then
executes &ET instruction:

LEA ESP%,S55%: [EBP%+14]
POP EBP%

POP EBX%

RET

Functions are called in the same way as subroutines, except that the function value for
each function type is returned according to the following conventions:

INTEGER*2 AX%

INTEGER*4 EAX%

LOGICAL*2 AX%

LOGICAL*4 EAX%

REAL*4 andREAL*8 ST(0)

COMPLEX*8 and Real part i8T(0) and
COMPLEX*16 imaginary part irST(1)

Functions which return a character type result are called by a slightly different
mechanism. Before calling the function, the regi&Bi% is set up to point at the
destination for the function value (note that this may be a compiler-generated
temporary variable). All assignments to the function value in the called routine go
through a copy of this pointer in the called procedure’s local dynamic space, and so
directly affect the intended operand. The declared character length of the function is
PUSHed before other lengths associated with character-type arguments, for use by
CHARACTER*(*) functions.

There are a number of other aspects of the generated code which are not described
here (for example, the argument checking mechanisms mentioned earlier in this

205

FTN77 User's Guide DOS/Winl16

chapter). However much of any information which might be required can be deduced
from the expanded listing generated by eBXPLIST compiler option.

Trap routines

206

DBOS can simulate an interrupt if certain conditions occur. This can be enabled with
theSET_TRAP@ routine. See the description®ET_TRAP@ in the on-line Help
system or thé&TN77 Library Referencemanual for a list of the conditions which can
currently be trapped.

To use this feature the trap routine must save and restore the registers bearing in min
that the event will usually occur between statements. Here is an example of a simple
CONTROL BREAK handler:

EXTERNAL QUIT_TRAP
INTEGER*4 P
CALL SET_TRAP@(QUIT_TRAP,P,0)

SPECIAL SUBROUTINE QUIT _TRAP
CODE
PUSHF ;SAVE ALL REGISTERS AND FLAGS
PUSHA
SUB ESP%,=106;MAKE ROOM FOR COPROCESSOR STATE
FSAVE [ESP%]
FINIT
FROUND
CALL QUIT1
FRSTOR [ESP%]
ADD ESP%.=106
POPA
POPF
RET
EDOC
END

Note that this program could have been coded using IRERRUPT
SUBROUTINE (see page 191) without the need@PDE/EDOC and is used purely

as a simple example. TIQ@UIT1 routine can take any action desired except that if it
usesFortran 1/0O statements it must not return back into an 1/O statement. (A key
press could occur at any point.) The use of low level I/O routines suUCED is

not restricted. A useful technique is to set up a label WBEL@ and pass it in

Chapter 15 The in-line assembler and DBOS

COMMON. TheQUIT1 routine can then usHJMP@ to pass control to the label.
See theFTN77 Library Referencenanual or the on-line Help system for detailed
information onCOU@, LABEL@ andJUMP@.

The machine code programmer’s window

The window based debugging system, described in chpapter 7, also offers a window
for debugging at the machine code level (see page 68 for further details).

207

FTN77 User's Guide DOS/Winl16

208

16.

Mixed language
programming

Introduction

This chapter discusses the details of inter-language programming between Fortran and
Salford C/C++. The sizes of the various data types, data storage and function call
styles are covered in order to facilitate the mixing of modules compiled in either
language.

Data types

Basic data types

The table 16-1 illustrates the amount of storage required for the basic data types
associated with each language: In all the languages, pointers are represented as 32-bit
quantities.

Arrays

There are two methods of storing arrays, row-wise and column-wise. Row-wise
storage means that the elements are stored a row at a time starting from a base address
and increasing towards high memory. Arrays stored column-wise have the elements
stored a column at a time increasing towards high memory.

For example, consider the array consisting of 10 rows and 20 columns. The
appropriate declarations in each language would be:

FTN77 INTEGER*4 numbers(10,20)
FTN90 INTEGER*(KIND=3) numbers(10,20)
C/C++ int numbers[20]1[10];

209

FTN77 User's Guide

210

Data Size C/C++ FTN77 FTN9O
type (bytes)
1 char INTEGER*1 INTEGER (KIND=1)
Integer 2 short int INTEGER*2 INTEGER (KIND=2)
4 int; INTEGER*4 INTEGER (KIND=3)
long int
1 unsigned char - -
Qnggned 2 unggpedshon - -
integer int
4 unsigned int - -
1 char LOGICAL*1 LOGICAL (KIND=1)
Logical 2 short int LOGICAL*2 LOGICAL (KIND=2)
4 int LOGICAL*4 LOGICAL (KIND=3)
4 float REAL; REAL*4 REAL (KIND=1)
Real 8 double REAL*8; DOUBLE REAL (KIND=2)
PRECISION
10 long double - -
Character 1 char CHARACTER*1 CHARACTER*1
Table 16-1
A row-wise array would be stored as:
numbers(0,0); numbers(1,0); numbers(2,0); ... numbers(9,0);

numbers(0,1);....
whilst a column-wise array would store the elements as

numbers(0,0); numbers(0,1); numbers(0,3); ... numbers(0,9);
numbers(1,0);....

The various language standards define Fortran as using column-wise storage, whils
C/C++ stores arrays row-wise. Therefore, a Fortran array defined as

numbers(10,20), would have the equivalent C/C++ declaration
numbers[20]1[10].

Chapter 16 Mixed language programming

Character strings
C/C++ character strings are stored aNWLL (character zero) terminated arrays of
characters whilst Fortran characters strings are fixed length and are padded to the end
of the array with spaces. It is important to take into consideration these different
methods of storing strings when passing or receiving them as parameters.

Calling FTN77 from C/C++

Introduction

The following text assumes that you are writing in C/C++ and are callifgr &7
relocatable binary library (RLB) or dynamic link library (DLL).

When callingFTN77 routines from C/C++, the following major points should be
considered:

O Fortran arguments are passed by reference rather than value.

O All Fortran external names are upper case (regardless of the case of the original
source text).

O Fortran character variables have no simple analogue in C/C++.

If you have a C/C++ main program calling a Fortran RLB, then the main program
should call the library initialisation routine if there is one. Failure to do so will result
in unpredictable behaviour. If you are calling a DLL then the initialisation will
probably take place automatically when the DLL is loaded.

CHARACTER variables

Fortran character arguments are fixed length and padded with space characters. In
order to determine the length of a character argumenETN&7 compiler passes the
length of the string as an extra argument at the end of the argument list for the
subroutine/function. If more than one character argument is passed, then the lengths
are passed in the order in which the character arguments appear in the argument list.
For example:

SUBROUTINE COMPARE(STRING1, STING2)
CHARACTER*(*) STRING1, STRINGZ

END

211

FTN77 User's Guide

This subroutine would have the following C/C++ prototype:
extern "C" COMPARE(char *sl,char *s2,int 11,int 12);

wherell andI2 are the lengths of the two strings ands2 respectively. In order to
call COMPARE from within a C/C++ program, the programmer must pass the
lengths of the two strings so the call would look something like this:

char *strl, *str2;

COMPARE(strl, str2, strlen(strl), strlen(str2));

Arrays

As we have already noted, the standards for C/C++ and Fortran define array storag
differently. Is is therefore necessary to provide an interface routine between the
FTN77 library and the C/C++ code or to modify the C/C++ code to take into account
the differences in data storage.

INTEGER, LOGICAL and REAL

It is necessary to ensure that the data type of the C/C++ variable matches that of th
FTN77 variable (see table 16-1). All parameters in the Fortran argument list will be
passed by reference. You should therefore declare each argument as a pointer in C «
as a reference variable in C++.

Common blocks
The FTN77 compiler automatically adds an underscore “ " character onto the end of

a common block name. This is transparent to the pro_grammer unless you wish tc
access the data stored within the common block. Itetessary for the C/C++
programmer to explicitly add this underscore character to the common block nhame

before use. Alternatively, the progrdd®MGEN (see chapter 17) may be used.

Calling C/C++ from FTN77 or FTN90

The C_EXTERNAL keyword has been added to give the Fortran programmer the
added flexibility of being able to call C/C++ routines and forcing the compiler to
generate extra code to handle some of the data conversions. An example of this is th
string data type. As we have already noted, C/C++ strings are NULL terminated,
whilst Fortran strings are fixed length, padded with spaces. CTHEXTERNAL
declaration for a function, informs the compiler that the function or subroutine is
written in C/C++ and is external to this program module. If the function uses a string

212

Chapter 16

Mixed language programming

data type, code is planted to generate a C/C++ style string before entering the C/C++
function and then after the function call, code is generated to convert the C style string
back into a Fortran string. This frees the C/C++ programmer from the additional
complexities of providing the conversion code. It also means that a Fortran
programmer can call a third party library without converting all string references into
C/C++ strings before calling an external routine.

TheC_EXTERNAL declaration has the following form:
C_EXTERNAL name [*alias’] [(desc , ...)] [:restypel
where:

name
is the name to be used to call the function in the Fortran program.

alias
is the external name used for the routine (i.e. the name that is used in the C/C++
source code).

desc
describes the arguments that the routine receives and/or returns.

restype
identifies the routine as a function and describes the type of the object returned,;
this may be any function type other tHaHARACTER.

Some examples of valid EXTERNAL declarations are given below.
Example 1
C_EXTERNAL SUB

This describes an external C/C++ routine which accepts no arguments and returns no
result. The corresponding C/C++ declaration would be

extern "C" void SUB(void)

and the function would be called by the Fortran statefeht SUB.
Example 2
C_EXTERNAL WRITE "WriteFile’ : INTEGER*4

This describes a C/C++ routine callédriteFile which accepts no arguments, but
returns an integer result. The routine is called from a Fortran program by the
statements

213

FTN77 User's Guide

214

INTEGER*4 RESULT
RESULT = WRITE()

The C/C++ code could have the following form

int WriteFile(void)

Before continuing, we must first examine the possible forms alébeparameter and
therestypepart of the declaration in more detail.

The desc parameter allows the programmer to over ride the default linkage of
arguments. If you use these argument descriptors, the number of arguments in eac
occurrence of a call must agree with the number of descriptors in the routine
definition. desc may be any one of: REF, VAR, STRING, INSTRING,
OUTSTRING.

The VAL specifier may only be used for numeric and logical scalars. Instead of

pushing the address of the value onto the stack, the actual value is pushed. Thi
allows C/C++ functions to use its arguments as local variables. REfespecifier

may be used with any Fortran object. This forces the Fortran program to push the
address of the object onto the stack. This is the default action but should be used as
matter of good programming practice to allow the compiler to check for the correct

usage of external functions. So we may additionally have the following descriptions:

C_EXTERNAL UNIX_WRITE ‘write’ (VAL, REF, VAL): INTEGER*4
for theUNIX low-levelwrite function. This is defined in C/C++ as

int write(int handle, void *buffer, int amount)

but it now looks to the Fortran program as if it was a Fortran function declared as:

FUNCTION UNIX_WRITE(HANDLE, BUFFER, BUFSIZ)
INTEGER*4 HANDLE, BUFFER, BUFSIZ, UNIX WRITE

The remaining three type§TRING, INSTRING, OUTSTRING, are a little more
complicated. All three are used to describe a string object. Each one forces the
compiler to do differing amounts of work before the function call is made. As we have
already seen from the discussion at the start of this section, the compiler can be force
to convert strings from Fortran strings to C/C++ strings and visa-versa. This is the
default action and is equivalent to tB#RING descriptor. However this causes an
unnecessary overhead if and argument is to be used for either input to a function ol
output from a function but not both. In this case K8 TRING andOUTSTRING

Chapter 16

Mixed language programming

maybe used. This saves the redundant copy operation from taking place. It is also
possible to restrict the length of the temporary variable used to store the string which
is actually used in the function call. The default length of the string is the length of
the CHARACTER array or 256 bytes in the case dEHARACTER*(*) array. This

is done by specifying the length of the string in parentheses after the descriptor.
Further examples of thHé_ EXTERNAL are:

C_EXTERNAL COPY_STRING ’strcpy’ (OUTSTRING,INSTRING): INTEGER*4
C_EXTERNAL STRNCPY ’strcat’ (STRING, INSTRING(40)): INTEGER*4

wherestrcpy andstrcat are the standard C library functions.

Under Win32, the syntax of the declaration fof aEXTERNAL function is similar
to aSTDCALL statement (see chapter 18 for details).

Calling Windows 3.1 functions

FTN77 and FTN9O contains two further keyword$¥INREF and WINSTRING.

These are available to aid the writing of programs that use the Windows 3.1 API calls.
The source module containing these keywords must be compiled using the
/WINDOWS option.

WINREF passes the argument by reference but converts the pointer into a windows
style pointer (i.e. 16 -bit segment and offset) rather than a true 32-bit pointer.

WINSTRING arguments are input strings to windows functions. Again the pointer is
converted from 32-bit form to 16-bit form. Further details are given irCtearWin+
User's Guide

Mixing I/O systems in C/C++, FTN77 and FTN9O

In general the I/O systems in these three languages are different and should not be
mixed. For example, it is not usually possible to open a fil€TIN77, and then pass

the handle to be used in C/C++. The only exception to this rule is that if you use
DBOS library calls to manipulate files, then the handles are common across the
language boundary.

215

FTN77 User's Guide

216

17.

The COMGEN utility

Introduction

The COMGEN utility can be used to translate a source file containing definitions of
common blocks, parameters, externals and intrinsic declarations into Fortran and
C/C++ include files. By using a central source file andIN@LUDE directive (see

page 36), it is possible to ensure that all modules are using consistent definitions of
the common blocks they require. This also provides a method of accessing Fortran
common blocks as C/C++ structures.

Command line

COMGEN is invoked in the following manner:
COMGEN source destl1 [dest2]

wheresourcecontains the source declarations@MGEN, destlis the name of the
file to be overwritten with the Fortran declarations aedt2is the name of the file
which will contain the C/C++ declarations.

Source file format

The source file is broken down into three parts
O Header information
O Variable declarations

O Trailer information

217

FTN77 User's Guide

SinceCOMGEN works as a finite state machine, the data in each section may occur
anywhere in the file. The header information is copied, without modification, into the
top of the Fortran insert file. The declarations for variables are copied into both the
Fortran and C/C++ files with the appropriate mappings applied for variable names
etc. The trailer information is copied, without modification onto the end of the
Fortran insert file.

Changing the process mode/state

It is possible to have more that one occurance of each section within a single sourc
file. This is achieved by using the directiv@©P, VARIABLES and.BOTTOM.
These directives should appear with the full stop in column 1 and should be the only
entry on the line. The initial state fBOMGEN is to accept variable declarations.

INCLUDE directive

It is possible to have declarations spread over several files by usidgNGeUDE
directive. This must be the only statement on a line with#thppearing in column

one. The remainder of the line should contain the path name of the file to be
processed next. Here are two examples.

#INCLUDE graphics
##INCLUDE c:\common\errors.src

At the end of each include file, processing will continue with the line following the
include directive. Include files may be nested (see the limitations listed on page 221).

Comments

218

Comments may appear either as a full line or as a partial line comment. A comment
is started with/* and continues to the end of the line. The following examples all
include valid comments:

/*

/* Include directives

/*

#finclude c:\common\colours.src /* Colour definitions.

Chapter 17

The COMGEN utility

Variable declarations

Several variable declaration sections may appear in any single file. They may be
interspersed with header and trailer sections at any point in the file. By allowing this,
you can define two variables and use 8@®TTOM directive to place the equivalence
statements at the end of the file.

A variable declaration has the following format:

name storage type data_typealud [commerit
Only the first three fields are compulsary for all entries.
nameis the name of the variable to be declared.

storage_typerefers to the linkage properties of the name. This may be one of
PARAMETER, EXTERNAL, or INTRINSIC. In the case of a common block hame,
the name should start and end with an oblique “/” character.

data_typegives the Fortran data type of the name. This entry may be any valid
Fortran data type given in table 17-1.

valueis only relevant to names with tldata typePARAMETER. This field gives
the actual value for the name.

commenimay be used to give further information aboateand its use.

Example

The following example file illustrates the format of B®MGEN source file together
with the generated insert files.

COMGEN source file:

/*

/* Source file for a file control block data structure.
.TOP

C

C Common block declarations for FILE data structure.
C

.VARIABLES

FILENAME /FILE/ CHARACTER*128
POSITION /FILE/ INTEGER*4
ACCESS_MODE /FILE/ INTEGER*4
HANDLE /FILE/ INTEGER*2

/*

/* Values of the access mode flags.

/*

219

FTN77 User's Guide

220

READING PARAMETER INTEGER*4 1
WRITING PARAMETER INTEGER*4 2

Issuing the command:

COMGEN file.src file.ins file.h /nt
results in thé=ILE.INS andFILE.H containing the following:
FILE.INS

C File generated from C:\tmp\file.src

C
C Common block declarations for FILE data structure.
C

CHARACTER*128 FILENAME

INTEGER*2 HANDLE

INTEGER*4 READING,ACCESS MODE,POSITION,WRITING
PARAMETER(READING=1,WRITING=2)

COMMON/FILE/ FILENAME,POSITION,ACCESS MODE,HANDLE

FILE.H

jidefine reading 1

Jfdefine writing 2

struct _x1{
char _x2[1281;

f#fdefine filename FILE_ . x2
int _x3;

ffdefine position FILE_._x3
int _x4;

ffdefine access_mode FILE . x4
short int _xb;

ffdefine handle FILE_._ x5

};

extern struct _x1 FILE_;

It is possible to access any of the variables defined in the source file directly in both
Fortran and C. Note, however, that the names have been translated to lower case ft
the C definitions. Note also that (even though the common block is mapped onto a
data structure) in C youceess the variables directly by name rather than by
referencing the structure and its element. The “ " character in the C file will be
appended by the Fortran compiler automatically. This allows the Fortran compiler to
differentiate between variable and common blocks during compilation and so needs tc
be explicitly added for C.

Chapter 17 The COMGEN utility

Data type mapping

The following table gives the mapping from the Fortran data types to the C data types.

Fortran C
INTEGER*1, char
CHARACTER
INTEGER*2, short int
LOGICAL*2
INTEGER*4, int
LOGICAL*4
REAL*4 float
REAL*8 double
CHARACTER*(x) char K]

Table 17-1

Limitations
The following limitations apply to the source file.
Line length 160 characters
Maxmum number of names 5000
Name length 40
Nesting level for include files 10
Number of common blocks 29

221

FTN77 User's Guide

222

18.

Calling the Windows APl (Win32)

Introduction

This chapter describes how to call Win32 API routines from Fortran. Details of how
to use aC_EXTERNAL function for this purpose under Winl6 are given in the
ClearWin+ User's Guide This chapter provides a temporary addendum to the
ClearWin+ User’'s Guideand describes how@ EXTERNAL function under Win16

is replaced by STDCALL function under Win32.

Calling Windows API routines from Fortran

As the Windows API is based upon C++, it is easier to use the API from a C++
program. It is possible to program the APl from Fortran. However, Fortran data
structures do not easily map on to the data structures that are used by the Windows
API. One way forward, is to employ mixed language programming, keeping your
existing Fortran as far as possible unchanged, and using C++ to provide an interface
to the Windows API.

Programmers who are not familiar with C++ will probably prefer to avoid learning a
new language. In which case the following points should be kept in mind when
calling Windows API functions from Fortran.

Owing to the fact that the Windows API routines written in C++ arstdcall
functions, it is necessary to use FAN77 STDCALL function rather than a
C_EXTERNAL function to pop all the the arguments that are pushed on the stack
when the function returns. Windows API routines (andtdcall routines) pop all the
arguments that are pushed on the stack by the routine that is called before returning.
STDCALL statements for Windows API are included in the Wia32api.insin the

default directory.

223

FTN77 User's Guide Win32

224

The syntax of the declaration forSTDCALL function is similar toaC_EXTERNAL
statement and is as follows:

STDCALL name [’alias’] [(desc , ...)] [:restypel
where:

name
is the name by which it will be called in the Fortran program.

alias
is the C++ Windows APl name (or the requiredstdcall function name). Note
that this appears in single quotes andase-sensitive

desc
is an argument descriptor, and is eitiREF, VAL, STRING, INSTRING, or
OUTSTRING (WINREF, WINSTRING, etc.. which are used in Windows 3.1
will be interpreted aREF, INSTRING, etc).

STRING, INSTRING and OUTSTRING may be followed optionally by an
integer in parentheses. This integer specifies the maximum length for the
corresponding argument in the C routine, in each case where the length of the
corresponding Fortran character object cannot be determined (i.e. the actual
argument iISCHARACTER*(*)). If the integer is not specified, then a default
value of 256 (bytes) is assumed for the maximum length of the string.

restype
is the type of the function. If this does not appear then the function does not return
a result (equivalent to the C type void). Valid types WNEEGER, REAL,
DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, LOGICAL and
STRING. INTEGER, REAL and LOGICAL may be followed by a length
specifier of the form “i". If the function result is declared to be of tyRERING
then the function result should be assigned to a variable of2p&RACTER.

Some examples of vallfTDCALL declarations are:

STDCALL SUB1, SUB2

STDCALL SUB2 ’GetAttr’:INTEGER

STCALLL CSUB3(REF,STRING(20)):STRING

STDCALL SUB4 ’GetSize’ (REF,VAL,VAL,INSTRING,OUTSTRING(100))

If no argument specifiers are specified, then default argument linkage is assumed
This is as follows:

Arrays:
by reference (i.e. as a pointer)

INTEGER andREAL scalars:
by value

Chapter 18

Calling the Windows API (Win32)

LOGICAL:
by value, as an integer of the appropriate length, 1 representing .TRUE. and 0
representing .FALSE.

CHARACTER objects:
Copied to a compiler defined temporary variable. A trailing null is added to the
end of thesignificantlength of the string (i.e. there are no trailing spaces). The
temporary variable is then passed by reference. In addition, if the actual argument
is a scalar or array element, the result in the temporary variable is copied back, and
padded to the right with blanks if necessary. This is equivalent t8 TRENG
linkage descriptor described below.

Where linkage descriptors are specified, the number of arguments in each call must
agree with the number of descriptors specified. The various categories of objects
which may correspond to particular argument descriptors are as follows:

Numeric and_OGICAL scalars:
Value or referenceAL or REF)

Arrays, externals, dummy procedures:
ReferenceREF)

CHARACTER objects:
Reference or stringREF, STRING, INSTRING or OUTSTRING)

The three variants of tH&TRING descriptor are as follows:

STRING
The corresponding argument is both input and output, and is copied to a temporary
variable on entry to the routine (with a trailing null inserted at the end of the
significant length), and if the argument is a scalar or array element, is copied back
to the actual argument, blank padded to the right if necessary.

INSTRING
The corresponding argument is an input argument with respect to the external
routine. The argument is only copied to the temporary variable, and not copied
back.

OUTSTRING
The argument is returned by the external routine. The temporary variable is set up
to be the length of the corresponding scalar or array element plus one, or of
specified or default (256) length if the corresponding argument is
CHARACTER*(*), but the value is only copied out. Obviously, this descriptor is
only appropriate where the actual argument is a scalar or array element.

workspace, but the string must B&JLL terminated beforehand and blank-padded on
return.

When it is required to passNULL pointer to a string, the value 0 (zero) should be
used.

225

FTN77 User's Guide Win32

226

Some Windows API functions allow a particular argument to take two different types
in different circumstances. For example, l&STR in some circumstances and an
integer in others. This is outside the scope of SA®OCALL mechanism. If this
feature affects you then you should copy 1@ CALL statement for the relevant API

and modify it to have a different Fortran name and argument list, but keeping the
same called name.

A common example is the Windows API functibaadCursor which is used to load
either a cursor defined in the program resource or a predefined system cursor. Thi
has the following definition:

HCURSOR WINAPI LoadCursorA(HANDLE Alnstance,LPSTR IpCursorName)

When used to load a cursor from the program resolmostanceis the instance
handle of the applicationlpCursorNames a character string containing the name of
the cursor in the program resource. This form of the function will have the
STDCALL declaration :

STDCALL LOADCURSOR ’LoadCursorA’ (VAL, INSTRING):INTEGER*4

When used to load a predefined system cursor, the first argummestanceis set to

zero and the second argumiursorNames an integer containing one of a number

of predefined values which specifies the cursor to be loaded. This form of the function
will have theSTDCALL declaration :

STDCALL LOADCURSOR ’LoadCursorA’ (VAL, VAL):INTEGER*4

However, having two differin@TDCALL statements for the same Fortran function is
not allowed. The solution is to change the Fortran name. For example

STDCALL LOADCURSOR1 ’LoadCursorA’ (VAL, INSTRING):INTEGER*4
STDCALL LOADCURSOR2 ’LoadCursorA’ (VAL, VAL):INTEGER*4

The same situation arises with some other functions that have the form as
LoadCursor, for exampld.oadBitmap andLoadlcon,

A further example is given by the Windows API prinEscapefunction which can
take many different forms. One of these has the following form:

int WINAPI Escape(hdc, GETTECHNOLOGY, NULL, NULL, 7pTechnology)

IpTechnologyis anLPSTR (long pointers to strings) so t8aDCALL declaration for
this form of the function for use in a Fortran program would be:

STDCALL ESCAPE ’Escape’ (VAL, VAL, VAL,INSTRING,
+ OUTSTRING) : INTEGER*4

A second form of thig€scapefunction is:

int Escape(hdc, SETCOPYCOUNT, sizeof(int),
IpNumCopies, IpActualCopies)

Chapter 18

Calling the Windows API (Win32)

IpPNumCopiesandlpActualCopiesare bothLPINT (long pointers to integers) so the
STDCALL declaration for this form of the function would be:

STDCALL ESCAPE ’Escape’ (VAL, VAL, VAL, REF, REF):INTEGER*4

As before, having two differin§ TDCALL statements for the same Fortran function is
not allowed and the solution is to change the Fortran name. For example

STDCALL ESCAPE1l *Escape’ (VAL, VAL, VAL,INSTRING,
+ OUTSTRING):INTEGER*4
STDCALL ESCAPE2 ’Escape’ (VAL, VAL, VAL, REF,REF):INTEGER*4

227

FTN77 User's Guide Win32

228

19.

Using LINK77, RUN77 and
Libraries (DOS/WIn16)

Introduction

Although the load-and-go mechanism is easy to use, it is not usually suitable for
finished programs. When a program is ready for use, it should be compiled and then
linked by using either :

O theLINK77 utility (described in this chapter) or
O the/LINK compiler option (see page 40).

TheLINK77 utility can also be used for mixed language programming to link Salford
C++, FTN9O0, or Sheffield Pascal modules wiETN77 modules.

FTN77 produces relocatable binarRRIB) code which isnot loadable with the
standard MicrosoftLINK utilities. This is becaus&INK works with real mode
addresses WhIlETN77 requires a 32-bit link. The utilityINK77 is used to produce
.EXE files which execute by invokinDBOS to switch into 32-bit protected mode.

This chapter gives details of théNK77 utility and also describes two other utilities:
RUN77 andMKLIB77. The usage of these utilities can be summarised as follows:

O UseLINK77 to link RLB modules in object files produced BYN77 etc. into
execute files which usually will be run directly.

O UseRUNT77 to run an execute file in certain special circumstances.

O UseMKLIB77 to combineRLB modules from object files into aRLB library (or
just a new combination of modules) for use WithIK77. The essential difference
between such a library and a simple list of modules is that a library is scanned
selectively byLINK77 in order to satisfy calls to any missing routines.

229

FTN77 User's Guide DOS/Winl16

O UseLINK77 to create a dynamic link librarp(L). By default aDLL is given the
.LIB extension.

The LINK77 utility

230

LINK77 reads a set of commands from a file or from the keyboard.INK77 is
invoked with a file name argument then this is used as the source of commands,
otherwise commands are read from the keyboard. In the lattel t8&&,7 prompts

for commands with a ‘$’ sign. When reading commands from a file all errors are
fatal, but when operating interactiveliNK77 recovers from errors whenever
possible.

LINK77 commands

The following commands are available.

1. Loading and Saving

LOAD <pathname>r LO <pathname>
This command loadBLB modules from a file produced yTN77, Salford C++
or Sheffield Pascal. Th©BJ suffix is added to the file name if necessary. This
command supports the use@DS wildcards (e.gLO *.0OBJ). Obiject files and
RLB libraries produced biMKLIB77 can also be loaded with this command but
modules fromRLB libraries are only loaded in order to satisfy calls to missing
routines.

LOAD_EXHAUSTIVE <pathname>or LE <pathname>
This command is used to load BhB library and in this context it is identical to
LOAD, except that the library file is scanned repeatedly until no more unresolved
references can be satisfied. This means that it is actssary to order the
routines in the library file. The repeated scanning is performed on a dictionary
stored at the front of the file, so no inefficiency is implied by this process. Use an
explicit filename extension with this command.

FORCELOAD
This command is also used to loadRIoB library and is equivalent tbOAD in
the sense that the whole of the library is loaded without selectivity.

FILE <pathname>
This completes the link process and puts the result in the specified file (appending
the EXE extension if necessary). If the pathname is omitted tHNIK77 uses
the first OBJ filename to be loaded as the root for tBXE pathname. (When
LINK77 is used to produce @LL, see page 237, thelB extension is appended.)

Chapter 19

Using LINK77, RUN77 and Libraries (DOS/Win16)

If LINK77 finds any unresolved references, it checks any currently available
dynamic link libraries to see if the reference can be resolved. If not it reports the
function(s) as missing. Regardless of whether it finds the function in question,
LINK77 sets up calls to the function so that they will snap a dynamic link if
executed. Note that this means that you can link a program in the absence of the
dynamic link libraries that it calls upon.

LARGE_FILE
Normally LINK77 produces an executable file which must be loaded in its entirety
by DOS (with the usual real mode memory constraints) even though the program
will run in protected mode andte@ess additional memoryRUN77 can be used if
a EXE file becomes too large to load DOS. However, if the ARGE_FILE
command has been given, then FHEE command produces a file which requires
much lessDOS memory. DBOS then reads the file into memory again. This
incurs a slightly larger startup cost but enables very large executables to be loaded
from theDOS command line without runninBUN77. To be effective, the main
program should be loaded as early as possible when using this option.

PERMIT_DUPLICATES
After this command has been given the linker will not abort when a function or
subroutine is loaded more than once. Instead a warning message will be given and
all references to the routine will use the version of the routine that was first loaded.
This is sometimes useful to effectively replace a function or subroutine in a large
file of relocatable binary.

INCLUDE <pathname>
This command executes the linker commands from the given file. Command files
can be nested to a level of 10 deep. If you enter this command from the keyboard
then the included commands will be executed and control will be returned to the
keyboard. If the command is called from within anothd€LUDE file then
control will be returned to the line after the command.

QUIT or Q
Terminates the linking process without saving anything on the disk.

2. Diagnostic Information

MAP <pathname>
This writes a map of the load to the file <pathname>. No suffix is implied. If
<pathname> is omitted the output is directed to the screen.

XREF <file>
Specifies that a cross reference map should be writen to <file>. This command
must be issued before any code is loaded.

NOTIFY <name>
Tells LINK77 to report whenever it encounters the given name. A typical use for

231

FTN77 User's Guide DOS/Winl16

232

NOTIFY would be to determine exactly where an unresolved external reference
occurs (as identified by a previous rurLtiflK77).

REPORT_DEBUG_FILES
After this command the linker will keep a list of all loaded files that contain
debugging information (i.e. compiled witbEBUG, /CHECK, /FULLCHECK or
/UNDEF). After linking, LINK77 will produce a list of all the files it has en-
countered with debugging information.

SUPPRESS COMMON_WARNINGS
This will suppress the warning messages issuediK77 if a common block is
defined with different lengths in different routines. However, if you initialise a
common block and subsequently redefine it to be of greater length the result will
still be a fatal error.

Lines beginning with an asterisk are treated as comments and are ignored by
LINK77.

3. Dynamic Link Libraries

LINK77 can also be used to create dynamic link libraries. The following summary
lists the commands which relate specificallypioLs. Further details appear on page
238.

LIBOFFSET <hex number>
When LINK77 is used to create BLL, the command sequence begins with
LIBOFFSET with <hex number> being the address at which code in the library
will be designed to run.

SUPPRESS
Specifies that subsequent routines loaded infaLh will not be callable from
outside that library.

NOSUPPRESS
Cancels a previolSUPPRESS command.

ENTRY <routine name>
Specifies that the function is callable from outside the library regardless of the
state of the suppress flag. Suppose that you habélaconsisting of many
functions of which only one is meant to be called from outside the libréry
simple way to enforce this is to load the codeSHPPRESS mode and then
specify the name of the function in BNNTRY command.

PRESERVE_CASE
This command tell&INK77 not to convert the names of symbols in commands to
upper case. For example, after the use of this command it is possible to set the
address of a lower case symbol using 8¥ command. This command is
normally used in conjunction with the C compiler.

Chapter 19

Using LINK77, RUN77 and Libraries (DOS/Win16)

4. Common Blocks and DLLs

SYMBOL <common blockhame> <hexadecimal address>
This command (which can be abbreviatedSt) defines the start address of a
common block (which must not be initialised in a block data routine). This is of
most use in conjunction witBLLs to enable a library to share a common block
with a program or othddLL. If you use this command you should ensure that the
storage you specify does not overlap with anything else.

COMMON_BASE <hexadecimal address>
TheCOMMON_BASE command tell4 INK77 where to start allocating common.
This command is used in conjunction with t(hEFCOM command.

DEFCOM <common blockhame>
This command forces a common block to be allocated at once. Usually it is used in
conjunction with theCOMMON_BASE command, and this is described in more
detail in conjunction witlbLLs (see page 239).

Using LINK77

As an example of the use €INK77, consider linking theMYPROG.OBJ and
SUBS.OBJ files to produce a run filMYPROG.EXE. The following commands
could be used:

LINK77

LOAD MYPROG
LOAD SUBS
FILE

LINK77 can also be used to create dynamic link libraries as described on page 238.

Running the program

The resulting EXE file can be executed by typing its name - in the same way as for
any other EXE file. Any command line parameters can be read @MNAM@ (see

the FTN77 Library Referencenanual or the on-line Help system). If the program
fails, the result will be a brief diagnostic and a register dump. These dumps are
mainly useful in conjunction with assembler coding (see chapter 15). In order to run
the program in this way th&XE file must be small enough to be loadedD®yS (if

not, DOS will give the error “Program too big for available memory”). Since space
for uninitialised common and dynamic variables is not reserved in the file, most
programs will be loadable in this way. However, programs which contain really large
amounts of code may be too large and must then be loaded WRMIE? utility.

233

FTN77 User's Guide DOS/Winl16

The RUN77 utility

234

RUN77 is useful for two reasons:

O In order to load and rurEXE files which are too large to load directly under
DOS. (An alternative solution to this problem is ugéNK77 with the
LARGE_FILE command.)

O In order to make the facilities of the interactive debugger available to pre-linked
programs.

The command is used as follows:
RUN77 <pathname> options

The EXE suffix is automatically added to the pathname if it is not present. The
program is run as normal except that control is passed to the interactive debugger ir
the event of a run time fault.

The following options are available:

/IBREAK
This causes the program to be suspended in the interactive debugger in the sam
way as theBREAK option operating witHFTN77. The relevant routines must
have been compiled with th€HECK, /FULLCHECK, /UNDEF or /DEBUG
options for this to be useful.

/HARDFAIL
This suppresses the interactive debugger intervention in the event of a run time
fault. This option is useful iIRUN77 is simply being used to load a program
which is too big to fit intdOS memory.

/IPARAMS
The remainder of the command line aftBARAMS is left for the program to
read. For example, if the program reads its input and output files from the
command line (usinGEMNAM@, see thd=TN77 Library Referencenanual or the
on-line Help systemthe command line might look as follows:

RUN77 MYPROG /PARAMS INFILE OUTFILE

/PRELOAD
Using this option forces the whole executable file to be loaded before execution
begins, rather than being paged in on demand. This can be used to remove th
effect of the progressive paging in of a program on any timings which might be
taking place, and also to check whether the run file will fit in its entirity into a
given memory size.

/UNDERFLOW
This causes floating point underflow to be treated as an error. By default,
calculations which underflow produce a zero result.

Chapter 19 Using LINK77, RUN77 and Libraries (DOS/Win16)

/READ <unit> <pathname>
The/READ option opens the given file for formatted sequential readss on the
given unit. /WRITE is similarly used to assign an output file from the command
line. /READU and /WRITEU are correspondingly used for unformatted
sequential access files. For example:

RUN77 MYPROG /READ 7 MYPROG.DAT

/READ and/WRITE etc. can be used in one and the same command line and may
be used more than once in the same command line.

Note:

RUN77 passes its arguments to the system rolBiRART _PROGRAM@ (see the
FTN77 Library Referencananual or the on-line Help system), which provides
equivalent facilities under program control.

Libraries

TheFTN77 system supports two kinds of libraries:
O Relocatable binary libraries for use witiNK77.

O Dynamic link libraries. (These are discussed on page 237.)

Relocatable binary libraries

RLB libraries are prepared using tMKLIB77 utility. This utility has two modes -
interactivemode andcommandmode.

RLB libraries are scanned by théNK77 LOAD command and subroutines which
satisfy currently outstanding references are loaded.

Conceptually this process is linear. For example, supposd-thd€1 contains a
reference td~UNC2 and assume that neither of these routines have been loaded. If
the routines were to appear in the library in the order

FUNC1
FUNC?2

then both would be loaded with th®AD command. If, however, the order was
reversed,FUNC2 would not be loaded unless an explicit referencEWINC2 was
outstanding. This mechanism can be used to achieve special effects within libraries.

235

FTN77 User's Guide DOS/Winl16

236

Sometimes it is inconvenient or impossible to ordeRaB library in an appropriate
manner. In this case théNK77 command.OAD_EXHAUSTIVE should be issued
instead oL OAD.

1. MKLIB77 command mode

In order to prepare a relocatable binary library you must first produce a file containing
the relocatable binary corresponding to the routines in question. In the simplest
situation, these routines will already reside in one file and can be compiled by a simple
call toFTN77. However, if the project involves a number of files, the widecard form
for the file name can often be used together with/BABARY compiler option (see
page 22). Alternatively after compilatiorBJ files may be combined if necessary
using theDOS COPY command. For example:

COPY F1.0BJ/B+F2.0BJ TEMP.0BJ

where/B is used to infornCOPY that the files are binary files. If a routine in the
library references another, then that routine must precede the referenced routine in th
.OBJ file. In the above example, routineskd.OBJ may call routines i-2.0BJ,

but not vice-versa. The file is converted into a library usindtkeIB77 utility thus:

MKLIB77 <relocatable binary file> <library file>
For example, continuing the above example:
MKLIB77 TEMP.0OBJ MYLIB.LIB

2. MKLIB77 interactive mode
Interactive mode is entered by typing M&ELIB77 command with no arguments:

MKLIB77

If there are noOBJ files in the current directory the user is prompted for another
directory. When a directory is reached which does cont@BJ .files, these are
presented in a menu on the right of the screen, and the user selects one of them t
moving the cursor bar to the file in question, and predsinigr.

Once a relocatable binary has been loaded into the system, the routine names (and al
entry points) will be scrollable in the window on the left of the screen.

The following keys can then be used in addition to the normal cursor keys:

Del Deletes the routine at the cursor

Ins Prompts for anotherOBJ file to be inserted above the routine at the
cursor. Position the cursor just beyond the last routine in order to
append relocatable binary to the end. A window of relocatable binary
files is displayed for you to select the one to be inserted

Chapter 19

Using LINK77, RUN77 and Libraries (DOS/Win16)

Alt-L Mark the beginning or end of a block of routines. The block will be
marked in red

Alt-D Delete a block of routines

Alt-M Move a block of routines to just above the current cursatipogwhich
must not itself be in the block)

Alt-C Copy a block of routines to just above the current cursdtigrogwhich
must not itself be in the block)

F3 Create a new file and exit. You will be asked for the name of the file
and whether the result is to be RaB library or simply an object file
(include an explict extensior)BJ could be used for both types of file).

Alt-S Prompts for the name of a routine or entry point and searches for the
routine in the currently loaded relocatable binary

Esc Exits the utility

In either the command or the interactive molLIB77 will reject a.OBJ file

which contains a main program. The result can be used MNK77 using the
LOAD command in exactly the same way as any other relocatable binary. Only those
routines that are required will actually be loaded BNK77.

Dynamic link libraries

Dynamic link libraries are the preferred method for delivering large packages of
routines. These libraries operate in much the same way &BB8& system library,

in that the code which they contain is linked into the program as it is required at run
time. This means thaEXE files can be kept small and link times are fast. When
DBOS is invoked it looks for the filLIBRARIES.DIR (actually LIBRARIE.DIR

since DOS file names are limited to 8 characters) in the directory containing the
DBOS system. This file, if present, should consist of a list of pathnames (not local
names) of the dynamic libraries to be used subsequently. Up to twenty such libraries
can be specified. Each pathname should be on a separate line in the file. For
example, a typicdlIBRARIES.DIR file might contain:

C:\SYSLIB\GKSLIB.LIB
C:\MYLIBS\MATRIX.LIB

A dynamic link library is a mice of absolute binary code which has been linked so as

to work from high numbered addresses. This code is placedLiB dile together

with some map information which enable80OS to load the code as it is actually
needed at run time. Note that the fact that the library code is loaded at high addresses
does not imply that a correspondingly large amount of physical memory must be
available on your PC. This is becaid3®OS uses the virtual memory hardware on

the 32-hbit Intel chip.

237

FTN77 User's Guide DOS/Winl16

238

The address at which a library is loaded is arbitrary, provided it is at least 4095 bytes
beyond the last address used by a program, and not greater than 60000000 (to avol
space used HYBOS). It is suggested that start addresses (hexadecimal) of 41000000,
42000000, 43000000, etc. are used, as these are well clear of any loaded programs al
the stack. If more than one library is in ueir address spaces must not overlap
The above addresses provide for 16 megabytes of virtual address space per library
Details of the SalfordBOS memory map are given on page 318.

Creating dynamic link libraries

Dynamic link libraries are created usihtNK77. The first command to this utility
must be:

LIBOFFSET <hex number>

The hexadecimal number is the address at which code in the library will be designed
to run. The remaining commands are the same as those used to cEodiefite.
except that you must not load a main program into a library file. A file withBa .
suffix should be used on thEILE command. As an example, the following
commands could be used to convert a set of Fortran routindy¥ inB.FOR into a
dynamic link library calledYLIB.LIB:

FTN77 MYLIB

LINK77

LIBOFFSET 41000000
LOAD MYLIB

FILE MYLIB.LIB

A subroutine call will only reference a dynamic link library if there is no routine of the
same name to be found in the program itself. This is useful because it means that th
names of internal routines in a library will not clash with user-defined routines in the
way which they would if the library of routines were directly linked into the program.

It is also possible to hide the internal routines of a library completely. This is done
using theSUPPRESS andENTRY commands in the linker. For example, consider
that in the above example only functicBRAPH1 and GRAPH2 are to be callable

by the user.

The library could be loaded thus:
FTN77 MYLIB

LINK77

LIBOFFSET 41000000
SUPPRESS

LOAD MYLIB

ENTRY GRAPH1

Chapter 19

Using LINK77, RUN77 and Libraries (DOS/Win16)

ENTRY GRAPH2
FILE MYLIB.LIB

Sometimes a dynamic link library may contain a call to a routine which is located in
the user's program. For example, an integration routine may make calls to a user-
supplied routine calleBUNC (say) to supply function values. If the call is made by
means of an external routine passed into the library as an external then there is no
problem. If the name is hard coded in the routine and the routine is not found within
the library, all other libraries plus the system library are searched for the routine. If
the routine reference is still unsatisfied, the user's program is searched for the
reference. This means that references from within a library to user-supplied routines
will work provided a routine of the same name does not exist elsewhere in the system.

Common blocks in dynamic link libraries

Special consideration needs to be given to common blocks which are used to
communicate information with a dynamic link library. A library may use as many
common blocks as required internally to itself. However, if a program contains a
common block /C/ (say) and calls a routine in a library which also references a
common block /C/, then these two common blocks will not, by default, be the same.
This is because each piece of code, having been linked quite separiitebside at
different addresses.

Sometimes this can be quite useful, however to share a common block you should
specify its address using théNK77 commandSYMBOL. If the same address is
used when loading the program and the library then all will be well. In general it is a
good idea to specify an address which is well removed from the program and the
library. This procedure can become tedious in situations in which there are large
numbers of named common blocks, since (if common blocks are allocated using the
SYMBOL command) it is the user’s responsibility to ensure that blocks do not
overlap.

The LINK77 commandsCOMMON_BASE and DEFCOM provide a means of
overcoming this problem. By means of these two commands, common blocks may be
loaded starting from a given address, without the need to calculate the positions of
subsequent blocks. For example if you had a common block /A/ of length 1000 bytes
(hex 3E8 bytes) and another common block /B/ of length 500 bytes, then the com-
mands:

COMMON_BASE 30000000
DEFCOM A
DEFCOM B

would load common block /A/ at address 30000000 (hex) and block /B/ at address
300003E8. (Note that common block sizes are rounded up to the nearest multiple of 4
bytes for the purposes of allocation for hardware efficiency reasons.) These
commands would have to follow the load of relocatable binary which referenced the
two common blocks (in order thaiNK77 could determine their sizes). If these

239

FTN77 User's Guide DOS/Winl16

commands are included in the link of the library and of the program, then common
blocks /A/ and /B/ will be shared.

If a common block has been initialised iBROCK DATA statement there is no easy
way to share it between a program and a library.

240

20.

SLINK (Win32)

For information about the Salford DOS/Win16 linkéNK77 see chapter 19.

Introduction

SLINK is Salford Software’s 32-bit linker for Win32. It is designed ¢oeat Win32
COFF object files and produce Win32 libraries (.LIBs), Win32 Portable Executable
(PE) executables (.EXEs) and Dynamic Link Libraries (.DLLSLINK has been
designed to make it powerful and easy to use.

SLINK will act either as a library builder or as a conventional linker or both
simultaneously.SLINK is tailored for object code produced by Salford compilers. It
can, however, be used wiOFF object code produced by other compilelSLINK

will not accept 32 biOMF object code, the native object code format for 0S2/2.

Getting started

SLINK has three modes of operation:
a) command line mode,
b) interactive mode and
c) script file mode.

Command line mode takes all parameters from the command line whilst interactive
mode processes commands one at a time as they are entered from the keyboard. This
is very similar toLINK77, the Salford linker for thédBOS family of compilers.

Script file mode reads the commands from a text file. This has two variations, a
Salford LINK77 compatible command mode and a Microsoft compatible command
mode.

241

FTN77 User's Guide Win32

242

It is easy to build executables WiLINK. For example, suppose that you compiled a
program contained within one file, s&§YPROG. The compiler will produce an
object file calledMYPROG.OBJ. To produce an executable from this, the following
command line will suffice

slink myprog.obj
In responseSLINK will ;
1) LoadMYPROG.OBJ.
2) Set the default entry point for Salford programs.
3) Scan the Fortran librarfsTN77.DLL or FTN95.DLL.
4) Scan the Salford C librar@ALFLIBC.LIB.
5) Scan the default list of system DLL's.
6) Set the file name ttYPROG.EXE (derived from the name of the object file).
7) Create the executable.

This command line illustrateBLINK’s command line mode. Alternatively, we could
useSLINK'’s interactive mode in the form:

slink
$ Toad myprog
$§ file

Note thatSLINK’s command prompt is a $, and ti&itINK has provided the .OBJ
extension. Interactive mode always terminates witfilea command. Thefile
command is used both to terminate the session and to optionally provide the filename
that is to be used to store the outpl@LINK will know that you are building an
executable and automatically supplies the .EXE extension.

Command line mode
This is an example of how to uS&INK in command line mode:

slink myprog.obj -file:test

In command line mode, all &LINK's commands begin with “=" or “/". Any
parameters are separated from the command by a colon “”. Note that there must b
no spaces within the command (in this csée:test). Where the command does

not take parameters, it should not be terminated with a colon. Where parameters ar
optional becaus8LINK will complete the command (for example file command)

then the colon is also optional.

Chapter 20

SLINK

Linking multiple object files
Multiple object files can be linked:

1) in command line mode by placing more objects on the command line,
2) in interactive mode by using mdmad commands, and

3) in script file mode by modifying the script file in a manner corresponding to 1) for
command line mode or 2) for interactive mode.

Abbreviating commands

Many of SLINK’s commands have an abbreviation. These are shown in the command
reference (see the end of this chapter). For example, instead@idrcommand you
may usdo. Also, many oSLINK’s commands have an alias.

Script or command files

When large numbers of commands are needed or the same command sequence is
repeated many times it is helpful to place the commands in a script or command file.
Interactive mode script file names are prefixed with a “$” onSh&NK command

line, whereas command line mode script files are prefixed with an “@”. Commands
taken from script files are presented in the same form as that used when entering
commands from a command prompt in interactive mode or from the command line.
For example,

slink $myprog.inf

will tell SLINK to take its commands from a file callstY PROG.INF and that the
command format is interactive mode, whilst

slink @myprog.Ink

will tell SLINK to take its commands from a file callstYPROG.LNK and that the
command format is command line mode.

Note that the file suffixes .INF and .LNK are purely conventional and do not affect
how the commands will be interpreted - you may use suffixes of your own choosing if
you wish.

As a special case, for interactive mode command files, the $ before the file name can
be omitted. In this case, if the file is not recognised &0O&F object, it will be
opened as a script file. For this reasb@FF objects specified on the command line
must have the correct filename extensionS&ENK will not complete the filename

itself.

More than one script file may be specified on the command line but script files may
not themselves contain script files.

243

FTN77 User's Guide Win32

244

Differences between command line mode and interactive mode

The main difference between command line mode and interactive mode is that
command line commands (i.e. commands that begin with a “-") are implemented first
and objects and libraries are loaded later. Commands have a deferred effect and ca
appear anywhere in the command line or script file and in any order. For example,

slink myprog.obj -file:test
and
slink -file:test myprog.obj

have exactly the same effect. In the latter case, specifffride:test first, tells
SLINK that the filename will b&EEST.EXE but no immediate action is taken on the
file command.

Interactive mode commands are implemented immediately, where appropriate. For
example, placing the following commands in a script file:

1o myprog
file test

and

file test
1o myprog

will have different effects.

The first script will do as expected, load an object file caMBdPROG.OBJ and
produce an executable from it callEBEST.EXE.

The second script will terminate with an error since $4NK session is always
terminated in interactive mode lije and at that point no object files have been
loaded.

Comments

In script files (for both interactive and command line mode) all text following the
semicolon character “;” is ignored until a newline character is encountered. This
makes it easy to temporarily “comment out” commands. For example in

slink filel.obj file2.0bj ;file3.obj tpgraph.lib
the objectd~ILE3.0BJ andTPGRAPH.LIB will not be loaded.

Mixing command line script files and interactive mode script files

It is not advisable to mix interactive mode and command line mode script files due to
the differences in the way that they are interpreted.

Chapter 20 SLINK

Executables

The previous section described briefly how to generate executables. This section looks
at additional commands that are either useful during the production of the executable
or affect the way the executable is produced.

Link map

The link map is used to examine the structure of the executable or DLL in detail. The
map will show:

1) The entry point (see below) and its address.

2) All of the routines thaSLINK could not find a definition for. These are called
unresolved externals (see below). TBdNK map will also show the path name
of the file that contained the initial reference to the symbol.

3) The map then lists all of the defined symbol names and their addresses together
with the path name of the file that contained the definition of the symbol. These
addresses show the “preferred address”. The actual run time address may be
different.

4) The link map finally contains a brief outline of the executable by showing the
addresses where the executable’s sections have been loaded.

For example, the followingSLINK session will produce a link map named
FILE1.MAP and an executablEILE1.EXE. These names are derived from the first
loaded object file name.

slink
$ 1o filel
$ 1o file2
$ map
$ file

Unresolved externals

Unresolved externals are those symbols for whHstHNK was unable to find a
definition when searching the specified library and object files. Some omissions may
be intentional and may simply be routines that will not be called. Others may be
unintentional omissionsSLINK will successfully complete a link session even when
there are unresolved externals. It will provide a temporary definition of these symbols
so that, when the function is called, an error message will be printed out stating the
name of the function and the address from which it has been called.

In interactive mode, the commaiuate (List UnResolved Externals) may be used at
any time to check the progress of the linker session. This command will list all of the

245

FTN77 User's Guide Win32

246

functions for which it currently has no definition together with the path name of the
file that contained the reference.

Do not be alarmed if a large number of functions are listed as unresolved when the
command is used immediately before fiteecommand is issued. This is quite normal
because there will be functions FTN77.DLL, FTN95.DLL, SALFLIBC.LIB (or
SALFLIBC.DLL) and in the system DLLs that need to be linke@LINK will
automatically link them after the file command has been issued.

Direct linking with DLLs

SLINK allows direct linking with one or more DLLs without the need to use import
libraries (see section 5). It will generate its own import library for a DLL based upon
the information contained in the DLL's export table. If you produce a DLL, you have
the choice whether or not to produce an import library.

Sometimes, as is the case WBALFLIBC.LIB (or SALFLIBC.DLL), the library is a
combined import and standard library. In this case, the functions in the standard
library part are not contained within the DLL, so directly linking with the DLL will
not achieve the same result as linking with the .LIB file. This means that you should
not link directly withSALFLIBC.DLL — always use the .LIB file i. GALFLIBC.LIB.

For example, suppose that some of the functions you need are provided inside a DLL
calledTPGRAPH.DLL. In this case the linker would not import the runtime code for
the functions from the DLL even though the DLL must be loaded as illustrated here:

sTink

$ 1o filel

$ 1o file?

$ 1o tpgraph.dill
$ file

TPGRAPH.DLL is merely used to acquire the information thatésassary for the
executable to import functions froMPGRAPH.DLL at run time.

SLINK will not search the system path for the DLL. You should specify the full path
name on théoad command.

Additional Commands

Various commands are used to provide information that is required to generate ar
executable. SLINK will take a sensible default for all of these commands and it is
unlikely that you will need to use them.

Runtime tracebacks

SLINK builds an internal map into each executable. The location of this map is
registered withSALFLIBC at runtime. It contains the true fixed-up runtime

Chapter 20

SLINK

addresses. In the event of a fault during program execution that causes the program to
abort, SALFLIBC will print out a traceback of the various routines called, tracing
back to the user’'s main program.

The internal map contains the name and address of all the static and external
functions in your code. You may wish (e.g. for code security reasons) to remove this
map and forego the run time traceback facility. This may be achieved by using the
notrace command.

Linking for Debug

When source files are compiled using checking or debugging options, the compiler
inserts additional information into the object files produced. This information has to

be organised and placed into the executable so that the Salford debugger can be used
to examine source files, set break points, examine variables StdNK will
automatically insert the debugging information into the executable. However, since
this increases the size of the executable by a considerable amount, you are advised to
switch off the checking and debugging options before preparing production versions of
your executable.

The syntax of the command is:
debug([full | partial | nong

This means that the wordkbug can be followed by one of the optiofigl, partial
andnone. Thedebugcommand with no parameters or with the keywqrddial or
full will insert debug information into the executablgartial andfull have the same
meaning. The keywondonewill remove the debug information. The defaulfuit.

If debug information is not found in the object files, tHRIHINK will not insert any
debug information into the executable. In this case, if you are usingetnay
command withpartial or full, thenslink will produce a warning.

Comment text
The syntax for the command is:

comment[on | off | "text']

This means that the wombmment can be followed by one of the options, off and

some user-supplied text in quotation marks (in this chapter, user-supplied values are
shown in bold italics). It is possible to embed comment text into an executable using
the comment command. Comments are included into tb@mment section in the
executable (here the wombmmentis preceeded by a period/full stop). Twdlg
copyright information and version information is included in comment text. Even if
the file name is changed, text within the comment section will still identify the
executable as your product.

247

FTN77 User's Guide Win32

248

SLINK will prepend the text with the characters “@(#)”, and will also add newline
characters at both ends of the text. This makes the text easy to search fogmejth a
type utility. Comment text is also added by the compiler used asdLINK in order

to identify version numbers used for the builSLINK will always add its own
comment to the executable.

Any number ofcomment commands may be issued. Text following ttmmment
command should be delimited with double quotation marks (). ddmement
command is only available in interactive mode.

It is also possible exclude thmomment sections @OFF objects from the executable.
This is useful where, for example, your application has been linked from a large
number of COFF objects. The.comment section in the executable would then
normally be very large. Theomment off command will prevent the inclusion of
these comments from the point at which the command was issued cotiingent on
command is issued. User comments will still be included.

Here is an example of the use of comments.

comment "Mars Attack v2.03,InterGalactic Software Inc.”
comment off

comment on

Virtual Common

It is possible in most languages (and in particular in Fortran and C/C++) to have
uninitialised global data, for example, a common block in Fortran not initialised with
aBLOCK DATA subprogram. Under normal linking, these are accumulated into the
.bss section in the executable (BSS is an old IBM term meaning Block Started by
Symbol). Although this section does not contribute to the size of the executable it
does contribute to the size of the loaded image. The consequence of this is that th
system must have the resources available to meet the size.b$shsection. This is
unfortunate, since many applications use very large global arrays, only some of which
is ever used.

If the SLINK commandvc or virtualcommon is used at some stage during the link
process, the “.bss” section is removed from the executable and the global data is
allocated to virtual memory at runtime. The result is that pages of memory (4Kb
each) are allocated from the system on demand.

Chapter 20 SLINK

Libraries

Win32 acknowledges three types of library: Standard Libraries, Import Libraries and
Dynamic Link Libraries (DLLS).

Standard libraries and import libraries

These libraries contain code that is linked into the user’s progra&hlbK as part of

the program’s executable image. They are easy to build and need no special
initialisation. Win32 standard and import libraries are very similddXidX COFF
archives and for that reason are referred to as archives. Archives consist of complete
object files loaded in together with various headers. These object files are referred to
as members. Win32 archives usually have the filename extension .LIB.

Import Libraries

Import libraries are used by programs that wish to link with DLLs. Import libraries
are not usually needed wheBLINK is used becaus&LINK can extract the
information directly from the DLL itself. HowevelSLINK will generate import
libraries for the DLLs it creates if requested and will alszept them as input for the
load command. Import libraries have to be generated for other linkers that cannot
extract information directly from the DLL.

Salford run time library

All programs that are compiled using a Salford compiler must be linked with
SALFLIBC.LIB. SALFLIBC.LIB is a special kind of library and is a combined

standard and import librarySLINK will automatically link withSALFLIBC.LIB for

you. Although SALFLIBC.DLL exists, it should not be scanned directly since
SALFLIBC.LIB is more than just an import library. Not all references that are
satisfied by scannin§ALFLIBC.LIB can be satisfied by scanniS84LFLIBC.DLL.

Any import library or DLL may only be scanned once. A situation like the following
is to be avoided:

1o objectl.obj creates references KlEERNEL32.DLL
1o kernel32.d11 satisfies current referencesk&RNEL32.DLL
1o object2.0bj creates more referenceskBERNEL32.DLL

SLINK will automatically scan the system DLLs, in order to satisfy references in the
user program, if any unresolved references exist at the end of the link process.

The following order of linking should be observed:
1) Object files

249

FTN77 User's Guide Win32

250

2) Non system DLLs, non system import libraries and other standard libraries
3) FTN77.DLL or FTN95.DLL

4) SALFLIBC.LIB

5) System DLLs

The list of DLLs included in “system DLLS” is given in reference section beginning
on page 253.

Note that the last three stages are automatic but should none the less be regarded
having taken place.

Dynamic Link Libraries

Dynamic Link Libraries are special kinds of libraries used by modern operating
systems They do not contain code that is directly linkable with the user’'s program.
They are pre-linked bodies of code that are called at run time and are a kind of
executable, rather than a kind of archive. The advantage is that, when the DLL is
updated, the user’'s program does not have to be relinked unless the order of the
routines contained within the DLL has changed. Also, by using a DLL, very little
code is added to the user program.

Win32 DLLs require that programs wishing to use a DLL must link with an import
library (see above). This is so that the system loader can make the link between the
user program and the DLL when the user’s program is loaded at run time. The
Salford Fortran and C/C++ runtime libraries are DLLs. Usually, runtime library
routines are not linked into the user program. The exception is the case where the
compiler has inserted the code inline. Thus executables that use DLLs are muct
smaller than would otherwise be the case.

Generation of archives

The linker commandrchive will specify that an archive is to be generated. The
archive command is available in both command line and interactive mode.

Object files to be placed into the archive are specified usingdbebj command.

This informs the linker that the object specified is not to be included in the normal
link process but is to be placed in the archive. Archives themselves may be added t«
the archive. In this way, objects may be added to already existing archives. You car
also give theaddobj command distfile name preceded by @ that taims a list of

files that you wish to be included.

The following example constructs an archive nafmEWLIB.LIB which contains the
object filesFILE1.OBJ, FILE2.0BJ together with all the object files contained within
LIBFILE.LIB. This results in two more object files being added HBFILE.LIB.

Note how thefile command is used to terminate the linker session and initiate
building the archive.

Chapter 20

SLINK

slink

$ archive newlib.11ib

$ addobj filel.obj

$ addobj filez.obj

$ addobj Tibfile.lib

$ file

or
slink

$ archive newlib.11ib
$ addobj @listfile
$ file

wherelistfile contains the following text lines

filel.obj
file2.obj
libfile.1lib

the command line form of this command would be:

slink -archive:newlib.1ib -addobj:filel.ob]j
-addobj:file2.0obj -addobj:1ibfile.lib

or
slink -archive:newlib.1lib -addobj:@listfile

Note that thdoad andaddobj commands may be used with wildcards. For example,
addobj *.obj

Generation of DLLs and exporting of functions

Since DLLs are run time libraries, it follows that they can also provide routines for
other applications that are running. These routines have to be exported in order to
make them available to other applications. A DLL must have some exports.

The export command will make a function (or a variable) available to other
applications by inserting it into the export table in the DLL.

If you wish all of your functions to be exported, unless otherwise specified by the
exportx command, then thexportall command will insert them all into the export
table.

The exportx command will prevent functions from being inserted into the export
table. The=xport command overrides thexportx command.

Thedll command is used to specify that a DLL is to be built.

251

FTN77 User's Guide Win32

252

The following example will generate a DLL namddYDLL.DLL. All of the functions
within MYDLL.OBJ are exported.

slink

$ dl1

$ 1o mydll.obj
$ exportall

$ file

Note that the filename extension .DLL is appende&biNK.

Import libraries can be generated by usingahshive command describecbhave. In
which case, all of the exported functions will have theassary members added to the
import library to enable them to be linked with within the DLL at runtime.

The export command
The export command has the form:

export entryname[=internalnamq [@ordinal [nonamd] [datd]
Only a shortened version of the command is available in command line mode, namely:
-export:entryname[=internalnamqg

internalnameis the name of the symbol as it appears in your program or object files.
Note that, in the case of stdcall functions, there is an additional “decoration” added

to the end of the symbol. In general, you should not use this decoration nor the
leading underscore added to the symbol nar8eINK will match the undecorated
name specified with the decorated name in the loaded object files. In the case of
Salford C++ decorations, the full decorated hame should be specified but without the
leading underscore.

entrynameis the name of the symbol by which the user would call your function.
SLINK will append a leading underscore and transfer_arstdcall decoration found

for theinternalnameto theentryname The name of the function will appear in the
DLL export table exactly specified with this command.

In the following example, suppose your stdcall function func exists with the full
decorated namefunc@12

export gloop=func

SLINK will match func with _func@12 and also export func@12 The name
appearing in the export list will bgloop and the symbol appearing in the import
library (if any) will be_gloop@12

The name in the export table and the name in the calling program’s import table are
identical. This is so that the system loader is able to find the function in the DLL.

Chapter 20 SLINK

data is used to export a data item. You must use a pointer to the data item in your
program. See the command reference section below for descriptions of ordinals and
the nonamekeyword.

SLINK command reference

SLINK has two basic modes of operation: interactive and command line.

Generally, where a file name is optional the default file name is generated by taking
the file name of first loaded object file and adding the appropriate extension.

Interactive mode

This mode takes commands in a similar formLINK77, the DBOS linker. The
commands are order dependent with the exception thamépecommand may be
given at any point.

A list of the interactive mode commands is given below. Note that the alias is given
in brackets alongside the command and that all commands are case insensitive.

addobj [filename | @listfile]
The specifiedCOFF object is to be included in @OFF archive. OnlyCOFF
object andCOFF archive files may be so loaded. PE executables and dynamic
link libraries (DLLs) may not. This allonGOFF archives to contain ReLocatable
Binary (RLB) code and also be an IMPort LIBrariMPLIB) for a DLL.
SALFLIBC.LIB is such an example, it is an import library ®ALFLIBC.DLL
and yet contains RLB for the startup procedsitd FStartup.

Alternatively, a list of COFF objects to be included may be inserted listfile the
path of which is preceeded by @

archive (implib) filename
Specifies that an archive is to be generated from objects loaded witiudbbj
command. It also specifes that an import library is to be generated from the export
list, if it is non-empty.

comment [on | off | "text]
text is inserted into thecomment section in the executable. The text must be
delimitted by a quotation mark)(. Alternatively you can usen or off to enable
the inclusion ofcomment sections fro@OFF objects from that point onwards in
the link process.

decorate
Symbols in the map and in the listing of unresolved externals are normally

253

FTN77 User's Guide Win32

reported in their undecorated form. This command will force symbols to be
reported in their decorated form.

dil (library) modulename
Specifies that a DLL library is to be generated. DLLs have an internal name,
distinct from the filename, used by the system loader to recognise the DLL. The
DLL command also sets the internal name (i.e. the module name) that the DLL is
known as to the system loademb@dulename

If a module name is not specified, then the module name is generated from the file
name with a .DLL suffix. Note that this is equivalent to libeary keyword in a
module definition file (.DEF file). The default suffix for the file command is set to
.DLL.

For example, one of the system DLUKSER.DLL, has a filenam&SER32.DLL.
By default, SLINK will set the internal name of the DLL to be the same as the
filename.

entry symbol
Specifies the entry point for the program. For linking Salford compilations, this
command is unecessary as the ent§ALFStartup is assumed. If used, this
command MUST be the first command in BlelNK session. If this command is
not used, then the entry point will be seStaLFStartup after the first object file
has been loaded. If an entry point other tiaiFStartup has been specified,
this will disable the default loading &ALFLIBC.LIB.

export entrynamg=internalnamqg [@ordinal [noname]] [constant]
This has the same syntax as an entry inettports section in a .DEF file. It adds
an entry to the export list. The entryname specified does not have to exist but if it
does not it may cause a run time error if the entry point is used. If the DLL
command is not used the module name is generated from the file hame with a
.EXE suffix. Overides thexportx command.

Note: Only a shortened version of this command is available in command line
mode.

ordinals

An exported function’s ordinal is a two byte integer. The system loader will

ultimately obtain the function's address from the ordinal table and the export
address table. It does this by looking up the function's ordinal from its name and
then using the ordinal as an index into the export address table. By &&fidHt

will assign ordinals to the exported functions. However, you may wish to

guarantee that the function has the same ordinal in all builds of the DLL. In
which case you may specify the ordinal with this command

e.g. the following example will assign ordinal 4 to the funchamc exported as
gloop

export gloop=func @4

254

Chapter 20

SLINK

noname
This will export the function by ordinal only. This is used to hide a function
within a DLL but still make it ecessible to those who know its ordinal. You must
specify the ordinal if you use tm®namekeyword.

export func @4 NONAME

will exportfunc by ordinal only, with an ordinal value of 4 whilst

export func NONAME

will produce an error.

Adds all exportable code entries to the export list. These are code symbols with
storage class "external" that have been defined @O&F object file, i.e. not a
COFF archive or DLL. This excludes you from re-exporting an entry point in
another DLL unless you specifically export it with BEPORT statement.

This prevents symbols from being included in the export list generated by the
exportall command. Theexport command will take prcedence over this
command if a symbol appears in both.

file (fi) filename
Performs the following actions in order.

1) Symbols specified in the export list are exported and the expddtd) section
generated. The archive, if required is also generated.

2) Scans the default libraries
a) FTN77.DLL or FTN95.DLL
b) SALFLIBC.LIB (unless arentry command has been used specifying other

than SALFStartup see above).SALFLIBC.LIB will be searched for in
the following places:

i) Locally
ii) The directory specified in the environment variaBeCLIB.

iii) The directory #&ove that specified in the environment variable
SCCINCLUDE.

iv) The directory where the invoked copySifINK resides.

The scanning of each of the following DLLs is dependent upon there being
unresolved references and upon the DLL in question being present. These
are searched for in the following places:

i) Locally

255

FTN77 User's Guide

Win32

i) The “system directory”, i.e. the directory returned by the function
GetSystemDirectorye.g.C\WINNT\SYSTEM32.

iii) The directories specifed on the system path
iv) The directory where the invoked copySifINK resides.
¢) KERNEL32.DLL
d) USER32.DLL
e) GDI32.DLL
f)y COMDLG.DLL
3) Generates the internal traceback map
4) Generates the map listing file if one has been requested.
5) Displays a list of unresolved external references.

6) Writes the executable. If an executable is to be written, a suffix of .EXE is
appended tdilename as a default if one has not been supplied. If a DLL is to
be written, a suffix of .DLL is appendedfitename as a default if one has not
been supplied.

7) EXxitsSLINK.

Note: Missing externals will not cause a failure but will generate warnings.
However, if an attempt is made to call one of the missing routines at run time a
message will be printed out giving the name and the return address of the routine.
The user's program is then aborted.

filealign value

Specifies the physical alignment of the sections within the fitdue should be an
integral power of 2.

defaultvalue= 0x200

heapreservé,commif

256

Specifies the program heap size in bytes. An initial heapminit bytes will be
allocated. If this is used up then a furtkemmit bytes will be allocated up to the
maximimum size ofeserve Thereserveandcommitvalues are rounded to 4 byte
boundaries.

Salford libraries provide their own heap and so a minimal heap need only be
specified.

defaults:
for Salford programs:

reserve= 0x0

Chapter 20 SLINK

commit= 0x0

for other programs:
reserve= 0x100000 (1Mb)
commit= 0x1000 (4Kb)

imagealign (align)value
Specifies the virtual address alignment in bytes of sections within the executable.
valueshould be an integral power of 2.

defaultvalue= 0x1000

imagebase (basedddress
Specifies the preferred base address for the loaded image. This may be relocated
by the loader.

The virtual address space begins at 0x00000000 but the user program starts much
higher in memory. Thbeasecommand specifies the virtual address at which the
program is to start. This is called the preferred load address. If the system loader
cannot load the program at that address it calculates what is caldé&l BA

which is the difference between the preferred load address and the actual load
address. Thi®ELTA is then applied to all the virtual addresses in the program,
actually those specified in the program’s fixup tabiBLINK will set the base
address to be 0x00400000 for executables and 0x01000000 for DLLs. You may
wish to change the base address if there is already something else loaded at that
address. The fixup process is much more likely to affect DLLs than executables.
However, the fixup process is so fast that it is tiny in comparison with the load
process overall and can safely be ignored. The base address is specified in
decimal, but can also be specified in hex or octal using the Ox or O prefixes
respectively.

The value set by the base command will be rounded down to be a multiple of 64K.
The resulting value must be non zero.

defaults:
executables
address= 0x00400000

DLLs
address= 0x01000000

The following example sets the base address to be 0x00700000
BASE 0x700000

listunresolved (lure)
Prints a list of external references which are missing. This command may be used
to check the progress of 3LINK session and may be used at any time. This
command has no other effect.

257

FTN77 User's Guide Win32

load (lo) filename
Loads object file filenamefilename may be either £OFF object file, aCOFF
archive library (i.e. .LIB) or a directly imported dynamic link library (.DLL). A
.OBJ suffix will be appended fdenameif one isn't already supplied.

SALFLIBC.LIB will automatically be loaded if has not already been loaded and if
the entry point name has not been changed 8aid-Startup.

map filename
Specifies that a symbol map file should be produced and written to filename. The
action of this command will be deferred until all object files have been loaded. A
suffix of .MAP is appended as a default if one has not been supplied.

notrace
Suppresses the generation of the internal map within the executable. Without this
map a runtime traceback is impossible.

stack reserve],commif
Specifies the program stack size in bytes. An initial stadowfmit bytes will be
allocated. If this is used up then a furtkemmit bytes will be allocated up to the
maximimum size ofeserve Thereserveandcommitvalues are rounded to 4 byte
boundaries.

defaults,

for Salford programs:
reserve= 0x300000 (3Mb)

commit= 0x4000 (16Kb)

for other programs:
reserve= 0x100000 (1Mb)

commit= 0x1000 (4Kb)

virtualcommon (vc) [base [commif]
Specifies that the uninitialised data section, i.e. the .bss section is removed entirely
from the executable and placed into virtual paged memory. bakeaddress of
this virtual memory may be specified but should be done with care. Similarly, a
commitvalue can be specified to indicate how much memory should be committed
from the system at each acquisition. Small valuesoaimit mean that there is
less memory wastage whilst larger values will improve (slightly) run time
performance at the expense of memory usage.

baseandcommit must be aligned on a page boundary, i.e. if specifying the values
in hex the least significant 3 digits must be zero.

defaults,
base= 0x20000000

258

Chapter 20 SLINK

commit= determined at run time initialisation

subsystemsubsys
You should specify whether the program will require a Character User Interface
(CUI) or a Graphical User Interface (GUI). The subsystem specified should be one
of consolefor a CUI, windows for a GUI or native if no subsystem is required.
Win32 will not allow output tostdout unlessconsole has been selected as the
subsystem.

By default,SLINK will set the subsystem to lsensole
subsysshould be one of the following:

native no subsystem required

windows a graphical user interface subsystem is required.

console application requires only a character mode subsytem (but
using a GUI is not precluded).

default: subsys= console
The following example sets a CUI subsystem requirement.

SUBSYSTEM CONSOLE

quit (q)
Immediately exitsSLINK. No output files are produced.

Command Line mode

In this mode all of the object files ai®LINK commands are placed on the command
line.

SLINK [files] [options] [commandfile]

Obiject files, script files and options may be freely intermixed. There may be more
than one command file.

1. Script files
Script files contain commands and/or object files.

Interactive style script files are prefixed by a “$” or have no prefix. Command line
script files are prefixed by an “@".

2. Interactive style script files

These contain the same commands as may be used in interactive mode and are
executed in the order that they appear in the file.

259

FTN77 User's Guide Win32

e.g.
SLINK myprog

If myprog (no filename extension) does not exist thagprog will be assumed a
interactive style script file.

or
SLINK $myprog

This form is explicitly a interactive style script file.

3. Command line style script files and command line arguments
These may contain the following commands:

-addobj:{ @listfile | filename}

-align:#

-archive:[filename] alias for-implib
-baseaddress

-debug[:full | :partial | :non€

-decorate

-dll [:modulenamé¢ alias for-library
-entry:symbol

-export:entryname[=internalname¢

-exportall

-exportx:entryname

-file [:filenam¢g alias for-out
-filealign:#

-heapreserve,commif]

-help alias for-?
-imagealign# alias for-align
-imagebaseaddress alias for-base

-implib [:filename¢|
-library [:filenamg]

-map [:filename|

260

Chapter 20

SLINK

-notrace

-out [:filenamg

-stackreservé,commif

-subsysteny native | windows | consolé

-vc[:baseaddregscommif]] alias for virtualcommon
-virtualcommon[:baseaddregscommif]] alias for vc

Commands have the same requirements and meaning as the corresponding interactive

command, may be in upper or lower case and may have eitHesraa“—" prefix.

Commands are executed first and so may appear anywhere and in any order. Object
files are scanned after all of the commands have been scanned.

Object file names are specified with the .OBJ extension and, unlike interactive mode
no extension is automatically appended. However, object files are loaded in the order
in which they appear.

The -out: (-file:) command is ungcessary since an executable will be automatically
written after all commands have been processed and all object files have been scanned.
For example:

SLINK myprog.obj -map: @others.inf -file:test @defltlib.inf

This will link the object file myprog.obj with any object files, libraries, or DLLs listed
in others.infor defltlib.inf. A map filemyprog.MAPwill be produced (name taken
from the first loaded object) and executatast. EXE(automatic file name extension)
written. For example:

SLINK tester.obj mylib.obj

tester.objis scanned and thenylib.objis scanned. An executable nantester.EXE
will be written.

It is generally not advisable to mix interactive and command line style script files due
to their different behaviour. If more than one interactive style script file is used
remember that commands are executed in the order in which they appear.

Direct import of Dynamic Link Libraries

Care should be taken on importing DLLs. The mechanism is designed to replace the
importation of “pure” import libraries. It is possible that the .LIB file contains
loadable library code in addition to the imported symbol. In such cases, the loadable
library code is missing from the DLL and so cannot be loadedLFLIBC.LIB is

such a library, the DLISALFLIBC.DLL cannot be loaded directly since it does not
contain, for example, the symboBALFStartup which is necessary for initialisation

and to provide the applications entry point.

261

FTN77 User's Guide Win32

262

Direct import of dynamic link libraries require that the exported names in the DLL
follow the following rules

1) __ stdcall symbols

The exported name is created by removing the leading underscore and does nc
contain the appended @ and subsequent characters

e.g._MessageBeep@will be exported adessageBeep
2) Symbols beginning with a leading underscore

The leading underscore is removed.
3) Other symbols

All other symbols are assumed to be exported unchanged.

Archive and import library generation

Archives and import libraries may be generated without any objects being loaded with
theload command.

For example the followin@LINK script will generate a combined RLB and import
library. Note that thdile command is ecessary to initiate the build. Ignore the
comments in brackets

archive mylib (archive file to be called mylib.LIB)
dil (module name set to mylib.DLL)
addobj funcl.obj

addobj func2.obj

addobj func3.obj

addobj func4.obj

export functiona

export functionb

export functionc

export functiond

export functione

export functionf

export functiong

file

Entry Points

The executable file needs an entry point that is called by the system loader
immediately after the program has been loaded. This entry point is not the main,
WinMain or LibMain function as you may think, but library startup code. The
Salford entry point for all executables, including DLLs 8ALFStartup. Object files

Chapter 20

SLINK

produced by other compilers will have a different entry point which you will have to
set explicitly.

The entry point is specified with tlemtry command, omitting the leading underscore.
SLINK will automatically set the entry point to b&SALFStartup unless you use the
entry commandoeforeany objects files have been loaded. In command line mode the
entry command can be placed anywhere in the command line or script file since
commands are always processed first.

e.g. The following command will set the entry point to I®ALFStartup. This is
redundant sinc8LINK will do this for you.

ENTRY SALFStartup

You cannot change the entry point after the first object file has been loaded or if an
entry command has previously been used.

263

FTN77 User's Guide Win32

264

21.

Using MK and MK32

Introduction

The SalfordIK and MK32 utilities are similar to th&NIX MAKE program. Users
who are familiar withMAKE should be able to use these utilities with little or no
assistanceMK is a DOS/Win16 utility whilsMK32 is a Win32 utility.

A “make” utility is a project manager. Any given project is assumed to be based on a
number of inter-related files. These might include a file for the main program,
various files for the subroutines, various “include” files, object files, libraries, and
maybe a final executable file. These are assumed to be inter-dependent, in that a
change in one file will have repercussions on other files. For example a change in an
“include” file will affect any source file which uses that include file, this in turn will
affect the resulting object files and so on.

The purpose of a “make” utility is to read a file which describes all of the inter-
dependencies in a given project and update only those files that need to be updated.
The updating is based on the given dependency relationships and also on the current
date/time stamp for the files. Thus if fileis given to be dependent on flieand file

A predates fileB, then fileA is updated.

Note that a “make” utility uses the date/time stamp that the operating system places on
a file when it is saved. If the computer date/time is not functioning correcththben
utility is unlikely to have the desired effect.

265

FTN77 User's Guide

Tutorial

In order to illustrate how thigorks, we shall consider the following simple situation.

Suppose we have a project based initially on two files. The first file, qaitegfor,
contains only a main program; the secaub.for contains all of the user-defined
subroutines that are called from the main progam. In all other respects, these files ar
assumed to be independent of each other and independent of any other user files.

The simplest way of calling the Salford make utility is to type Jkt (or MK32) at

the command prompt. If you do this then the utility processes a file cali&dfile
which the user places in the current directorynakefile contains dependency
relationships and dependency rules (either explicit or implicit) for the current project.

Example 1

This first example illustrates the use of explicit dependency relations.
In the project described aboveakefilecould contain:

prog.exe: prog.obj sub.obj
SLINK prog.ink

prog.obj: prog.for
FTN77 prog /check

sub.obj: sub.for
FTN77 sub /check

This means thagbrog.exedepends on bothrog.objandsub.objand thatprog.exeis
created by callingSLINK using prog.Ink as the linker script. For DOS/Winl16 you
would useLINK77 instead.

In turn prog.objdepends omprog.for andprog.objis created by callingTN77 using
prog.for with the /CHECK option. A similar dependency relationship and rule is
used forsub.obj

If sub.foronly were changed (for example) then calling the utility would result in
sub.for being recompiled (but ngbrog.fo). Then becaus@rog.exe depends on
sub.obj the linking process is also carried out.

Example 2

266

A second approach is to use an implicit dependency relationship as illustrated here:

.SUFFIXES: .for .obj

Chapter 21 Using MK and MK32

.for.obj:
FTN77 $< /check

prog.exe: prog.obj sub.obj
SLINK prog.ink

The explicit dependency relation fprog.exehas not changed. The first line gives a
list of extensions (separated by at least one space) for which implicit relations will be
supplied. In this case one relation is given showing how “.obj” files are derived from
“.for” files.

The next line is an example of an implicit relation. In this case the relationship states
that (in the absence of an explicit relation) a “.obj” file is dependent on a
corresponding “.for” file and that the object file is formed by callfidN77 with the
/ICHECK option. “$<” represents the source filename (the dependency filename with
its extension). In other words, we have now used one implicit relation in place of two
explicit relations in Example 1.

Example 3

Our next example of makefileillustrates a use for thEOUCH utility and takes the
form:

.SUFFIXES: .for .obj

.for.obj:
FTN77 $< /check

prog.exe: prog.link
SLINK prog.ink

prog.Ink: prog.obj sub.obj
touch prog.link

The TOUCH utility simply updates the date/time stamp of the given file. So here we
are saying thaprog.Ink depends omprog.objandsub.objbut the content ogbrog.Ink

does not need to be changed. The order of the two explicit relations is significant;
prog.exes the primary target and must come first.

Example 4
Now we take example 3 one stage further:

.SUFFIXES: .for .obj .Ink .exe

.for.obj:
FTN77 $< /check

267

FTN77 User's Guide

.Ink.exe:
SLINK $<

prog.exe:

prog.Ink: prog.obj sub.obj
TOUCH prog.1nk

This includes an implicit relation which connects the linker script to the executable.
The result is neither shorter nor simpler than example 3 and so has little merit unles:s
you also use default.mifile (see below).

Example 5
We now return to the form given in example 2 and provide a modification which
illustrates the use of macros and comments:
Example 5

.SUFFIXES: .for .obj

OBJFILES=prog.obj \
sub.obj
T=prog

.for.obj:
FTN77 $< /check

$T.exe: $(OBJIFILES)
SLINK $T.1nk

Characters after a “#” symbol on a given line are ignored so the first line is a

comment OBJFILES andT are macros. They represent constant character strings

which replace expressions of the form $(. ..) within dependency relations. If the
macro hame consists of only one character then the parenthesis is not required. Th
backslash (\) character is used for continuation (suppressing the following carriage
return/linefeed). The following macros are implicitly defined:

$@ evaluates to the file name of the current target
$* evaluates to the file name of the current target without its extension

$< evaluates to the source filename in an implicit rule

In a macro assignment, spaces can be used on either side of the equals sign. Mac
names are case sensitive although it is common to use only upper case letters. Also,
is possible to append a string to an existing name as follows:

268

Chapter 21 Using MK and MK32

OBJFILES=prog.obj
OBJFILES+= sub.obj

but note that the space befetg.objis essential in this context.

Example 6

Our next example is similar to example 4 but illustrates the use of a file called
default.mk Create a file in the project directory callddfault.mkcontaining the
implicit relations:

.SUFFIXES: .for .obj .Ink .exe

.for.obj:
FTN77 $< /check

.Ink.exe:
SLINK $<
makefilenow contains:
prog.exe:
prog.Ink: prog.obj sub.obj
TOUCH prog.1nk
MK/MK32 automatically callslefault. mkand uses it as a header.

You will find a file calleddefault.mkin the compiler directory. This file can be
copied to your project directory and customised to suit your particular project.

If you wanted to include something other than (or as wellda$ault.mkin your
makefilethen insert a line of the form:

include f7lename

There must be no spaces at the beginning of this line.

Example 7
Taking this one stage further we now include macrakefault.mk

.SUFFIXES: .for .obj .exe
OPTIONS=

OBJFILES=

269

FTN77 User's Guide

.for.obj:
FTN77 $< $(OPTIONS)

.0bj.exe:
SLINK $(OBJFILES) -FILE:$@

This uses the command line form SEINK which is not available with.INK77.
makefilenow contains:

OPTIONS=/check
OBJFILES=prog.obj sub.obj

prog.exe: $(0BJFILES)

Example 8

Our final example uses the sadefault.mkas in example 7 but moves OPTIONS and
a new macro called TARGET to the command linekefilenow contains:

OBJFILES=$(TARGET).obj sub.obj
$(TARGET) .exe: $(OBJFILES)

and the command line takes the form:
MK32 TARGET=prog OPTIONS=/check

Macros that are defined on the command line replace any definitions that appear in
the makefiles. Alternatively you could define TARGET and/or @N$ as DOS
environment variables. Other items that can be added to the command line are givel
below.

Reference

Command line options

-f filename Usefilenameinstead of the default file calledakefile A minus
sign in place ofilenamedenotes the standard input.

-d Display the reasons why MK/MK32 chooses to rebuild a target.
All dependencies which are newer are displayed

270

Chapter 21 Using MK and MK32

-dd Display the dependency checks in more detail. Dependencies
which are older are displayed, as well as newer.

-D Display the text of the makefiles as they are read in.

-DD Display the text of the makefiles addfault.mk

-e Let environment variables override macro definitions from

makefiles. Normally, makefile macros override environment
variables. Command line macro definitions always override both
environment variables and makefile macros definitions.

-i Ignore error codes returned by commands. This is equivalent to the
special target .IGNORE.:.

-n No execution mode. Print commands, but do not execute them.
Even lines beginning with an @ (see Rules below) are printed.
However, if a command line is an invocation of MK/MK32, that
line is always executed.

-r Do not read in the default fidefault.mk

-S Silent mode. Do not print command lines before executing them.
This is equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than
performing the rules to reconstruct them.

macro=value Macro definition. This definition remains fixed for the MK/MK32
invocation. It overrides any regular definitions for the specified
macro within the makefiles and from the environment. It is
inherited by subordinate MK/MK32's but acts as an environment
variable for these. That is, depending on the -e setting, it may be
overridden by a makefile definition.

Makefiles

The first makefile read idefault. mk which can be located anywhere along the PATH.
It typically contains pre-defined macros and implicit rules.

The default name of the makefilensakefilein the current directory. An alternative
makefile can be specified using one or more -f options on the command line. Multiple
‘-f's act as the concatenation of all the makefiles in a left-to-right order.

The makefile(s) may contain a mixture of comment lines, macro definitions, include
lines, and target lines. Lines may be continued across input lines by using backslash
(\) at the end of a line.

271

FTN77 User's Guide

272

Anything after a “#” is considered to be a comment. Completely blank lines are
ignored.

An include line is used to insert the text of another makefile. It consists of the word
“include” left justified, followed by spaces, and followed by the name of the file that is
to be included at this line. Include files may be nested.

Macros

Macros have the form WORD=text. WORD is case sensitive although commonly
upper case. Later lines which contain $(WORD) or ${WORD} will have this replaced
by ‘text’. If the macro name is a single character, the parentheses are optional. The
expansion is done recursively, so the body of a macro may contain other macro
invocations. Spaces around the equal sign are not relevant when defining a macro
Macros may be extended to by using the “+=" notation.

Special macros

MAKEFLAGS This macro is set to the options (not macros) provided on the
command line for MK/MK32. If this is set as an environment variable, the set of
options is processed before any command line options. This macro may be explicitly
passed to nested calls to MK/MK32, but it is also available to these invocations as an
environment variable.

SUFFIXES This contains the default list of suffixes supplied to the special target
.SUFFIXES:. It is not sufficient to simply change this macro in order to change the
.SUFFIXES: list. That target must be specified in your makefile.

$* The base name of the current target (used in implicit rules).
$< The name of the current dependency file (used in implicit rules).
$@ The name of the current target.

Targets

The form of an explicit dependency rule is:

target [target] [. . .J{source] [. . .]
[rule]

.

Here we have one or more target files, each separated by a space, and followed by
colon (there must be no spaces before the first target). Then we have zero or mor
dependent files followed by zero or more rules (see below), each on its own line
preceded by at least one space (again the space isidsseSee example 2. The
targets can be macros that expand to targets.

Chapter 21

Using MK and MK32

The colon that appears in a dependency rule does not interfere with a colon that
appears in the path of a file (after the drive letter).

If a target is named in more than one target line, the dependencies and rules are added
to form the target's complete dependency list and rule list.

The dependants are ones from which a target is constructed. They in turn may be
targets of other dependants. In general, for a particular target file, each of its
dependent files is ‘made’, to make sure that each is up to date with respect to its
dependants.

The modification time of the target is compared to the modification times of each
dependent file. If the target is older, one or more of the dependants have changed, so
the target must be constructed. This checking is done recursively, so that all
dependants of dependants etc. . . are up to date.

To reconstruct a target, MK/MK32 expands macros and either executes the rules
directly, or passes each to a shell or COMMAND.COM for execution.

For target lines, macros are expanded on input. On other lines macros are expanded
at the point of implementation.

Special targets

.DEFAULT:
The rule for this target is used to process a target when there is no other entry for
it, and no implicit rule for building it. MK/MK32 ignores all dependencies for this
target.

.DONE:
This target and its dependencies are processed after all other targets are built.

.IGNORE:
Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying -i on the command line.

ANIT:
This target and its dependencies are processed before any other targets are
processed.

.SILENT:
Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying -s on the command line.

.SUFFIXES:
The suffixes list for selecting implicit rules. Specifying this target with dependants
adds these to the end of the suffixes list. Specifying it with no dependants clears
the list. In order to add dependants to the head of the list, use the form:

SUFFIXES: .abc $(SUFFIXES)

273

FTN77 User's Guide

274

Rules

A line in a makefile that starts with a TAB or SPACE is a rule. This line isiasstc

with the most recently preceding dependency line. A sequence of these may be
associated with a single dependency line. When a target is out of date with respect t
a dependent, the sequence of commands is executed. Rules may have any combinati
of the following characters to the left of the command:

@ will not echo the command line.

- MK/MK32 will ignore the exit code of the command, i.e. the ERRORLEVEL of
MSDOS. Without this, MK/MK32 terminates when a non-zero exit code is
returned.

+ MK/MK32 will use COMMAND.COM to execute the eomand. If the '+' is not
attached to a shell line, but the command BGS conmand or if redirection is
used (<, |, >), the shell line is passed to COMMAND.COM anyway.

Implicit rules

Files

The form of an implicit rule is:

.source_extension.target_extension:
[rule]

[.]

Here we have a dot (no spaces before it) followed by the extension for the source file
(one, two or three characters) then a dot followed by the extension for the target file
and then a colon and then a new line and at least one space. Optional rules the
follow on separate lines just as in an explicit dependency. See example 3.

Implicit rules are linked to the .SUFFIXES: special target. Each entry in .SUFFIXES
defines an extension to a filename which may be used to build another file. The
implicit rules then define how to build one file from another. These files are related,
in that they must share a common base name, but have different extensions.

If a file that is being made does not have an explicit target line, a search is made for
an implicit rule. Each entry in the .SUFFIXES: list is combined with the extension of
the target, to get the name of an implicit target. If this target exists, it gives the rules
used to transform a file with the dependent extension to the target file. Any
dependants of the implicit target are ignored.

makefile Current version(s) of make description file.

default.mk Default file for user-defined targets, macros, and implicit rules.

Chapter 21 Using MK and MK32

Diagnostics
MK/MK32 returns an exit status of 1 when it halts as a result of an error. Otherwise
it returns an exit status of 0.

Badly formed macro

A macro definition has been encountered which has incorrect syntax. Most likely,
the name is missing.

Cannot open file
The makefile indicated in an include directive was not found or was not accessible.

Don't know how to make target

There is no makefile entry for target, none of MK/IMK32's implicit rules apply,
and there is no .DEFAULT: rule.

Improper macro

An error has occurred during macro expansion. The most likely error is a missing
closing bracket.

Rules must be after target

A makefile syntax error, where a line beginning with a SPACE or TAB has been
encountered before a target line.

Too many options

MK/MK32 has run out of allocated space while processing command line options
or a target list.

275

FTN77 User's Guide

276

22.

Using Plato

Introduction

Plato is a Win32 editor which supports all of Salford’s Win32 compilers. It is a
multiple document interface with many features including syntax colouring, unlimited
undo and keyword help.

This chapter describes how to use Plato and shows how it is possible to compile, link
and execute Salford programs from within an integrated development environment.

Getting started
Run Plato by clicking on the Plato shortcut icon in the “Salford Software” program

group.

Plata

Before proceeding further check thdate has the correct location of you compilers
and help files. To do this seldgirectories from theOptions Menu.

The Options Menu

Set Font..,
Set Colours. .
Directories...

v Suntax Highlighting

v Save Filez Before Compiling

Project window Always On Top
v Save Settingz On Exit

277

FTN77 User's Guide Win32

This will display a window showing the directory location of all Salford Compilers
and Help files. If you did not install your compiler(s) to the default directories you
may need to change the paths usingBhawse button. Click theApply button to
update your changes. Make s@ave Settings On Exiis selected as above to ensure
any configurations you have made are saved.

The toolbar at the top of the Plato screen controls most of Plato’ commonly used
functions.

The Toolbar

E=3 =T

L] o] o]) e e]] | (e — -

278

New File

This button has the same effect as e command on th&ile menu. It opens a
new blank Edit Window ready to begin typing a new source file.

El Open File

This button has the same effect as@pen command on th&ile menu. It presents a
standard ‘Open File’ dialog and prompts the user to select an existing source file. The
filename the user provides will then be opened in a new Edit Window.

Filenames ending in *.c or *.cpp are assumed to be C++ files; *.for, Fortran 77 files
and *.f90, Fortran 90 files. You can change the compiler associated with an open file
- seeChanging File Options

El Save File

This button has the same effect as $a@ecommand on th€&ile menu. It saves the
active source file with the current filename. If no filename has been assigned the usel
is prompted to enter one.

@l Print File

This button has the same effect as Bt command on th&ile menu. The file is
sent directly to the current printer, which can be configured frorfiteanenu.

il Cut

This button has the same effect as th# command on th&dit menu. It removes
the selection from the active source file and places it on the clipboard.

Chapter 22 Using Plato

Copy

This button has the same effect as@opy command on thEdit menu. It copies the
selection onto the clipboard.

Paste
This button has the same effect as Baste command on th&dit menu. It inserts
the contents of the clipboard at the insertion point replacing any selection.

il Undo

This button allows you to undo previous editing instructions.

ﬁl Find

This button has the same effect asFia command on th&dit menu. It searches
for specified text in the active source file.

ﬂl Compile File

This button has the same effect as @oenpile File command on th@roject menu.
It compiles the active source file.

ﬂl Build File

This button has the same effect as Build File command on th@roject menu. It
compiles and links the active source file.

a Compile Project

This button has the same effect as @mnpile Project command on théroject
menu. It compiles all modified source files in current project.

i Build Project

This button has the same effect asBuild Project command on th@roject menu.
It compiles all modified source files and links the current project.

| Rebuild Project

This button has the same effect asRabuild All command on th€roject menu. It
compiles and links all files in the current project.

Ll Execute

This button has the same effect as Execute command on thé&roject menu. It
runs the last file or project built.

279

FTN77 User's Guide Win32

e
ﬁl Debugger

This button launches the Salford debugger SDBG and is available when you have buili
an executable, which should have been compiled with debugging options.

=

Ll Show Error Window

This button displays the error window which displays errors, warnings or comments
generated from the last compile.

The toolbar also has a pull down listbox containing the files that are at present open ol
part of an open project. You can switch between windows by selecting a filename
from this listbox.

Editing Source Files

280

You can edit compile and run individual source files using buttons from the toolbar:

Creating a New File

Select theNew command from thé&ile menu or clic which opens a new edit
window in which you can type in your program.

The edit window will be labelledUntitled (That is your source file has not been

assigned a file name). When you now click the save bEI‘laSave Asdialog box

will be presented. Use th®ave Asdialog box to navigate your disk and find an
appropriate folder to in which save the source file. Type a file name for your source
file and then click th&avebutton. Your source file will be saved to disk. Make sure
to use the appropriate extension for your file otherwise Plato will not know which
compiler to use.

Open an Existing File

Select theDpen command from th&ile menu or cIickEl This presents a standard
dialog similar to the File Open dialog of many windows applications. Use the dialog
box to navigate your folders and select the file you want to edit then clicdRpbea
button. The existing source file will be opened into a new MDI Edit Window.

When a file is opened, the name is recorded in the Most Recently Used (MRU) list on
the file menu, this list is saved and restored the next time Plato is started. The file
name is also placed into a drop down list box on the toolbar.

Chapter 22 Using Plato

Compiling a Single Source File.

1) Select the&Compile File command from th&roject menu or clickﬂl A dialog
box will appear while the source file is compiled.

2) When the file is compiled the Compilation Status window will appear showing the
number of errors, warnings and comments. If the compile has been successful the
Compilation Status Icon will turn green, if not it will turn red.

3) Click the Details button to open the Message window and view any errors,
warnings and comments. You can quickly moved to the line where an error
occurred by double clicking on the appropriate line in the Message window.

The Message Window

[Erdantran] FOR] I ERRO R Swismsnt v incompl sa
[Dcfsantyvan] FON] 001 ESFROR ELEEIF. EMOIF ar ELBE sisioimem wion gy ragiesd

mntian] FOS] A0 1 EER0 R Ui desyidedl shalemed ﬂ
[Eremntinoand FIOE B00] SRR Thin: sistement willsecer be sssculsd =l

4) Once you are happy with your compilation, choose k_E|| which will link your
program.

5) If the linking is successful choosan (or click OK and then theLl toolbar
button). A window appears showing you the file to be executed and two radio
buttons. If you seled€onsole Plato will open up a console before running the
file.

Changing File Options
You add compiler options or change the compiler associated with the currently opened

file by selectingFile Options from theFile menu. The check boxes provide quick
access to common options whilst the edit box below it allows any option to be entered.

281

FTN77 User's Guide Win32

File Options [x| |

File: Chplato2itfor
Target Compiler Configuration
V¥ Include debug infarmation in ohjectfiles © SCC

¥ Check forundefined pointers _arrays & FTMN77
[T Check for references to undefined data © FTHN90

" FTN95
C SRC
O UMNENOWN
Local Compiler Options:
{DEBUG/IMNDER _
K. Cancel

Working with Projects

One of Plato’s major features is the ability to organise the source files that make up
your program into projects. Along with other benefits this enables you to compile and
link all your sources in one go.

Creating a New Project
To create a new project follow these steps:
1) Click New from theProject menuto open an empty project window.

2) Give the project a suitable title by clicking the left and thight mouse button on
the project icon at the top of the tree and sele®irgect Name

3) Build a list of source files. Left theRight click on theCOMPILE folder in the
Application tree and sele&dd Item.

282

Chapter 22 Using Plato

4) Use the dialog box to navigate your folders and select the source file(s) that are
part of this application then click th@pen button. The source file(s) you have
selected will be displayed in the Application tree.

The Project Window

+ Project Window - Right click on project nodes for further options

— Project Files — Default Compilers
E Plato? FTN?? [for.tf77. |
{ICOMPILE
LW o\ PLATO2\Colour.cpp FTNED |30, ‘
HEl CAPLATOZACompiler.cpp
HBl CAPLATOZ\Control.cpp FTNE5 |95, ‘
HEl CAPLATOZ2Y\Debug.cpp
HEl CAPLATOZ2YFuncs.cop Update Default |
HEl CAPLATOZYFunction.cpp
HEl CAPLATOZ2YHelp.cpp : .
LB CAPLATO2ymain.cpp — Global Compiler Options
HEl CAPLATO2\Project.cpp =
HEl CAPLATOZ register.cpp fnested_comments j
HEl CAFLATO? resource o
LBl CAPLATOZ2YW ser.cpp
LOILIME, -
— Application Type
 Console ®‘Windows [[puwE d

Sawve FProject Close Project | Close Window |

6) To specify compiler options for a particular file click the right mouse button on the
filename and choosEile options from the popup menu. To supply compiler
options that will affect all files use the Global Compiler Options edit box.

7) Save the project with tigave Projectbutton.

8) Double click a file in the Application tree to open it for editing and cliciClose
Window button. You can return to the project window from the Project Menu.

Compiling and Building a Project

Compiling a project is similar to compiling single files, you can use the toolbar to
Compile, Build and Rebuild your projects.

283

FTN77 User's Guide

The Project Menu

When a project is built, all the files in the application tree are processed and any files
that do not have an up to date object file are compiled.

Cormnpile File F3
Ewild File Alt+F3
Compile Project

Build Project Alt+Fa
Bebuild Project Shift+F3
Erecute [EtrlekE
MNew

Open...

Save

Save bz,

Cloze

Project \Window

Errar Meszages Window

Projects - Advanced Features

Since there are many different Fortran file extensions and three different Salford
Fortran compilers, Plato allows you to choose which of these compilers is associatec
with user specified file extensions for your project. From the project window edit the

strings in the Default Compilers section and pres&tiaate button.

The Project Window allows you to create DLLs (Dynamic Link Libraries) and RLBs
(Relocatable Binary Libraries). Select from the pulldown list box in the Application

Type section.

Customising Plato

Win32

You can change the font used to edit files by seleclag Font from the Options

Menu. In addition you can change the colours associated with different program
elements by selectinghange Colourswhich is also in the Options Menu.

284

Chapter 22 Using Plato
+ Change Colours
Text =elect Foreground/Background

Colour.. | then press buttan to
change the syntax colour
Keyword Colour...
& Fareground
" Background
Type Colaour... £
; ok |
String Colaour...
Cancel
Comment Colaour...
o Default Cn:ulu:lursl
Filiglel Colaour...

Keywords are those words defined by the compiler you are usingPRIYT in
Fortran andprintf
static andint in C.

Accelerator Key

S

Standard Windows

Key
Ctrl+N
Ctrl+O
Ctrl+S
Ctrl+P
Ctrl+z
Ctrl+X
Shift+Del
Ctrl+C

in C. Types includdNTEGER and REAL in Fortran and

Action

Creates a new edit window
Opens a file

Saves the current file
Prints a file

Undo

Cut

Cut

Copy

285

FTN77 User's Guide

Compiling

286

Ctrl+Ins
Ctrl+Vv
Shift+Ins
Ctrl+A
Ctrl+F
Ctrl+H
Ctrl+G
F1
Shift+F1

Key

F2

F3

F4

F5

F6

F9
Alt+F9
F8
Alt+F8
Shift+F8
Ctrl+F5
Alt-F2
F10
Ctrl+F1

Copy

Paste

Paste

Select all

Find

Find and replace
Go to line

Help topics
Keyword help

Action

Save

Save and close file
Close file

Find string
Replace string
Compile file

Build file

Compile project
Build project
Rebuild project
Execute

Save project
Project properties

Keyword help

Win32

Chapter 22

Block Marking

Key

Alt+B

Alt+- (minus)
Alt-L

Alt-Z

Using Plato

Action
Mark block
Cut block
Mark line

Paste block

287

FTN77 User's Guide Win32

288

23.

DBOS (DOS)

Introduction

When a 32-bit Intel chip is runninglS-DOS it operates in “real mode”. In this
mode the chip emulates an 8086 chip with the addition of a few extra instructions and,
of course, a much improved performance.

Real mode offers a 1 Megabyte address space composed of 64K byte segments and no
protection of the operating system. In real m&&M at addresses above 1 Megabyte

is unaddressable. In order to gain access to these locations aRdNiBg, it is
necessary to rubBOS. DBOS is the DOS extender provided witiFTN77. Its

purpose is to provide services to applications compiled Using77 and her sister
compilers. The majority of thBBOS system stays resident abdw®©S. A small

portion (approximately 45 Kilobytes) stays resident in real mode memory and provides
services via an interrupt (78 hex).

The main service that is provided is to switch the program from real mode to protected
mode. This is the first operation performed by all programs compiledR¥iMi77.

When the program terminatd3BOS returns the processor to real mode and returns
control toMS-DOS.

Switching to protected mode allowscass to the extended memory above the 1
Megabyte limit. It also opens up the possibility of clashes betB&DS and other
applications such as other memory managers or disk caches.

DBOS must not be used at the same time as other software which exploits extended
memory unless it is compatible with the Virtual Control Program Interfat@P()
eXtended Memory SpecificatiodS) or an interrupt 15 top down allocator.

This restriction is necessary becaid2OS uses all the available extended memory

for user page space. This can cause problems if there are other programs which also
use extended memory on your machine. In particular, the problems cau3B®By
overwriting a disk-cache’s data area are usually catastrophic.

289

FTN77 User's Guide DOS

However, DBOS may be used with software that uses extended memory if that
software supports théCPI (for exampleQEMM386 from Quarterdeck)yDISK 4.0

or XMS (also known as thélIMEM.SYS scheme). DBOS recognises programs
which use these protocols without overwriting their associated memory areas.

The “VDISK” method uses the fact that a subfunction of interrupt 15 (hex) returns the
number of kilobytes of extended memory available from address 100000 (hex). By
defaultDBOS hooks this interrupt so it returns a smaller value.

DBOS and expanded memory managers

290

Expanded memory managetsSMMs) emulate expanded memory boards in order to
provide expanded memory specificatioBMS) memory. Some also provide the
VCPI so that programs using extended memory and protected mode can allocate
memory and switch in and out of protected mo@BOS can use this latter kind of
EMM.

EMMs come in two basic typespmmon poohndseparate pooproviders.

Common pooEMMs provideXMS memory,VCPI memory andEMS memory from

a single memory pool. No configuration of this pool is required by the user. Two well
known common pool providers areQEMM386 from Quarterdeck and
386MAX/BlueMAX from Qualitas. DRDOS 6.0's EMM386 is also a common pool
provider. DBOS will run with common pool providers and will use tRE€PI and
VCPI memory.

Separate pool providers maintain separate pool&fd&/VCPI memory andXMS
memory. This is usually because %S provider and th&MS/VCPI provider are
separate pieces of software elIMEM.SYS (XMS provider) and EMM386
(EMS/VCPI provider). Separate pool providers require you to explicitly transfer
memory from theXMS pool to theEMS/VCPI pool. MS-DOS 5.0's HIMEM.SYS
andEMM386.EXE and Compaq'$1IMEM.EXE and CEMM.EXE are separate pool
providers.

VCPI memory is demand paged. ThatDBOS uses the/CPI to allocate memory
from the pool as programs demand it. Memory is released to the pool as programs
release memory and terminate.

XMS memory is not demand paged, insteB80S will use all the availableXMS
memory (less that which may have been reserved usingE¥IEMEM command line
option). For example using,

DBOS /EXTMEM 400000

Chapter 23

DBOS (DOS)

will leave 4Mb of XMS memory for use with noDBOS applications, and allocate
the remainingKkMS memory for use wittbBOS applications.

DBOS versions prior to 2.70 cannot ugMS memory if anEMM is installed.
DBOS versions after 2.51 may useéMS memory provided that aEMM is not
installed. Versions dDBOS after 2.70 can have accessodlS even after alcMM
is installed.

Removing DBOS (using the KILL_DBOS utility program) will release all the
memory thaDBOS has reserved. You should ensure that oftf&R (terminate and
stay resident) programs are loaded be@BOS. In particular, the user should note
that someéMS-DOS commands load a memory resident portion (BRINT, MODE
and APPEND) and the first use of such commands should occur b&B@S is
loaded.

Note:

If an EMM has been installed you will initially be in virtual mode at DS
command line prompt, arfldBOS will use theVCPI to switch in and out of protected
mode, regardless of whethé€Pl or XMS memory is being used.

DBOS versions prior to 2.70

Common pool providers
Common pool providers need no special configuration for useDBMS beyond the
usual include/exclude list on tE&VM command line.

Separate pool providers

Separate pool providers require the transfer of memory t&M®/VCPI pool from

the XMS pool. For example, a command line similar to the one below, for use with
MS-DOS 5.0 HIMEM.SYS and EMM386 will provide 4096Kb of memory to the
EMS/VCPI interface for use agCPIl memory withDBOS.

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE 4096 RAM

DBOS versions 2.70 and above

Common pool providers

DBOS detects the presence of a common pool provider and by default will use the
VCPI to allocate memory. This default behaviour can be changed by using the
/JUSE_XMS DBOS command line option, in which ca€eBOS will use XMS
memory for programs but still use th&CPI for virtual/protected mode switches.
However, there is no advantage to uskddS memory in this situation. In fact, some
common pooEMMs provide lesXMS memory tharVCPI memory.

291

FTN77 User's Guide DOS

292

Separate pool providers

If you have partitioned your memory betweMS and EMS/VCPI, by default
DBOS will allocate memory from the largest pool. This behaviour can be changed by
using the/lUSE_VCPI or the/USE_XMS command line option to force the use of a
particular memory pool. However, unless you need to/@el or EMS memory for
some other application, you need not allocate any memory toBMiM at all. For
example, withtMS-DOS 5.0,

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE NOEMS

is a suitable combination f@BOS and will provide the maximum amount ¥MS
memory to the system whilst still giving@ess to the upper memory blo¢k\B, that

which is between 640Kb and 1 Mb) for loadi@R’'s and device drivers high. It

also has the advantage of not requiring a page frame thus making a further 64Kb o
UMB space available.

Here are some further examples:

Assuming an 8Mb machine (i.e. 7Mb of extended memory)M8eDOS 5.0, then
with

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE NOEMS

all of the extended memory available frofMS will be used byDBOS. Similarly
with

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE 2048 RAM

2Mb of extended memory will be allocatedBEMS/VCPI leaving approximately 5Mb
available forXMS. In this casePBOS will use theXMS memory pool since it is
larger. TheUMB area will be reduced by 64Kb by the need for a page frame. As a
further example if you set:

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE 4096 RAM

then 4Mb of extended memory will be allocatedetdS/VCPI leaving approximately
3Mb available forXMS. In this caseDBOS will use theVCPI memory pool since it
is larger. TheJMB area will be reduced by 64Kb by the need for a page frame.

Chapter 23 DBOS (DOS)

Network cards and expanded memory managers

In generalEMMs need to be told which regions of kB space are not available to
them. These areas must be explicitly excluded oMl command line. The most
common area that has to be excluded is the hardwired buffer on a network card. This
is usually 8Kb long and resides in tB®00-DFFF region. If the system exhibits
instability when a network driver is loaded then it is likely that the network buffer has
not been excluded from tHEMM. Typically, with MS-DOS 5.0 the following may

cure the problem:

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE NOEMS X=D0OOO-D1FF

If it does not, try excluding the whole of the B8gment as below,

DEVICE=C:\DOS\HIMEM.SYS
DEVICE=C:\DOS\EMM386.EXE NOEMS X=DOOO-DFFF

Use of a network card may require that other areas need to be excluded from the
EMM.

DBOS command line arguments

In order to provide the services described ab@@DS must already have been
loaded into the system. This is done by tyddRBOS, possibly followed by command
line arguments. DBOS will then load into memory, determine the operating
environment and return to th&S-DOS prompt leaving itself in memoryDBOS is a
Terminate and Stay ResidediSR) program. DBOS can be removed at a later stage
by typing the commanKILL DBOS.

The options available on tiEBOS command line are:

[EXTMEM <h>
Preserves <h> bytes of extended memory for other programs. This is achieved by
lowering the amount interrupt 15 returns to a value which preserves the amount of
memory specified. Thus the memory preserved is at the bottom of physical
extended memory, typically from 1 megabyte onwards. <h> must be specified in
hexadecimal. For example:

DBOS /EXTMEM 100000
would leave 1 megabyte of extended memory free.

/ISEARCHMEM
InstructsDBOS not to use th& DISK mechanism for determining the amount of

293

FTN77 User's Guide DOS

294

available extended memory, but to search for available memory. This option is
especially useful with early Compaq machines which remapped some of the
memory between 640KB and 1MB to just below 16MB. THASK mechanism
would not allow this memory to be use8EARCHMEM will, however, find it.

IPAGE <h>
This option is designed for use in multi-tasking environments such as that
provided byDESQview. The option tell©BOS to only use <h> bytes of memory
before paging to disk. In the first instance paging must be enabled by configuring
DBOS using theCONFIGDB utility. But even when this has been done, by
default paging is disabled when running unB&SQview. This option has the
additional effect re-enabling paging when insizleSQview. <h> must be given
in hexadecimal.

/INO_SHIFT_INTERRUPTS or/NSI
From version 2.69 onwards a former optié8HIFT_INTERRUPTS became the
default. /NO_SHIFT_INTERRUPTS (abbreviated téNSI) can be selected in the
unlikely event that you wish to bypass this action.

/SHIFT_INTERRUPTS remaps théRQs used byDBOS to avoid collision with
other hardware. This prevents a clash between a piece of hardwarallgtygic
BUS mouse or netwoikg card) and an interrupt thBBOS uses.

INOWEITEK
For DBOS versions before 2.76 this option preveB8OS from checking the
presence of a Weitek 1167, 3167 or 4167 numeric coprocessor. Some early 8038t
machines have hardware problems which can cause strange behaviour when
Weitek coprocessor is accessed. If you have such a machine it is possible a Weite
coprocessor will not work in your machine.

IWEITEK
For DBOS versions from 2.76 onwardgVEITEK must be explicitly specified in
order to enabl®BOS to check for the presence of a Weitek coprocessor. This
option is required in order to run an executable that was compiled using the
FTN77 /WEITEK command line option.

/PRIMELINK
Allows DBOS to reside with Primelink, a terminal emulation package from
PRIME.

/IDISK_CACHE
Enables theDBOS disk-cache. This has the advantage of beBBOS
compatible and making efficient use of extended memory. The disk-cache will use
free memory pages. This is very flexible, allowitBOS to take pages from the
cache and give them to &TN77 program. In this way the disk-cache size varies
depending on the task being performed. A program in the compiler directory
calledCACHESTATS can be run to give statistics about the disk-cache.

Chapter 23 DBOS (DOS)

The disk-cache is not available if &MM is installed. However, all programs,
including nonbBOS applications, can obtain the benefit of DBOS disc-cache
when it is installed.

/USE_VCPI or /UV

J/USE_XMS or /UX
These options are for use with extended memory managbtslg) that support
XMS andVCPI. SomeEMMs have a common pool fofMS andVCPI memory
whilst others have separate pools for each type (see page 302).

For common pooEMMSs, the defaulDBOS behaviour is to us& CPlI memory
and the/lUSE_XMS option should only be selected if you wish to force the use of
XMS memory.

For separate po&MMs, the defaulDBOS behaviour is to use the larger of the
two pools. SelectingUSE_VCPI or /JUSE_XMS will over-ride the default
behaviour.

/ICFG <config_file_path>
Specifies the path to an alternati®B8OS configuration file. This allows the
possibility of several configurations fBrBOS. One possible use of it is to specify
a configuration file which would causeBOS to use a different paging file. This
is particularly useful under Windows, where seveRBOS invokations are
simultaneously possible, only one of which may use the default paging file.

In addition to the options describelosze, DBOS can be invoked with an explicit
memory range. The memory limit or limits must be given before any other options.

This can take one of two forms:

DBOS <upper_limit>
Ensures thaDBOS will not use any memorybmve and including the physical
address <upper_limit>. This value must be in hexadecimal. For example:

DBOS 100000
will preventDBOS from using any extended memory (100000 hex is 1 megabyte).

DBOS <lower_limit> <upper_limit>
This form of memory specification can be used to circumvent a problem which
occurs with large amounts of memory. If for example, a machine has 32
megabytes of memory, there are s@h@Ss which will only recognise the first 16
megabytes of memory. This can cause two sorts of problem:

Firstly, interrupt 15 will only report that there is 16 megabytes in the machine.

Secondly, there will be a problem if another program has already taken some
memory away (th&I0S will quite often do this), leaving a small amount of space
that should not be touched just below 16Mb.

295

FTN77 User's Guide

DOS

In this context, DBOS has two differing behaviours, depending upon the
relationship of the physical address <lower_limit> to the amount of memory
reported by the interrupt 15 mechanism.

a) If <lower_limit> is less than the amount of memory reported by interrupt 15
thenDBOS will take <lower_limit> as the physical lower limit of the memory
it is to use. That i9DBOS will only use memory at physical addresskevae
this limit.

b) If <lower_limit> is greater than the amount of memory reported by interrupt 15
then DBOS assumes that the machine is one with more memory than the
BIOS knows about. In this cageBOS uses the portion specified by the given
memory range in addition to that reported by interrupt 15.

For example, if interrupt 15 reports 16 megabytes of memory in a 32 megabyte
machine then

DBOS 100000 2000000

will make all of the memory available as user page space, whilst
DBOS 200000 380000

will only use extended memory between 2 and 3% megabytes. The values
DBOS 1000000 2000000

would makeDBOS use the second 16 megabyte memory block in addition to that
reported by interrupt 15. The virtual addressing capabilitPBO®S makes this
transparent t6-TN77 programs.

This method does rely on the fact that you know how much memorBIth8
thinks it has. This information is usually available - simply invokiigOS
without any parameters will give a report on the amount of memory available via
interrupt 15.

Memory management

FTN77 programs can make use of ordin®®S memory at addresses beneath 640K
and extended memory at addresses above 1 Mbyte. BBOS uses the hardware
paging facilities provided in the 32-bit Intel chip, this memory can be used at any
address where it is needed. Memory is controlled in pages of size 4096 bytes. Eacl
page of memory starts on a 4096 byte boundary.

When a program starts execution all the free space fronD@® area and the
extended memory is divided into pages. This pool of pages is then used to provide
virtual memory where the program needs it. By defdDBOS will use all the

296

Chapter 23

DBOS (DOS)

extended memory it can find for pages, although it is possible fOBENS to use less
memory, so as to accomodate other uses of extended memory (see page 295).

If DBOS can find enough extended memory it will relocate most of itdeif@640K

so that only about 28K bytes of program remain resident in real mode. This is
important, because it leaves more real mode space available foFThO-
programs. AlthoughDBOS can be used with systems containing no extended
memory, it is recommended that at least 256K bytes of extended memory be available.

Configuring DBOS

DBOS can be configured using theONFIGDB utility. The DBOS_SET and
DBOS_ RESET commands may also be used to set various switchB8@S once
DBOS is loaded.

The CONFIGDB utility

CONFIGDB is a menu driven program which creates or modifies the file
DBOS.CFG in your DBOS directory. This file is read once BBOS, whenDBOS

is first loaded. After a successful reconfigurati@ONFIGDB will reboot your
machine to activate the new parameter settings. Some users may find it convenient to
save several versions BBOS.CFG and copy the required one to the correct place
just before loadinddBOS. This avoids the need to uS®NFIGDB each time the
configuration parameters are to be changed.

If, for any reason, thBBOS.CFG file becomes corrupt, it might become impossible
to load DBOS in order to runCONFIGDB to correct the situation! If this should
happen, simply erageBOS.CFG to return to the default options (it will becessary
to remove the read-only flag by issuing M8-DOS ATTRIB command).

The following parameters are controlled ®QNFIGDB:

O Disk swapping
DBOS can be instructed to use disk space as a swap area for programs which are
too large to fit into memory. If you select this feature you will be asked to choose
between swapping to aS-DOS file or to a whole hard disk partition.

The latter method is more efficient, but requires a dedicated partition, and means
thatall existing data on the disk partition will be destroyed

If you decide to use amS-DOS file as a swap area, you will be asked to specify
its size. This will be rounded down to a multiple of 128K bytes, and the file will
be created of the required length. For best performance, it is important that this

297

FTN77 User's Guide DOS

file should not be fragmented. The use of a disk compression tool may be
beneficial.

Note that theMS-DOS swap file must not be altered whil2BOS is configured
to make use of it.

If you decide to stop using a disk partition as a paging area, you should reformat
the partitionafter usingCONFIGDB to cancel its use.

O High resolution graphics
A default high resolution graphics mode can be defined to be used by the routines
HIGH_RESOLUTION_GRAPHICS_MODE@ and
GET_GRAPHICS_RESOLUTION@ (but note that these routines have now been
superseded by other more general routines). This may simply be set to standart
VGA or EGA, but it gives the opportunity to exploit other extended modes avail-
able with some graphics cards. Some particular graphics cards are listed, but it is
possible to provide information on the interrupts required and the resolution
provided by any particular card, so the list is only for convenience, and does not
constitute a limitation on the cards which can be driven.

O Run-time error actions
Whether or not a machine register dump and a routine traceback is printed when ¢
program aborts outside of the debugger can be controlled.

O Screen display
The colours for normal text, window headings, highlighted text, debugger dialog
and error message text within th€N77 system can be configured.

O Miscellaneous features
DBOS can make use of a technique which avoids the need to reopen the file
DBOS.LIB each time arFTN77 program is executed. This can result in an
improved response when a program is run, especially where slow hard disks are ir
use. However, this technique uses an undocumented featit®-DIOS, which
might therefore be unsupported in some future version or in some unusual software
environment. It is suggested that this switch be set ON unless you are
experiencing difficulties which you think may be related to the use of this feature.
This is currently the only feature related to the “Miscellaneous” option on the
CONFIGDB main menu.

If you decide to stop using a disk partition as a paging area you should reformat the
partition after usingCONFIGDB to cancel its use.

The DBOS_SET and DBOS_RESET commands

DBOS_SET <switch name>
DBOS_RESET <switch name>

298

Chapter 23

DBOS (DOS)

These two commands are used to set or reset various switcll#3GB. Switch
settings remain in effect until overwritten by anotheBOS SET (RESET)
command, or until the end of the currdDBOS session. Switch settings are not
recorded on disk (c.CONFIGDB). Typically these commands may be included in
your AUTOEXEC.BAT file.

The following switches have been defined:

TRACEBACK
If SET, this switch forces a traceback when a program fails outside of the
debugger. Usually you would want this switSET, however if you are working
with assembly code instructions for example, and are only interested in the register
dump, it may be useful tRESET this switch. The default value of this switch
may be selected by usiONFIGDB.

HEXDUMP
If SET, this switch forces a register dump when a program fails outside of the
debugger. Users who are not interested in the contents of these registers may
prefer toRESET this switch. The default value of this switch may be selected
usingCONFIGDB.

PAGING
In the first instance, paging to disk is enabled by configuBMB§DS using the
CONFIGDB utility. Once paging has been enabled in this way, it can be
temporarily disabled (and later re-enabled) by usingRW&ING switch. If you
are running applications undBESQview, paging is enabled by using tB80S
command line option/PAGE in addition to configuring DBOS using
CONFIGDB.

QUIT_ON_ERROR
This switch, which iSSET by default, causes programs which fail (including the
compiler) to simulate a control break so that a batch file is interrupted without the
need to explicitly test the return code. If the switclRESSET, then programs
which fail will return a non-zero error code which may be tested using
'IF ERRORLEVEL' in DOS.

The paging algorithm

The following description of thBBOS paging algorithm is not guaranteed to remain
unchanged in all details in future versions of the software, although the overall
mechanism will not change.

299

FTN77 User's Guide DOS

300

When a program starts to execute it begins to use up the pages of memory availabl
from the pool of memory beneath 640K armbe 1 megabyte Memory can be used
for any of the following purposes:

O Usually some extended memory will have been usedB@S on startup to
relocate part of itself outside the real mode address space.

O Memory is used for the program stack. This holds all dynamic variables and
arrays (those which have not been saved) and various temporary variables anc
return links.

O Memory is used by uninitialised common blocks. Unless/tidDEF option has
been used, such common blocks are allocated page by page as they are used.

O Code inside the system library or from user-defined dynamic link libraries is paged
in from disk as needed. This also consumes pages from the pool.

O A few pages are used for internal purposes. For example, pages are needed by tf
paging hardware itself to hold the page tables.

Extended memory pages are used preferentially for system library code because it i
sometimes possible fadBOS to reuse such code from one program run to another
without reloading it. If paging to disk is enabled, then most pages are candidates for
being swapped out. If paging to disk is not employed, then only the system library
code and unmodified portions of other memory-map&iDOS files (chiefly the

code of dynaminc link libraries) can be swapped, since a copy of the information is
already on disk ready to be reloaded when required. The above algorithm has &
number of potentially interesting consequences for the user:

m Programs designed to operate on a range of problems with varying memory
requirements can be written with one-dimensional arrays dimensioned to cater for
the largest conceivable case. Providing the arrays in question are in dynamic loca
storage or uninitialised common, and provided also thattN®EF option is not
used, only those portions of the arrays which are actually referenced will require
physical memory.

Such programs can be made robust by using the subroutine
GET_MEMORY_INFO@ (see below) to determine the actual memory available.
Note that this technique is much less effective with multidimensional arrays,
because data will be scattered in memory according to the standard Fortran
memory organisation (first subscript varies fastest).

m There is almost no limit to the size of program that can be run if disk paging is
used. The performance of programs will degrade gradually as the available
memory is reduced.

m Very large suites of code which have traditionally been run using overlaying can
reasonably be linked as a monolith and run viRbIN77. The parts of the
program which are not used will soon get paged out of memory.

Chapter 23

DBOS (DOS)

m In a system containing a very large number of small subroutines, many of which
will be rarely used, it may be worth specifying routines which use each other in
adjacentLOAD commands irLINK77. This will tend to reduce the number of
pages needed to hold the program.

Writing programs within memory capacity

If you are writing software which will be run on a range of 32-bit Intel hardware with
differing amounts of extended memory available it is useful to have a way to avoid
running out of memory and producing thiRage memory exhaustediror message.
DBOS keeps a count of pages of real memory and of pages of disk space available. If
disk paging is not enablddBOS will let a program run out of memory completely,
generating th&Page memory exhaustediiessage.

If disk paging has been enabled, howe®BOS produces the error messagmwn
to page reserveWwhile there are still enough pages remaining for the debugger to
move in to store.

It is possible to alter the threshold at which thewn to page reservemessage is
produced, and it is also possible to trap this error uSiE§ _TRAP@ to perform

some form of error recovery. The following program illustrates one useful way to
combine these facilities. This program uses page swapping for debug and/or error
recovery by forcinddBOS to fault only when the real memory has filled:

INTEGER*4 TOTAL _DOS_PAGES,TOTAL EXTENDED PAGES,
+ REMAINING DOS_PAGES,REMAINING EXTENDED PAGES,
+ TOTAL_DISK SWAP PAGES,REMAINING DISK SWAP_PAGES,
+ TOTAL_PAGE_TURNS

INTEGER*4 JUNK

EXTERNAL MY_ERROR_HANDLER

NOTE THAT THE FOLLOWING TWO SUBROUTINE CALLS COULD
BE REPLACED WITH ONE CALL TO TRAP_ON_PAGE TURN@

OO0

CALL GET_MEMORY_INFO@(TOTAL_DOS_PAGES,
+ TOTAL_EXTENDED PAGES,REMAINING DOS_ PAGES,
+ REMAINING_EXTENDED PAGES,TOTAL DISK SWAP_PAGES,
+ REMAINING DISK SWAP_PAGES,TOTAL PAGE TURNS)
C FAULT WHEN ALL MAIN MEMORY IS IN USE (I.E. TOTAL
C EQUALS DISK PAGE SPACE)
CALL SET_PAGES_RESERVE@(TOTAL_DISK_SWAP_PAGES)

C TRAP THE ERROR ’*DOWN TO PAGE RESERVE’

301

FTN77 User's Guide DOS

CALL SET_TRAP@(MY_ERROR HANDLER,JUNK,5)
CALL REST_OF PROGRAM

END

INTERRUPT SUBROUTINE MY _ERROR_HANDLER

If you decide to us6&6ET_MEMORY_INFO@ to determine the memory available to
you, you should be aware that the exact amounts of memory needed to run youl
program may vary for several reasons. For example, if a small routine happens tc
straddle a page boundary, then when it is used both pages will be required.
Furthermore, a program may call different numbers of library routines depending on
its data. However, even a small disk paging file can cushion you from these effects
when calculating whether you have enough room to run your program.

One possibility forGET_MEMORY_INFO@ is to use it to determine if your pro-
gram will run without requiring page turns, and to print a suitable warning if it will
require paging to disk - but then continue execution at the reduced speed.

Assembler instructions and the execution environment

302

When a 32-bit Intel chip is runningS-DOS it operates in ‘real mode’. In this mode
the chip emulates an 8086 chip with the addition of a few extra instructions and, of
course, a much improved performance.

Real mode offers a 1 Megabyte address space composed of 64K byte segments and |
protection of the operating system. In real m&sM at addresses above 1 Megabyte

is unaddressable. THEBOS system stays resident abdv®S and provides services

via an interrupt (78 hex). The main service provided is to switch a program from real
to protected mode. AIFTN77 programs (including the compiler and all ancillary
software) perform such a switch as the first instruction. The rest of a program
executes in 32-bit protected mode with the paging hardware turned oBPARS.

DBOS provides the tables known as &&T, LDT, andIDT, which control protected
mode operations.

Programs run wittCS, DS, ES, andSS pointing to segments which overlay each
other and offer an almost 2 Gbyte virtual address space. Observe that this implies tha
negative addresses are illegal. At the top of this space is an area of virtual memory
reserved for the system library. Part of this space is write-protected and contains
information which is demand-paged from tBBOS.LIB system file. Beneath this
area is the system stack (pointed toB@8P), which is of aBIG descending type (as
defined by theéSDT entry forSS).

Chapter 23

DBOS (DOS)

The user’s program, which has normally been loaded BXE file, lies at the bottom

of the address space. Regardless of where the program has been Idd&eDOE,

DBOS arranges the segment offsets so that the first location of the program is
location 0. TheEXE files do not contain the space for common blocks (unless they
have been initialised inBLOCK DATA subprogram) or the system stack.

When DBOS starts a program (in response to the inithil' 78) it obtains all the
unused memory below 640K by the approprigd@®S call, and pools this with
memory residing above 1 Megabyte to provide pages for use as required by the
program as it executes in protected mode. Uninitialised common and stack areas, for
example, will be provided from this pool.

Since virtual memory hardware is used, user programs are not sensitive to the memory
layout, which may vary from machine to machine, but only to the total amount of
memory available.

Programs communicate witbBOS by the use of protected motldT 78 instructions
(which generate General Protection Exceptions imBOS) followed by an
identification byte indicating the service required. This combination is usually
represented by a pseudo-op recognised bfTi¢77 in-line assembler feature. Thus,
for example, when a program wishes to terminate it issues:

INT 1’78’ ; (Hex)
DB 0

which can be coded as:
SvC 0

Users should not need to use many of ti®&€ calls (which number about 50 in all),
since the services which they offer have been packaged as callable routines. For
exampleSVC/0 is available by callingxit or by executing the end statement in the
main program. MosBVC’'s communicate withDBOS via the general registers. The
small number ofSVC’'s which may be of general use are described later in this
chapter.

When a program is linked using tR&N77 linker, LINK77, or the/LGO compiler
option there is no system library to be loaded. All system library routines (plus most
of the debugger, linker, and compiler routines) are contained DBXS.LIB system

file which, as explainedbmve, is paged on demand into the system area above the
stack.

The linker plants calls to these routines as calls to locations containing RBgitex)

which acts as an identifier, followed by a 1-byte name length followed by the name of
the routine in question. In order to make the call illegal 80000000(hex) is added to
the address (so as to make it negatiM@BOS recognises this construct, follows the
pointer and looks up the routine in its map of the system library. The call is then
altered and re-executed.

303

FTN77 User's Guide DOS

This dynamic linking is very efficient and results in much smaletE files than

would otherwise be possible. DBBOS is unable to find a routine to satisfy an
otherwise valid dynamic link it raises an error and reports that a call to a missing
routine has been made. This illustrates the fact that not all General Protection Fault:
result in program errors, and of those that do, not all are reported explicitly as General
Protection Faults.

If a program is run usindRUN77, /LGO, /BREAK or /DBREAK, then DBOS
handles most program failures by passing control to the source level debugger. This i
inappropriate when debugging assembler and programs should be EiXEafiles
without usingRUN77. Program failures are then reported as register dumps. For
example:

Coprocessor fault (status =B882, instruction address = 00000051)
Denormalised operand at User/00000054

Flags=00010246 (EQ No carry 0dd parity DF = forward)
EAX%=00010000 EBX%=0000006F ECX%=00000001 EDX%=00000000
EBP%=7FCFFFF6 ESI%=7FCFFFF6 EDI%=7FCFFFCC ESP%=7FCFFFF6
ST(0)=0.20000000000000003E-41

00000054) FSTP DS%:[EBX%-101]

The display contains an explanation of the error at the assembler level, a dump of al
the registers, and a print of the next instruction to be executed. All values are in hex
except for the contents of the co-processor stack.

The fault address (in this case User/54) is normally in the user space, although it is
possible to generate faults insiB80OS in which case the fail address would take the
form Os/<hex no>. The debugging of programs at this level is described in chapter 7.

Using assembler instructions to call DOS and BIOS

304

Real mode assembler programmers are familiar with cali@@ andBIOS routines

by loading information into the (16-bit) registers and issuing the appropNdte
instruction. ManypOS andBIOS facilities have been made available via the library
routines supplied with the compiler. For example, it is recommended that all file
access operations are performed by library routine call ratheDi®&ncalls.

The usual way to acces®OS or BIOS directly is via the subroutine
REAL_MODE_INTERRUPT@ (for detials of this and other routines in this section
see the FTN77 Library Referencemanual) However, to cater for special
requirements, and for compatability with earlier versionsTifl77, SVC/3 has been
provided. ThisSVC should be followed by one byte defining the interrupt required.
WhenSVC/3 is executedBOS will switch to real mode and issue the corresponding

Chapter 23 DBOS (DOS)

INT instruction with the 16-bit registers filled with the bottom 16 bits of the user’s
register set. For example, in order to read the printer status word RIShE)you
could execute:

INTEGER*2 STATUS

CODE
MOVB AH% ,=2 :Status code
SvC 3 :Ask DBOS to perform operation
DB z'17’ ;Printer interrupt
MOVB AH% ,=0 ;Zero extend result
MOVH STATUS,AX% :Store the result away
EDOC

This is adequate for most purposes, but it does not cater for operations which require
pointers to memory. The problem is that your Fortran code is running in a paged
environment and bears no simple relationship to real mode memory. To cater for this
problem DBOS provides a special segment which overlaps ecepiof real mode
memory. TheDS andES registers will be set to point to this segment every time
SVC/3 is executed. The segment is defined to be 512 bytes in length, and its
descriptor can be loaded inf® by a call toDOSCOM@. For example, this is the

code (somewhat simplified) for tH&OUA built in routine which prints a string on the
standard output:

SUBROUTINE COUA(C)
CHARACTER*(*) C
INTEGER*4 L
EXTERNAL DOSCOM@

C
C OBTAIN THE LENGTH OF STRING TO PRINT
C
L=LEN(C)
IFCL.LE.O)RETURN
CODE
CALL DOSCOM@ ;Load FS with pointer
+ : to DOSCOM seg
MOV ECX%,L
MOV EST%,=C ;:Point to string
MOV EDI%,=0 ;Point to start of DOSCOM seg
1 LODSB ;:Load a character
FS ;FS: prefix
MOVB [EDI%],AL% ;Put it into DOSCOM segment
INC EDI%
DEC ECX%
JG $1 ;Loop round until done
MOVH DX%,=0
MOV ECX%,L ;:Amount to write

305

FTN77 User's Guide DOS

MOVH AX%,=7"4000" ;DOS write function call
PUSH EBX% :Must save EBX
MOVH BX%,=1 ;Handle 1 is standard output
SvC 3 :Ask for real mode interrupt
DB 1°21° ;DOS call
POP EBX% ;Restore EBX or program
+ : will go wild
EDOC
END

The regenerative screen buffer is also available on a similar basis as a separat
protected mode segment. This segment starts at real mode address A0000, s
depending on the mode you are using with your video adaptor you may need to offse
into the array. Writing into this segment will, of course update the contents of your
screen at high speed. To Ida8 with the appropriate selector cSICREENSEG@.

DBOS memory map

The following table shows memory areas which should not be allocated to link
libraries as they are reserved for use by software marketed by Salford Software Ltd.

Address Usage

41000000 - 41FFFFFF | SGKS, LIBCGKS.LIB

43000000 - 43FFFFFF | SGKS, LIBFGKS.LIB

4C000000 - 4CFFFFFF Pascal dynamic link library.

50000000 - 50FFFFFF NAETNI0 maths library.

50000000 - 51FFFFFF Pascal heap.

51000000 - 51FFFFFF NAETN77 maths library.

52000000 - 52FFFFFF | GKS

53000000 - 53FFFFFF IMSL fdiTN90

54000000 - 54FFFFFF ISML f&TN77

57000000 - 57FFFFFF | FTN90 run time system.

60000000 - 7ECFFFFF| DBOS.

7EDO00000 - 7FFFFFFF| DBOS default storage heap.

306

24.

Running DBOS applications under
Windows (Winl6)

Introduction

TheDBOS system includes the Windows interface, knowmMda3BOS. WDBOS is
necessary only if you intend to uB8B0OS, or run aDBOS program, under Microsoft
Windows 3.1 or Windows 95WDBOS provides the interface to Windows memory
management functions and other services that are vital to the correct operation of
DBOS in this environment.

Unlike some other multi-tasking environments, Windows does not offer DOS
programs access to the Virtual Control Program Interface (VCPI) for switching to
protected mode. One of the functionsWWDBOS is to provide a subset of these
missing functions. UsingvDBOS it is possible to run one or more copieD&HOS
concurrently and to switch betweBfBOS programs and other Windows applications
within a Windows session.

Installing WDBOS

WDBOS is a virtual device driver which is in the fil&DB0OS.386. This file is
copied into theDBOS system directory on your hard disk during the installation
procedure. To us&/DBOS, Windows 3.1 must be informed thADBOS.386 is to

be loaded as a device driver. This information should be included in the Windows
SYSTEM.INI file. The installation procedure will update yo8l¥STEM.INI file
automatically if you give theatessary confirmation when prompted. Failing this, you
can update the file manually as follows:

O Change to youWINDOWS directory.

307

FTN77 User's Guide Winl6

O Edit theSYSTEM.INI file using a text editor that does not app&®td-Z to the
file. Find the “[386enh]” section. On a fresh line, after the last “device="
directive, enter:

device=c:\dbos.dir\wdbos.386

or the equivalent for your configuration (note there is no asterisk following the

A typical extract from &YSTEM.INI file is shown below:

device=*biosxlat

device=*vdc

device=*vmcpd
device=*combuff
device=*cdpscsi
device=c:\dbos.dir\wdbos.386
local=CON

FileSysChange=off

Once this procedure has been carried DBQOS may be used in a DOS window in
in Windows 95 or Windows 3.1 “enhanced” mode.

Windows modes

308

Windows 3.1 provides two modes of operatistandardandenhanced These modes
allow you to run one or more 16-bit application programs, each®& window
(commonly called a DOS Box"”). To theDBOS user, only the Windows 3.1
enhanced mode of operation is of interest, as this is the mode that offercdish &

the functionality of the 32-bit Intel chips. Windows 95 always uses “enhanced mode”.

The command:
WIN/3

starts Windows in enhanced mode, where DOS programs execute in virtual mode anc
Windows applications execute in 16-bit or 32-bit protected mode.

If you start Windows with the command:
WIN

(i.e. with no parameter) then Windows determines the mode that will be used. On a
32-bit machine thaVIN command will use enhanced mode if sufficient extended

Chapter 24

Running DBOS applications under Windows (Win16)

memory is available. If there is insufficient extended memory\h¢ command will
enter standard mode without reporting the fact to you.

For this reasonDBOS must not be loaded before Windows is startedDBOS has
been loaded, then it should be unloaded by typing:

KILL_DBOS

before Windows is started.

Running programs in a DOS box

To invoke a DOS session from within Windows 3.1, simply double click on the “MS-
DOS Prompt” icon in the Program Manager (Main) menu. Under Windows 95 click
on theStart icon at the foot of the screen and move the mous&rdgrams. Then
select “MS-DOS Prompt”DBOS may be then invoked by typing

DBOS

as you would do under DOS. Please note thaDB@©S option/DISK_CACHE is
not available when usingBOS within a DOS Box in Windows.

A DOS session may be windowed or may occupy the full screen. Switching between
full screen or windowed operation is done by pressind\thEnter key combination.

You can switch between your DOS Box and Windows by pregdtrtab.
If you want to remov®BOS, and exit from a DOS box, type

KILL DBOS
EXIT

If you don’t useKILL_DBOS before typingEXIT, you may be presented with a small
window asking you to use your “pop up program” and t@td-C to return to
Windows. If this happens, ignore the message and @ygeC. This message is
normal and does not indicate any fault. Typi¥J T will terminate thaDOS session
andDBOS will be removed from memory. The memory useddBOS during the
DOS session il be released. In Windows 95 you can exit by clicking onXHaox

in the top right hand corner of a windowed DOS box.

As an alternative to thebave procedure you may prefer to create a .BAT file
containing a call toBOS (andHOTKEY77 with HELP77 if you prefer) followed by
a call toCOMMAND.COM (or perhaps a call to your application).

Under Windows 3.1, you may then use the Windows PIF Editor to create a
corresponding .PIF file. The Windows Program Manager can then be used to attach

309

FTN77 User's Guide Winl6

this .PIF file to an icon in order to ridBOS from the Program Manager. This will
emulate theMS-DOS prompt icon.

Under Windows 95, once a batch file has been created it is possible to set up a shol
cut to the batch file in either of the following two ways.

O Click the right mouse button on the desktop to bring up a popup menu. Select the
New option followed byShortcut. Now either enter the full path and filename of
the batch file or use tH&rowse option to find the file. Once you have selected the
file you will be prompted to select a suitable icon. This icon will then appear on
the desktop and when you double click on the icon the batch file will be called.

O Alternatively, to create &tart program group entry, click with the right mouse
button on theStart icon and selecOpen from the menu. Now double click on
the Programs group so that it opens. Next double clickYsour Computer icon
and select the batch file and using the right mouse button, drag it into the
Programs area. SeledCreate Shortcut, from the menu that appears. You will
now be able to start the batch file fr&tart andPrograms.

Switching back to Windows

310

The key combinatiorAlt-Tab will invoke the Windows task switcher. &essive
depressions of th&ab key, keeping thelt key depressed, will cycle through the
currently running applications.

Releasing the keys will select the currently visible application. DD& session will

be shown iconised at the bottom of the screen. Double clicking on this icon or using
the task switcher will enable you to reselect your origiD@S session. Under
Windows 95 you can use the Taskbar bar the is normally at the foot of the screen.

It is possible to have multiplBOS sessions and therefore Itiple DBOS sessions.

Each one of these DOS sessions may be regarded as running on a different machin
or “Virtual Machine” in Windows terminology.DBOS must be invoked separately

for each DOS session in which it is required. The exception to this rule is the case
when you have task-switched back to Windows leaving the DOS session active anc
have subsequently task-switched back to the same DOS session.

Achieving the above is much easier if you are using winddw@& sessions. Task
switching may then be carried out by clicking on the window of the application or
DOS session that you wish to select.

Chapter 24 Running DBOS applications under Windows (Win16)

WDBOS version number

A simple Windows utility applicationWWDBOSVER.EXE, is provided. This utility
can extract the version number of WDBOS.386 device driver present on your
system.WDBOSVER should only be run under Windows in enhanced mode.

311

FTN77 User's Guide Winl6

312

25.

Plotter Interfacing (DOS)

The plotter

The comments below relate to the HP 7550a plotter. If you have another type of
plotter you are advised to read the manuals supplied with your plotter to see how it
should be interfaced to the PC.

Cabling requirements

The correct plotter cable is essential for thecessful use of the plotter. The cable
must be suitable for hardwire handshaking and cables of the ‘straight thru’ type or
cables designed to be used with packages that only sifPoitXOFF handshaking
should not be used. Figure 25-1 shows the correct pin outs for such a cable. Typical
errors caused by use of the incorrect cable areD®8 ‘Access Denied’ at the PC

end and ‘I/O buffer overflow’ at the plotter end.

Panel settings

The PC and the plotter must be set to the same baud rate. Other typical settings are:

BYPASS OFF
HANDSHAKING MODE HARDWIRE DIRECT
DATA FLOW REMOTE STANDALONE

313

FTN77 User's Guide DOS

Plotter end: PC end:
Protective Ground 1 ® ° 1 Protective Ground
™D 3 ~ 2 RD
RD 2 : : 3 TD
SGND 7 "7 SGND
DTR 20 * * 5 cTs
° °

| 6 DSR

CTS 5

DSR 6 | 20 DTR
@ @

Figure 25-1 Plotter cable pin-out

Plotting plot files

There are three ways to plot tH®GL files produced byFTN77.

1) Use theCOPY command. If the plotter is attached@®ML1 and the file is called
PLOT.PLT, then type:

COPY PLOT.PLT COM1
2) Use thePRINT command. Type:
PRINT PLOT.PLT /D:COM1
3) RedirecPT1 to COM1. Type:

MODE LPT1:=COM1 Redirects LPT1 to COM1
PRINT PLOT.PLT Plots PLOT.PLT

The redirection need only be done for the duration of DS session. All
subsequent prints will automatically be channeled thra@M 1. To terminate
redirection type:

MODE LPT1:80,6 or similar
COM1 may ‘time out’ whilst paper is being fed or the pen changed. If this
happens add a ‘,p’ to the initial mode command that set€@id1 parameters
e.g.

MODE COM1:9600,n,8,1,p

This will cause a continuous polling G0OM1 should such a ‘time out’ condition
occur. The ‘time out’ loop may be terminated witrl-Break.

314

20.

Calling real mode libraries and
programs (DOS)

Introduction

This chapter describes how you can adapt existing real mode libraries and programs
for use with programs compiled WitiTN77. If you are not familiar with the various
execution modes provided by a 32-bit Intel CEip you will find it helpful to read

the next section before attempting to follow the description starting on page 328.

The library subroutines provided BWyTN77 and referenced here are described in
detail in theFTN77 Library Reference

Real and protected modes

A 32-bit Intel CPUdiffers in several fundamental ways from the original 8088 CPU
around whichMIS-DOS was designed. The most obvious and,FoN77, most vital
characteristic is the ability to manipulate 32-bit data and to use 32 bits to address data,
thus making up to four gigabytes of memory theoretically available. 32-bit chips also
gain in speed of dataceess as they manipulate information in chunks four times
bigger than those of the IBM PC’s 8088 processor, and twice the size of the IBM
PC/AT 80286's chunks.

Another, less immediatelybvious, distinction is thd82-bit chip memory-management
facilities. These facilities break down into three distinct modes of operation. The first
is real mode which is provided to guarantee compatibility with existing applications.
The processor emulates a fast 8088 or 8086. When operating in real mode, a 32-bit
chip cannot address more than 1Mbyte of memory, just like the 8088/86.

315

FTN77 User's Guide DOS

The 80286 and all 32-bit chips hav@mtected modef operation. 80286 protected
mode allows up to 16 megabytes of data to be addeel, whereas on 32-bit Intel
chips the protected mode makes four gigabytes of memory addressable. Both
protected modes also support virtual memory techniques, whereby data can be
swapped to and from disk when real memory is full. This allows several applications
to run in memory concurrently, each protected from the others’ anti-social behaviour
by the chip’s memory management. The 80286 chip will operate in either protected
mode or in real mode, but a change of mode requires the system to be rebooted, tht
limiting its usefulness in many applications.

32-hit Intel chips have a feature not available with the 80286 ¢hitpal 8086 mode

Here the processor segments memory into 1Mbyte chunks, complete with 640K limit,
each of which appears to BOS application to be an independent machine.
Unaltered, multipleDOS applications can run in one box without interfering with
each other.

Unfortunately, with a 32-bit Intel chif)OS applications cannot use protected mode
directly. There are two approaches to making the power and addressing capability
available to programs:

1) Provide a new operating system, such as OS/2 or Windows 95/NT, and write
applications which can exploit it.

2) Make use of aDOS Extender”, such as oldBOS package.

Using DBOS, programs can make use of 32-bit Intel protected mode and switch
readily in and out of real mode. ThUusTN77 programs can co-exist witbOS
applications. DBOS allows full use of 32-bit addressing and uses the paging feature
of the 32-bit Intel CPU so that programs can address up to 4 gigabytes of memory.
When anFTN77 program has been compiled and link-loaded, the address space
which is used for, say, a common block, might be fragmented in physical memory,
because of the way the paging algorithm works.

Rules for calling real mode from protected mode

316

This process will seem at first like a ‘kludge’ which, of course, it is. We stress that
there is no standard way provided by the 32-bit Intel chip to achieve real and protectec
mode inter communication. Real mode and protected mode code may be loaded at th
same time into physical memory. The mode in which the 32-bit Intel CPU is operat-
ing can be switched under the control of PBOS system so that it is possible to
‘call’ real mode code from a protected mode program.

However, data which iscaessible in 32-bit Intel protected mode (such as an array),
may be fragmented in physical memory. If real mode code needs to access data whic

Chapter 26

Calling real mode libraries and programs (DOS)

is in a protected mode program, or vice versa, the data must be copied in physical
memory. It should always be kept in mind that this process of mode switching and
data copying has an execution time overhead associated with it.

Calling real-mode libraries

In order to use a real-mode library from BRN77 program, you will have to do the
following:

1) Prepare a standaMS-DOS executable EXE) file, by compiling and linking a
main program and library routines using your chosen real mode compiler(s) (and
linker if provided), such as Professional Fortrei7L, MASM, etc. and théMS-

DOS linker, LINK. As you will see from the simple example on page 330, the
main program should contain all of the following:

a)

b)

c)

a common block which will be used to transfer data between the real and
protected mode programs;

if more than one real mode ‘service’ is to be controlled by the program, a
Fortran computedsOTO statement, or its equivalent, which will allow the
various operations in the real mode program to be controlled from a variable
whose value is set by the protected mode program which calls it;

at least one call to the subroutiREN77WT (supplied on thé&=TN77 release

disk in source and object forms), which is used to initialise the real
mode/protected mode interface and subsequently to return control to the
protected mode program each time that the real mode program completes any
stage of execution. Note that this routine has a number of entry points as
different real mode compilers use different calling conventions. Details of
these entry points are as follows:

Real Mode Compiler |Entry point name
LaheyF77L FTN77WTL
Prospero Fortran FTN77WTP
Professional Fortran FTN77WT
Microsoft Fortran FTN77WTM
TurboC FTN77WTC

O The single argument 6TN77WT may be of any type.

O Any of the above entry points may be used with real mode assembler code
compiled with MASM. Which entry point will depend on the calling
conventions you have chosen.

2) Incorporate the following into yol#TN77 protected mode program:

317

FTN77 User's Guide DOS

318

a) A common block which will be used to transfer data between the real and
protected mode programs. This common block should be the same size in byte:
as that described in 1(a), above.

Note: The two common blocks have the same definition but, because of the
limitations of the 32-bit IntelCPU chip described on page 327, they do not
represent the same area of physical memory. It is necessary to copy date
between the two physical common block locations.

b) Calls to several special system subroutines in RR&77 library which
initialise the mechanism and transfer data between the common blocks in the
real and protected mode programs.

3) It is possible to use tHEITN77 debugger while programming in this way, but it is
not possible to use any real mode facility such as MicrosGOHEVIEW or
Lahey'sSOLD.

4) The real mode program should not terminate &TOP, END or CALL EXIT.
Termination of execution should always be in the protected mode program.

5) Both the real and protected mode programs can perform input/output, but the same
file should not be open simultaneously in both programs.

The example which follows will clarify the preceding explanation.

The example programs listed here are provided on the distribution diskette in the
DEMO directory. The protected mode program is provided in source and executable
form (PPROG.FOR and PPROG.EXE). The real mode program is provided in
source form RPROG.FOR). An example output filePPROG.OUT, is also on the
diskette.

Protected mode program (FTN77)

C Declare common block etc.

C

INTEGER*4 K,ICOMSIZE

PARAMETER(IX=10,ICOMSIZE= IX*4 + 8)

INTEGER*2 X(IX),Y(IX),MAX,MIN

COMMON K,X,Y,MAX,MIN
C
C Start with some calculations using one of your own
C FTN77-compiled subroutines:
C

CALL CALC(X,Y,IX)

C
C The call to LOAD REAL MODE_LIBRARY@ Toads the real
C mode program and initialises the calling mechanism.
C
C The first executable

Chapter 26

OO OO

OO OO OO OO0

OO OO0 00

(@]

Calling real mode libraries and programs (DOS)

statement in the real mode program should be a call to
the subroutine FTN77WT, which returns control to this
program at the statement following this call.

CALL LOAD_REAL_MODE_LIBRARY@(’C:\FTN77.DIR\DEMO\RPROG.EXE")
PRINT*

PRINT *, Returned to protected mode with K = *,K

K=1

The following call moves ICOMSIZE bytes of data TO the
real mode program’s common block. Note that both
arguments must be INTEGER*4

CALL COPY_TO_REAL_MODE@(K,ICOMSIZE)

The real mode program is invoked using a value of 1 for
the flag, K

CALL REAL_MODE@

The results are copied back from the real mode program.
The following call moves ICOMSIZE bytes of data FROM the
real mode program’s common block. Note that both
arguments must be INTEGER*4

CALL COPY_FROM_REAL MODE@(K,ICOMSIZE)
And printed

PRINT*
PRINT*,*Maximum and minimum values are’ ,MAX,MIN

Now call real mode program to use a plotting routine

K=2

CALL COPY_TO_REAL_MODE@(K,ICOMSIZE)
CALL REAL_MODE@

CALL COPY_FROM_REAL MODE@(K,ICOMSIZE)
PRINT*

PRINT*, Returned from real mode after plotting’
END

SUBROUTINE CALC(X,Y,IZ)

INTEGER*2 X(IZ),Y(IZ)

REAL RANDOM

DO I=1,17

319

FTN77 User's Guide DOS

X(I)=I

Y (I)=RANDOM()*32000.0
END DO

END

Real mode program

C Declare common block.
C This common block declaration should exactly match that
C in the FTN77 program
C
INTEGER*4 K
PARAMETER(IX=10)
INTEGER*2 X(IX),Y(IX),MIN,MAX
COMMON K,X,Y,MAX,MIN
PRINT*,Real mode initialised’

This subroutine is used to return control to the
protected mode program each time this real mode
program has finished a stage of its execution.
Notice that all calls to subroutine REAL_MODE@
in the FTN77 program start execution from

the statement after this call.

= O O OO0 000

CALL FTN77WTL(K)

PRINT *, Real mode called with K = ",K
G0T0(99,2,3),K+1

PRINT*,’Invalid K value’

GOTO 99

(@]

Data manipulation using a real mode subroutine
2 PRINT *,”Real mode service 1 - max/min’

CALL MM(Y,IX,MAX,MIN)

GOTO 1

Plotting using a real-mode subroutine

W O OO

PRINT *,”Real mode service 2 - plotting’
CALL HIST(X,Y,IX)

GOTO 1

99 CONTINUE

PRINT *, Real mode at end with K = ",K
GOTO 1

END

SUBROUTINE MM(Y,IY,MX,MN)

320

Chapter 26

Calling real mode libraries and programs (DOS)

INTEGER*2 Y(IY),MX,MN
MN=32767

MX=0

DO 1 I=1,1Y

MX=MAX (MX,Y(I))
MN=MIN(MN,Y(I))
CONTINUE

END

SUBROUTINE HIST(X,Y,IX)
INTEGER*2 X(IX),Y(IX)
DO 1 I=1,IX
IC=Y(I)/1000
WRITE(*,100)X(I), ("**,d=1,1C)
CONTINUE

100 FORMAT(1X,12,1X,32A)

END

Real mode program (C example)
/*

Declare common block equivalent.

This common block declaration should exactly match
that in the FTN77 program. This relies on the
property that most compilers will put consecutively
declared data contiguously in memory, all passed data
may need to be placed in an array to ensure
contiguous storage.

ffdefine IX 10

long K;

float X(IX),Y(IX);

extern void far FTN77WTQC(long far*);

puts("Real mode initialised");
K=100;

/*This subroutine is used to return control to the

protected mode program each time this real mode
program has finished a stage of its execution.
Notice that all calls to subroutine REAL_MODE@ in
the FTN77 program start execution from the statement
after this call. */

while (1)

{ FTN77WTQC(&K);

321

FTN77 User's Guide DOS

printf("Real mode called with K = %1d\n",K);
switch (K)
{ case 1
/* Data manipulation using a real mode
subroutine /*
puts("Real mode service 1 - sorting");
sort(X,Y,IX);
break;
case 2 :
/* Plotting using a real mode subroutine */
puts("Real mode service 2 - plotting");
plothp(X,Y,IX);
break;
case 0 :
printf("Real mode at end with K = %1d",K);
break;
default :
puts("Invalid K value™);
break;

Sample output
Real mode initialised
Returned to protected mode with K = 0

Real mode called with K = 1
Real mode service 1 - max/min

Maximum and minimum values are 25864 1410
Real mode called with K = 2
Real mode service 2 - plotting

]_*

2 OIIII110

3 IO

A4 [T

5 IO

6 10

7 OIIIIIII1I0

8§ 1o

9 [T

10 OII1III1m

322

Chapter 26 Calling real mode libraries and programs (DOS)

Returned from real mode after plotting

Notes:

1) The protected mode program contains the path name of the real mode library. This
will need to be changed, and the program recompiled, if you have installed your
compiler/demo programs differently.

2) The real mode program contains a call to the rolgiFé77WTL. This is an entry
point in the subroutinETN77WT provided byFTN77. You may need to change
this to the entry point appropriate for your real mode compiler before compiling
this routine.

3) When you have compilddPROG.FOR with your real mode compiler, it should
be linked withFTN77WT.OBJ, plus your compiler libraries.

4) By comparison of the routines above with the sample output, it is possible to see
the following standard sequence of events:

a) The call toLOAD_REAL_MODE_LIBRARY@ from the protected mode
program initialises the system by entering the real mode main program,
executing the call t&TN77WT and returning immediately to the protected
mode program.

b) Subsequent calls REAL_MODE@, with appropriate values for the common
variable K, enter the real mode program at the line following the call to
FTN77WT, execute as appropriate and terminate with a caRTi77WT.
Execution is returned to the protected mode program.

¢) Program execution is always terminated $YOP, END etc.) in the protected
mode program.

Calling real-mode drivers

Drivers are terminate-and-stay-resident programs (TSRs). Examples are those
external drivers provided WSS, and theBTRIEVE record manager program. Once
loaded, the TSR remains ready to be activated by an interrupt from some other
program or external source. In these cases, it may be possible to use a more
straightforward method with which to call real mode code. The subroutines

ALLOCATE_REAL_MODE_MEMORY @
COPY_TO_REAL_MODE1@
COPY_FROM_REAL_MODE1@
REAL_MODE_INTERRUPT@

are used as described below:
1) Install the real mode TSR.

323

FTN77 User's Guide DOS

2) The protected mode program should allocate real mode memory for itself using
ALLOCATE_REAL_MODE_MEMORY@. For example, in order to allocate
3000 bytes of real memory, the protected mode program should use the following
call:

INTEGER*4 T4PTR
INTEGER*2 IC
CALL ALLOCATE_REAL_MODE_MEMORY@(I4APTR,INTL(3000),IC)

The use ofNTL ensures that the argument is typFEGER*4. IC is a status
code which is zero for successful allocatiddPTR is a real mode address which
can be used in the protected mode program.

If the memory requirement is greater than 30000 (thirty thousand) bytes, the
DBOS commandCOMSPACE should be used to reserve an appropriate amount
of real memory. For example, in order to reserve 40000 bytes for your protected
mode application, use

COMSPACE D’40000°

3) The protected mode program can now use a data area of its own to prepare
information for the real mode program. This information is then copied to the
allocated area of real mode memory us®@PY_TO REAL MODE1@. For
example,

COMMON/PROTCD/DATA_AREA(1000)
INTEGER*2 DATA_AREA,IC
INTEGER*4 RMADDR

CALL ALLOCATE_REAL_MODE_MEMORY@(RMADDR,INTL(3000),IC)
IF(IC.NE.O)STOP’Failed to allocate real mode memory’

CALL COPY_TO_REAL_MODE1@(DATA_AREA,INTL(2000),RMADDR+1000)
This example allocates 3000 bytes of real memory, then copies data into this arez
starting at offset 1000.
4) The driver can then be called using an interrupt as follows:
CALL REAL MODE INTERRUPT@(REGISTERS,INTERRUPT)

5) Any result data can be copied back from the real mode driver as in the following
example:

CALL COPY_FROM_REAL_MODE1@(DATA_AREA,INTL(2000),RMADDR)

Note: the arguments f@OPY_FROM_REAL _MODEL1@ are in the same order
as forCOPY_TO_REAL _MODE1@.

324

27.

Execution errors and
IOSTAT values

All execution error messages consist of a message in English. These messages are
listed below. Execution errors corresponding to input/output statements can be
trapped by means of tHeRR= and/or IOSTAT= keyword specifiers used with the
input/output statements (see page 103). The value returd&BBAT in this case is

n wheren is the execution error number that appears in the table below. Users are
advised to trap specific errors by means@BTAT rather than to continue execution
regardless of the error that has been detected by the input/output system.

Notes:
O ThelOSTAT value -1 indicates that an end-of-file condition has occurred.

O The positive values chosen I@STAT in this implementation of Fortran 77 will,
in all probability, differ from those chosen in any other implementation for the
same error conditions.

Error

Message

No error

Floating point arithmetic ovéow

Integer arithmetic overflow

Argument toCHAR outside range 0 - 255

Character argument/function name of wrong length

Attempt to execute invalid assign&DTO

Inconsistent call to routine

DO-loop has zero increment

User-specified range check error

LOOO\ICDUI-&OOI\)I—‘O%

Might be array bound error or corrupt program - rerun with checks

325

FTN77 User's Guide

326

10 Lower substring expression > upper

11 Array subscript(s) out-of-bounds

12 Lower substring expression out-of-range

13 lllegal character assignment

14 | Attempt to alter an actual argument that is either a constariD@r\aariable
15 Attempt to access undefined argument to routine
16 Lower array bound > upper bound

17 Upper substring expression out-of-range

18 | This routine has been entered recursiVeiNSI mode)
19 Actual array argument size smaller than dummy array argument size
20 | Argument toSINH/COSH out of range

21 Zero raised to negative or zero power

22 Floating point division by zero

23 Floating point arithmetic undew

24 | This source has not been compiled WwRROFILE

25 | Argument toEXP out-of-range

26 | Argument toASIN/ACOS out-of-range

27 Invalid floating point number

28 Negative argument to square root

29 Call to missing routine

30 Storage heap is corrupt

31 Floating point number too big for integer conversion
32 | Second argument tdOD is zero

33 | Both arguments tATAN2/DATAN2 zero

34 Negative or zero argument to logarithm routine

35 lllegal argument td AN routine

36 Negative number raised to non-integer power

37 Integer divide overflow

38 lllegal character assignment (R.H.S. overlaps L.H.S.)
39 lllegal window

40 No more windows available

41 Maximum number of breakpoints already set

42 This line number is not available as a breakpoint
43 Invalid command

Chapter 27

Execution errors and IOSTAT values

44 Unable to open file

45 String not found

46 Routine not found or not compiled in check mode
a7 Invalid expression

48 No more room for debugger information

49 Attempt to call a block data subprogram

50 Undefined input/output error

51 Format/data mismatch

52 Invalid character in field

53 Overflow detected by input/output routine (data out-of-range)
54 | m>win lw.mrun-time format

55 [m>win Ow.m

56 | Unit has been closed by means other th@h@SE statement
57 Attempt to read past end-of-file

58 Corrupt listing file

59 There is no repeatable edit descriptor in this format
60 Invalid external unit identifier

61 Invalid scale factor

62 Invalid or missing repeat count

63 Preconnected file comprises formatted records
64 Preconnected file comprises unformatted records
65 This command is not permitted from this window
66 File not in correct format

67 Character buffer too small

68 Field width exceeds direct access record size

69 Invalid record length (see documentation)

70 Logical input field is blank

71 H or apostrophe editing not allowed for input

72 Repeated formats nested too deep (>10)

73 Missing opening parenthesis in ‘run-time’ format
74 Invalid editing descriptor

75 A zero or signed repeat count is not allowed

76 Repeat count not allowed

77 Digit(s) expected

327

FTN77 User's Guide

328

78 Decimal point missing

79 Missing separator

80 Invalid ACCESS specifier

81 Invalid combination of specifiers

82 | ANSI - RECL is an invalid specifier

83 Label does not reference a format statement

84 | Only BLANK may be changed for a file that exists for a given program
85 Repeated character constant must not extend past the end of a line
86 Character input/output list item is part of internal file

87 | ENCODE/DECODE character count zero or negative

88 Internal file must not be constant or expression

89 Attempt to write past end of internal file

90 File access and properties are incompatible

91 Missing) from complex number

92 Invalid CLOSE statement

93 Missing (from complex number

94 | Unit has neither bee@PENed nor preconnected

95 Invalid direct access record number

96 lllegal operation BACKSPACE/ENDFILE/REWIND) on a direct access file
97 Direct access record length too big

98 Invalid FILETYPE specifier

99 | A function which performs 1/0O must not be referenced WRITE or PRINT statement
100 | List-directed input/output is not allowed with direct access

101 | Direct access is not allowed with an internal file

102 | A formatted

103 | MissingFILE specifier

104 | File positioned at end-of-file

105 | Invalid record length for existing direct access file

106 | A valid record length must be specified if access is direct

107 | STATUS=NEW must not be used with an existing file

108 | Direct access record length mismatch

109 | Brackets nested too deeply (>20)

110 | Unformatted record is corrupt

111 | Coprocessor invalid operation

Chapter 27

Execution errors and IOSTAT values

112 | Reference to undefined variable or array elenéitiDEF)
113 | Insufficient allocatable storage

114 | Emulator failure

115 | Invalid hash table

116 | Too many files open

117 | Disk full

118 | ANSI - exponent out-of-range (use Ew.dEe or Gw.dEe edit descriptors)
119 | Down to page reserve

120 | Reference to non-existent Weitek coprocessor

121 | Too many registered traps

122 | No high resolution graphics mode is available

123 | Too many labels in debug macro file

124 | This command is only allowed in a macro

125 | Afile of this name already exists

126 | ANSI - invalid STATUS specifier

127 | ANSI - invalid edit descriptor

128 | File does not exist

129 | Invalid attempt to use peripheral

130 | Unformatted record too big

131 | ANSI - octal/hexadecimal/binary input not permitted
132 | Device type not known on this installation

133 | Expression required

134 | File already in use

135 | Sign not at start of field in business editing descriptor
136 | Business editing not allowed for input

137 | lllegal operation after BACKSPACE

138 | Attempt to write to readonly file or inconsistent file access
139 | You may not write to a file that iIREADONLY’

140 | You cannoOPEN a directory

141 | ANSI - invalid $ in format descriptor

142 | $ editing not allowed for input

143 | Incorrectly positioned $ character in format descriptor
144 | lllegal name iOPEN/CLOSE/INQUIRE statement

145 | ANSI - the Aw edit descriptor must be used with an item of YpARACTER

329

FTN77 User's Guide

330

146 | File path not found

147 | Macro label not found

148 | Reference to undefined variable or array elen(éitiDEF)

149 | Value returned bRECL= or NEXTREC= will cause overflow (uséNTEGER*4 instead
of INTEGER*2)

150 | Count forENCODE/DECODE must be in the range 1 to 32767

151 | Invalid FORM specifier

152 | Invalid STATUS specifier

153 | Invalid BLANK specifier

154 | Unpaired brackets

155 | Error detected by user-specified device driver

156 | Unexpected error in Fortran I/O system

157 | Do-loop will never be executddDOCHECK)

158 | Unformatted record is too short for input list

159 | Trailing sign or ‘CR” not at end of field in business editing descriptor

160 | Multiple leading sign before “$” in business editing descriptor

161 | “* must precede “$” or “Z” in business editing descriptor

162 | “$”in wrong position in business editing descriptor

163 | “Z” after decimal point in business editing descriptor

164 | Decimal point appears more than once in business editing descriptor

165 | Comma at start of field or after decimal point in business editing descriptor

166 | Invalid character found in business editing descriptor

167 | DO-loop will never be executgdd OCHECK)

168 | UnanticipateddOS error encountered in 1/O system

169 | Underflow detected by input/output routine (data out-of-range)

170 | Equals missing

171 | Absolute value of complex argument out of range

172 | The left hand side of BET must be a variable or array element

173 | You may not delete a file which iIREADONLY’

174 | Array has wrong number of dimensions

175 | Array subscript(s) out-of-bounds

176 | Unpaired quotes

177 | Name longer than 32 characters

178 | Variable is not an array

Chapter 27 Execution errors and IOSTAT values

179 | Variable is an array

180 Unknown variable

181 | Block IF unterminated on leaving a macro

182 | Error in the structure aVHILE-ENDWHILE block in a macro
183 | Error in the structure of blodk in a macro

184 | Display full

185 | Routine not found

186 Unknown vector

187 | Parameters may not be altered

188 | Too many points to be plotted

189 | ANSI - invalid FORM specifier

190 | Attempt to read from a file opened wi#ORM="PRINTER’
191 | Key name expected

331

FTN77 User's Guide

332

28.

Error and exception
handling (Win32)

Exceptions are events generated outside the normal flow of control through a program
or thread of execution. Such an event may arise due to a hardware event (such as a
page fault) or through a software trap such as an attemptéssaanother processes
memory space. The default action of the process is to terminate the process and
produce diagnostic information. Exceptions occur for the following events:

O

Denormal floating point operand
Floating point divide by zero
Inexact floating point result
Invalid floating point operation
Floating point overflow

Floating point stack overflow
Floating point underflow

Integer divide by zero

Integer overflow

Integer underflow

Access violation

Breakpoint

Single step

Execution of a privileged instruction

o Iy I I [o [o A

O

These exceptions can be split into three distinct groups: Floating point math
exceptions, integer math exceptions and debugger exceptions.

FTN77 provides the programmer with a method to trap these exception events and to
act appropriately. This means that it is possible to trap an underflow event and reset a
variable to a known (say zero) value.

333

FTN77 User's Guide Win32

334

This is achieved by maintaining a table of functions to be executed in the event of an
exception. Only one exception handler may be installed for any particular exception
event at any one time. So you may have two different handlers installed for two
different exception events, but you may not have two handlers chained together for the
same exception event. This also applies to mixed language programming where
nominally different handlers are required for Fortran and C code. If you want to

handle an exception differently in different parts of the code, you can remove one
exception handler and install another.

Each exception event is identified by an exception event code. This is an integer value
that is used to uniquely identify each of the possible exceptions that are trapable by the
user. These codes are defined in the inserefitept.insvhich is provided as part of

the FTN77 system.

When an exception event occurs, the operating system copies the machine state int
an area of memory. The image of the machine may be manipulated to correct the faul
in order to resume execution in an orderly manner. Once the machine state has bee
saved, the exception handler searches for a handler offering the event to the following
processes:

O Debugger first chance.
O The frame based handler installed by the program.
O Debugger second chance.

The frame based handler is the one installed by any main program compiled with
FTN77. This handler is really a filter. It examines the exception event that has

occurred and looks to see if the user program has installed a handler for that event. |
such a handler routine is installed, control is passed back to the routine. If no handler
is found, the Fortran program takes the default action or it terminates and the
exception details are displayed for debugging purposes.

Here is a summary of thETN77 error and exception handling routines that are
peculiar to Win32. Details are given in th€éN77 Library Reference

ACCESS_DETAILS@ To get details of the access violation.

CLEAR_FLT_UNDERFLOW@ To clear a floating point underflow exception.

EXCEPTION_ADDRESS@ To find the address of the instruction that generated the
exception.

GET_VIRTUAL_COMMON_INFO@ Tg get virtual common block details.

PRERR@ To print the error message associated with a given error code.

RESTORE_DEFAULT_HANDLER@ To remove a user defined exception handler.

TRAP_EXCEPTION@ To install a user defined exception handler.

29.

Overview of the FTN77
run-time library

This chapter contains outline information about the routines that are available in the
FTN77 run-time library. Further information is available B®TN77 Library
Referenceand in the on-line Help system (in some cases a reference to MS-DOS
should be replaced by the appropriate operating system). The routines below are
arranged in functional groups with the given headings. Within the groups the
routines are arranged in alphabetical order.

The following symbols are used to denote the availability of each function on the
various platforms:

no symbol Function is available on all platforms, DOS, Winl16 and Win32.

1] At the time of going to press, function is only available under DOS .
2] Function is only available under DOS.
3] Function is only meaningful under DOS. Under Win16 and Win32

the function either has no operation or is not relevant. This category
is for DOS programs and programs that are being ported from DOS to
Windows.

4] Function is available undddOS and also inClearWin+ but with
slightly different functionality. See tHETN77 Library Referencéor
the DOS function and th€learwin+ documentation (the manual or
an information file on the release disk) for information on the
ClearWin+ variant.

(5] Function is only available under Win32.

335

FTN77 User's Guide

Index
page
Character-NandliNgeueeeeiiiiiiiiee e 336
DAta SOMINGevviiiiiiiiiiii e 337
Error and exception handling ... 338
File Manipulation ..o, 338
(1= o] 1o PP PP PP TP PP PP PP PP PP PP PP PP 340
GraphiCs PIOtEEITSCIEEN.....cci i 341
(1T o] a1 TotS o] 1) (=] SRS PP PPPPPPPP 342
IVIOUSE ...ttt ettt e e e e ettt e e e e e e e et e e n b e e e 342
PHINTEE ot 344
ProCESS CONMIOL.....ciiiiiiiiiiiiiii 344
RaANAOM NUMDEIS ..o, 344
51010 o o P PP PP PP TP PP PP PP PP PP PP PP PPP N 345
STOrage MaNAGEMENTcuui ittt e et e e e e e e e e e e e et e e e aatareeeeetaaeaees 346
SYStEM INFOIMALION ..ot 346
Text SCreen/KeYDOArdoovuiiiiiiiii e 347
TEXE WINAOWS. ..ttt ettt e et e ettt et et e e aeaeaeaaaens 348
THME AN GALE ...ttt e et e e e e e e e e ettt et et e e e eaaaeaeaeas 348
Bit-handling
CLEAR_BIT@ Clears theN'th bit of an array.
SET_BIT@ Sets theN'th bit of an array.
TEST_BIT@ Tests if theN'th bit of an array is set.
Character-handling
ALLOCSTR@ To allocate dynamic storage and copy a string. 5]
APPEND_STRING@ Adds a string to the end of a line.
CENTRE@ Positions a string in the centre of a field.
CHAR_FILL@ To fill a string with a particular character.

336

Chapter 29

CHSEEK@
CNUM
COMPRESS@
GETSTR@
LCASE@
NONBLK
SAYINT
TRIM@
TRIMR@
UPCASE@

Overview of the FTN77 run-time library

Looks for a given string in an ordered array.

Converts an integer to character form.

Compresses a string by using tabs.

To get a string that was stored usiMgocsTR@ 5]
Alters a character argument so that all letters become lower case.
Obtains the position of the first character that is not a space.
Returns an integer argument as text.

Removes leading spaces.

Rotates a character string right until there are no trailing spaces.
Alters a character argument so that all letters become upper case.

Command line parsing

CMNAM

CMNAM@

CMNAMR

CMNARGS@

CMNUM@
CMPROGNM@
COMMAND_LINE
GET_PROGRAM_NAME@
SET_COMMAND_LINE@

Data sorting

CHSORT@
DSORT@
ISORT@
RSORT@

Reads a token from the command line.

Reads a token from the command line.

Resets the command line.

To get the number of command line arguments. (5]
To get the next command line argument as an integer.

To get the program name. (5]
Reads the whole command line.

Returns the name of the current program.

To set the whole command line. e

Sorts an array of characters.
Sorts aBREAL*8 array.

Sorts an integer array.
Sorts aBREAL*4 array.

337

FTN77 User's Guide

Error and exception handling

ACCESS_DETAILS@
CLEAR_FLT_UNDERFLOW@
DOS_ERROR_MESSAGE@
DOSERR@

ERR77

ERROR@

EXCEPTION_ADDRESS@

FORTRAN_ERROR_MESSAGE@
GET_VIRTUAL_COMMON_INFO@
JUMP@

LABEL@
PERMIT_UNDERFLOW@
PRERR@

QUIT_CLEANUP@

RESTORE_DEFAULT_HANDLER@
RUNERR@

SET_TRAP@
TRAP_EXCEPTION@
UNDERFLOW_COUNT@

File manipulation

338

ATTACH@
CLOSEF@
CLOSEFD@
CLOSEV@
CURDIR@

To get details of the access violation. (5]
To clear a floating point underflow exception. (5]
Gets aDOS error message.

Prints aDOS error message when an error occurs.

Prints aDOS error message and terminate a progra
when an error occurs.

Prints a user defined error message and termiaate
program.

To find the address of the instruction that generate® the
exception.

Gets a Fortraerror message.

To get virtual common block details. (5]
Executes a non-local jump.

Sets a label for a non-local jump.

Switches off floating point underflow checking.

To print the error message associated with a givem erro
code.

Prints a message and exit from a program with Control-
break

To remove a user defined exception handler. (5]

Prints the run-time error corresponding to a give
IOSTAT value.

To trap a given event. L1
To install a user defined exception handler.
Gets the number of floating point underflows.

Sets the current directory.

Closes a file.

Closes and delete a file.

Closes a file opened witbPENV@ 12}
Gets the current directory.

Chapter 29

CURRENT_DIR@
DIRENT@
EMPTY@
ERASE@
FEXISTS@
FILE_EXISTS@
FILE_SIZE@
FILE_TRUNCATE@
FILEINFO@
FILES@

FPOS@
FPOS_EOF@
GET_FILE_DATE_TIME_STAMP@
GET_FILES@
GET_PATH@
GET_PATHV@
MKDIR@
OPENR@
OPENV@
OPENRW@
OPENW@
READF@
READFA@
RENAME@
RFPOS@
SELECT_FILE@
SET_FILE_ATTRIBUTE@
SET_SUFFIX@
SET_SUFFIX1@
TEMP_FILE@
WILDCHECK@
WRITEF@
WRITEFA@

Overview of the FTN77 run-time library

Obsolete routine. USBURDIR@ e
To obtain directory information.

Clears a file for writing.

Deletes a file.

To search for a file with a given path name or wildcard®
Obsolete routine. UseExist@ instead (5]
To get the size of a file in bytes.

To truncate an open file at its current position.

To get information about a specified file. 5]
Obtains directory information.

Repositions a file.

To move the file pointer to end-of-file. 5]
Gets theDOS date and time stamp for a particular file. @
To get a list of files in the current working directory. ©
Gets the fully qualified pathname.

Gets the fully qualified pathname. 12}
Creates a ne®OS directory.

Opens a file for reading.

To open a file for reading. 12}
Opens a file for reading or writing.

Opens a file for writing.

Reads binary data from a file.

ReadsASCII text from a file.

Renames a file.

Gets the position of a file.

To select from a displayed list of files. 12}
Sets a file attribute.

Changes the extension of a given file name.

Adds an extension to a given file name.

Provides a unique name for a file.

To check for the matching of a file name with a wild ca@.
Writes binary data to a file.

Writes a line of data to aihSCl| file.

339

FTN77 User's Guide

Graphics

340

CLEAR_SCREEN@
CLEAR_SCREEN_AREA@
COMBINE_POLYGONS@
CREATE_POLYGON@
DELETE_POLYGON_DEFINITION@
DRAW_HERSHEY@
DRAW_LINE@
DRAW_TEXT@

EGA@

ELLIPSE@

FILL_ELLIPSE@
FILL_POLYGON@
FILL_RECTANGLE@
GET_ALL_PALETTE_REGS@
GET_DEVICE_PIXEL@
GET_GRAPHICS_MODES@
GET_GRAPHICS_RESOLUTION@
GET_PIXEL@
GET_TEXT_MODES@
GET_TEXT_SCREEN_SIZE@
GET_VIDEO_DAC_BLOCK@
GRAPHICS_MODE_SET@
GRAPHICS_WRITE_MODE@

HERSHEY_PRESENT@

HIGH_RESOLUTION_GRAPHICS_MODE@

IS_TEXT_MODE@
LOAD_STANDARD_COLOURS@
MOVE_POLYGON@
POLYLINE@

RECTANGLE@
RESTORE_GRAPHICS_BANK@

Clears the screen.

Clears a rectangular area of the screen.

Gets the handle for a combination of polygons.
Gets a handle for a specified polygon.

Deletes a polygon definition.

Draws an Hershey character.

Draws a straight line in graphics mode.

Draws text in graphics mode.

Switches tdEGA graphics mode. 4]
Draws an ellipse.

Fills an ellipse.

Fills a polygon.

Fills a rectangle.

Gets all palette registers for colour graphics. 4]
Gets the pixel colour for a virtual screen or printer®
Gets details of all the graphics modes. ©
Gets details of the high resolution graphics mode .©
Gets a pixel colour. 4]
Gets information about the available text modes. @
Gets the resolution of the current text mode. 12}
Gets a block 0f/GA DAC registers. 4]

Sets the graphics mode to a given resolution. 4]

Selects repla¢gOR mode before writing to the
screen, virtual screen or printer.

Tests if a character number has a Heyshe
representation.

Switches to high resolution graphics mode. 4]
Tests if the screen is in text or graphics mode. @
Loads the standard colours for 256 colour mode. @
Moves the position of a polygon.

Draws a number of connected straight lines.

Draws a rectangle.

Restores the graphics bank aft@I®S call. ©

Chapter 29

RESTORE_TEXT_SCREEN@

SAVE_TEXT_SCREEN@
SCREEN_TYPE@
SET_ALL_PALETTE_REGS@
SET_DEVICE_PIXEL@
SET_PALETTE@
SET_PIXEL@
SET_TEXT_ATTRIBUTE@
SET_VIDEO_DAC@
SET_VIDEO_DAC_BLOCK@
TEXT_MODE@
TEXT_MODE_SET@
USE_VESA_INTERFACE@
VGA@

Graphics plotter/screen

CLOSE_PLOTTER@
CLOSE_VSCREEN@
CREATE_SCREEN_BLOCK@

GET_DACS_FROM_SCREEN_BLOCK@

GET_SCREEN_BLOCK@
NEW_PAGE@
OPEN_PLOT_DEVICE@
OPEN_PLOT_FILE@
OPEN_VSCREEN@
PCX_TO_SCREEN_BLOCK@
PLOTTER_SET_PEN_TYPE@
RESTORE_SCREEN_BLOCK@
SCREEN_BLOCK_TO_PCX@
SCREEN_BLOCK_TO_VSCREEN@
SCREEN_TO_VSCREEN@
VSCREEN_TO_PCX@

Overview of the FTN77 run-time library

Restores a text screen saved with
SAVE_TEXT_SCREEN@.

Saves the whole of the text screen.

Gets the graphics screen type.

Sets all palette registers for colour graphics.
Sets a pixel colour for a virtual screen or printer.
Sets a palette register for colour graphics.
Sets a pixel to a colour.

Sets the current graphics text attributes.
Sets &VGA DAC register.

Sets a block o/ GA DAC registers.

Returns to text mode.

Selects the current text mode.

Forces th&/ESA interface to be used.
Switches to/GA graphics mode.

Closes the plotter device or file.

Closes the virtual screen.

Creates a screen block in memory.
Uses palette information fromRCX file.
Saves a rectangular area of the screen.

o

Lo -~ T)

Provides a new page on the current graphics device.

Opens the plotter.

Directs plotter output to a file.

Opens a screen block as the virtual screen.
Loads a file a screen block.

Selects a pen type for the plotter.

Displays a previously saved area of the screen.
Saves a screen block a file.

Loads a screen block to the virtual screen.
Loads the graphics screen to the virtual screen.
Saves the virtual screen to a file.

(4]
(4]

341

FTN77 User's Guide

VSCREEN_TO_SCREEN@ Loads the virtual screen to the graphics screen.
WRITE_TO_PLOTTER@ Writes a string to the plotter. ©

Graphics printer

CLOSE_GRAPHICS_PRINTER@ Closes the graphics printer device or file.
GET_PCL_PALETTE@ Gets the colour definitions for a given numbei@o
colours.
LOAD_PCL_COLOURS@ Loads the standard colour definitions. 4]
OPEN_GPRINT_DEVICE@ Opens a graphics printer. (4]
OPEN_GPRINT_FILE@ Directs graphics printer output to a file. 4]
PRINT_GRAPHICS_PAGE@ Prints a graphics page.
SELECT_DOT_MATRIX@ Selects an Epson compatible dot matrix printer 12}
SELECT_PCL_PRINTER@ Specifies attributes of a PCL printer. 4]
SET_PCL_BITPLANES@ Sets the number of colours in the image. ©
SET_PCL_GAMMA_CORRECTION@ Alters the “gamma correction” for colours. ©
SET_PCL_GRAPHICS_DEPLETION@ |Improves the image quality. (3]
SET_PCL_GRAPHICS_SHINGLING@ Makes a number of print passes. ©
SET_PCL_LANDSCAPE@ SetSLANDSCAPE Or PORTRAIT orientation. ©
SET_PCL_PALETTE@ Loads the colour definitions. ©
SET_PCL_RENDER@ Sets the “rendering algorithm”. ©
Hot key
DEFINE_HOT_KEY@ To associate a hotkey routine with a given key. e
REMOVE_HOT_KEY@ To disassociate a hotkey routine from a given key. @
FEED_KEYBOARD@ To push a keycode into the keyboard buffer. e
In-line
FiLL@ Sest an array of N bytes to a particular value.
IN@ To input one byte from an 1/O port 2]

342

Chapter 29

Mouse

MATCH@

MOVE@

ouT@

POP@

PUSH@
SET_IO_PERMISSION@

DISPLAY_MOUSE_CURSOR@

Overview of the FTN77 run-time library

Compares two arrays of N bytes.

Copies an array of N bytes.

To output one byte of data to an 1/O port. e
Pops a value off the system stack.

Pushes a value on the system stack.

To set the I/O permission level to 3 or 0. e

Shows the mouse cursor on the screen. (3]

GET_MOUSE_BUTTON_PRESS_COUNT@ Gets the number of times a button has been pressed.

GET_MOUSE_EVENT_MASK@
GET_MOUSE_PHYSICAL_MOVEMENT@
GET_MOUSE_POSITION@

GET_MOUSE_SENSITIVITY@

HIDE_MOUSE_CURSOR@
INITIALISE_MOUSE@
MOUSE@

MOUSE_CONDITIONAL_OFF@

MOUSE_LIGHT_PEN_EMULATION@
MOUSE_SOFT_RESET@
QUERY_MOUSE_SAVE_SIZE@
RESTORE_MOUSE_DRIVER_STATE@
SAVE_MOUSE_DRIVER_STATE@
SET_MOUSE_BOUNDS@

SET_MOUSE_GRAPHICS_CURSOR@

SET_MOUSE_INTERRUPT_MASK@
SET_MOUSE_MOVEMENT_RATIO@

SET_MOUSE_POSITION@

Gets the mask for the most recent mouse interrupt.
Gets the mouse pad distance from the last call. ©
Gets the present state of the mouse cursor.

Gets the values of the physical movement ratiai®an
the double speed threshold.

Hides the mouse cursor on the screen. (3]
Initialises the mouse driver. ©
Performs a mouse interrupt. ©

Switches off the cursor when it enters a spet@ie
rectangle.

Uses the mouse as a light-pen. ©

Initialises the mouse software.

Gets the buffer size for the mouse state. (3]
Restores a former state of the mouse driver. (3]
Saves the current state of the mouse driver. (3]

Restricts mouse movements to a specified rectan@e.

Specifies the shape of the mouse cursor for gra@hics
mode.

Enables mouse actions to produce interrupts.
Sets the mouse cursor sensitivity. ©

Moves the mouse cursor to a particular position.

343

FTN77 User's Guide

Printer

Process

SET_MOUSE_SENSITIVITY@

SET_MOUSE_SPEED_THRESHOLD@

SET_MOUSE_TEXT_CURSOR@

PRINT_CHARACTER@
INITIALISE_PRINTER@
GET_PRINTER_STATUS@

control

CISSUE
EXIT
EXIT@
SLEEP@

SPAWN@
START_PROGRAM@
YIELD@

Random numbers

344

DATE_TIME_SEED@

RANDOM
SET_SEED@

Sets the mouse cursor sensitivity and the thresho@ fo
the double speed.

Sets the threshold for double speed. ©

Specifies details of the mouse cursor for text mod®

To send one character to the printer. 12}
To initialise the printer. 12}
To obtain status information for the printer. 12}

Issues HOS command.
Terminates a program.
Terminates a program.

Suspends program execution for a specified € tim
interval.

Initiates a concurrent subtask. 12}
Starts another Salford program. 12}
To yield control to a subtask. 12}

Selects a new “seed” for the pseudo-random numbe
generator functioRANDOM.

Returns a pseudo-random double precision value.

Enters a new “seed” for the pseudo-random numbe
generator functioRANDOM.

Chapter 29

Real mode

Sound

Overview of the FTN77 run-time library

ALLOCATE_REAL_MODE_MEMORY@ To allocate real mode memory. (2]
COPY_FROM_REAL_MODE@ To copy data from a real mode program. (2]
COPY_FROM_REAL_MODE1@ To copy data from a real mode program. (2]
COPY_FROM_SEGMENT@ To copy data from another segment. (2]
COPY_TO_REAL_MODE@ To copy data to a real mode program. (2]
COPY_TO_REAL_MODE1@ To copy data to a real mode program. (2]
COPY_TO_SEGMENT@ To copy data to another segment. (2]
DEALLOCATE_REAL_MODE_MEMORY@ To free real mode memory. (2]
DOSCOM@ To obtain a segment selector for D@SCOM buffer. @
FTN77WT etc.

LINEAR_ONE_MEG_SEG@
LOAD_REAL_MODE_LIBRARY@

MODIFY_REAL_MODE_MEMORY@

Used within a real mode program to receive cogrol
from and return control to ETN77 program.

To obtain the real mode address 0. 2}
To load and execute a real mode program. 2}

To change the size of a block of real mode memoryg

REAL_MODE@ To transfer control from &TN77 to a real mode
program.
REAL_MODE_ADDRESS_OF_DOSCOM®@ To obtain the address of tB®DSCOM buffer. (2]

REAL_MODE_INTERRUPT@

SCREENSEG@

BEEP@
SOUND@

To cause a real mode interrupt from &TN77¢@
program.

To obtain the segment selector for the graphics areg.

Outputs an audible beep. 12}
Makes an audible sound at the console. (2]

345

FTN77 User's Guide

Storage management

FREE_SPACE_AVAILABLE@
FREE_VIRTUAL_PAGES@
GET_MEMORY_INFO@

GET_STORAGE@

GET_STORAGE1@

LARGEST_BLOCK_AVAILABLE@

MEMORY_AVAILABLE@
RETURN_STORAGE@
SET_PAGES_RESERVE@
SET_TRAP_ON_PAGE_TURN@
SHRINK_STORAGE@
USE_STORAGE@

USE_VIRTUAL_SCRATCH_FILES@

System information

346

DBOS_VERSION@
DOSPARAM@
DYNT@

DYNT1@

GET_COPROCESSOR_ENVIRONMENT@

GET_CURRENT_FORTRAN_IO@

GET_CURRENT_FORTRAN_UNIT@

GETENV@

Obtains the amount of free memory in the system. @

Frees memory for reuse.

Obtains information about the memory.

e
e

Gets a block of storage of sikebytes from the storage

heap.
Gets a block of storage from the storage heap.

Obtains the size of the largest free block in the st@age

heap.

Gets the total size of available heap space.
Returns a block of storage.

Warns of a limited page reserve.

Warns of the first page turn.

Shrinks a block of storage.

Offers additional memory to the storage heap.

Enables or disable the virtual scratch file facility.

To get the currer®BOS version number.

To get an environment variable.

To test for the presence of a system routine.
To test for the presence of a user routine.

To obtain the types of processors available or®the

system.

e

e

o

e
e

To access the state of the current Fortran I/O unit.

To get the unit number for the current I/O operation.

To get an environment variable.

e

cou@

COUA@

CcouP@
DOS_KEY_WAITING@
ECHO_INPUT@
ERRCOU@
ERRCOUA@
ERRNEWLINE@
ERRSOU@
ERRSOUA@
GET_CURSOR_POS@
GET_DOS_KEY@
GET_DOS_KEY1@

GET_EXTENDED_CHAR@

GET_KEY@
GET_KEY1@
GETCL@
HIDE_CURSOR@
KEY_WAITING@
NEWLINE@
PRINT_BYTES@
PRINT_BYTES_R@
PRINT_HEX1@
PRINT_HEX2@
PRINT_HEX4@
PRINT_I1@
PRINT_I2@
PRINT_l4@
PRINT_R4@
PRINT_R8@
READ_EDITED_LINE@
RESTORE_CURSOR@
SET_CURSOR_POS@
SET_CURSOR_TYPE@

Overview of the FTN77 run-time library

Text screen/keyboard

Outputs text to the screen with a new line.
Outputs text to the screen without a new line.
Outputs text to a given screen position.

Tests if the keyboard buffer is empty.

Controls the echoing of text from standard input.
Outputs text to the standard error device.
Outputs text to the standard error device.
Writes an newline to the standard error device.
Outputs text to the standard error device.
Outputs text to the standard error device.

Gets the co-ordinates of the text cursor.

Gets the next keycode.

Gets the waiting keycode.

OO ODOOOOOOdO»OO

Gets the waiting two-byte keycode.
Gets the next keycode.

Gets the waiting keycode.

Gets a line of text from the keyboard.
Hides the text cursor.

OO0

Tests if the keyboard buffer is empty. 12}
Writes a carriage return/linefeed to the screen (standard output).
Writes a sequence of hexadecimal values.

To write a hexadecimal sequence in reverse order.

Prints a 1 byte hexadecimal number (2 digits) without a new line.
Prints a 2 byte hexadecimal number (4 digits) without a new line.
Prints a 4 byte hexadecimal number (8 digits) without a new line.
Prints anNTEGER*1 decimal number without a new line.
Prints anNTEGER*2 decimal number without a new line.
Prints anNTEGER*4 decimal number without a new line.
Prints anREAL*4 decimal number without a new line.
Prints anREAL*8 decimal number without a new line.
Inputs text from a screen position.

Shows the text cursor.

Sets the co-ordinates of the text cursor.

000

Sets the shape of the text cursor.

347

FTN77 User's Guide

sou@ Outputs text with a new line, omitting any trailing blanks.
SOUA@ Outputs text without a new line, omitting any trailing blanks.

Text windows

CONCEALW@ Moves a window to the bottom of the stack. 12}

KILLW@ Removes a text window. 12}

MOVEW@ Changes the position of a window on the screen. @

POPW@ Moves a window to the top of the stack. 12}

SCROLL_DOWN@ and SCROLL_UP@ Scrolls text in a window. 2]

SET_CURSOR_POSW@ Sets the cursor position for a text window. 12}

WBORDER@ Sets the border style for a text window. 2]

WCLEAR@ Clears a text window e

wcou@ Writes text to a window. 2]

WCOUP@ Writes text to a window position. 12}

WCREATE@ Creates a text window. 12}

WDBORDER@ Sets the default border style for all subsequent@®ex
windows created.

WDSHADOW@ Sets the default shadow style for all subsequert®ex
windows created..

WMEMORY@ Gets the memory pointer for a text window. 2]

WREAD_EDITED_LINE@ Inputs text from a window position. (2]

WSHADOW®@ Sets the shadow style for a text window. 2]

WTITLE@ Assigns a title to a text window. e

Time and date

CLOCK@ Gets a time in seconds.

CONVDATE@ To get the date in numeric form. (5]

DATE@ Gets the date in the fornMM/DD/YY (American
format).

DCLOCK@ Gets a time in seconds.

EDATE@ Gets the date in the fornDD/MM/YY (Europea
format).

348

Chapter 29 Overview of the FTN77 run-time library

FDATE@ Gets the date in text form.

HIGH_RES_CLOCK@ To obtain theCPU time accurate to 1 microsecond.

SECONDS_SINCE_1980@ Gets the number of seconds from a fixed date.

SET_ALARM_CLOCK@ To set the elapsed time before an alarm. e

TIME@ Gets the time in the form&tH:MM:SS.

TODATE@ To convert a given time to a date in the ni@®
MM/DDI/YY.

TOEDATE@ To convert a given time to a date in the ni@®
DD/MM/YY.

TOFDATE@ To return the date in text form. 5]

TOTIME@ To return the time in the form HH:MM:SS. (5]

349

FTN77 User's Guide

350

*

* LINK77 command, 232

___stdcall symbols, 262
_SALFStartup entry point for executables, 262

A

ANSI conformity, 28
ANSI directive, 177

ANSI,compiler option, 28, 30, 31, 43, 132, 140, 175, 177

APPEND_BINARY,compiler option, 43
APPEND_LIST,compiler option, 24, 43
Argument consistency,checking at run-time, 80
Argument,dummy array, 92
Arguments,character, 173

Arithmetic overflow,checking at run-time, 79
Array subscript checking at run-time, 81

Array used as actual argument, 80

Assembler 32-bit Intel, 24

Assembler comments, 194

Assembler labels, 195

Assigned GOTO checks at run-time, 83
Automatic loading and execution of programs, 39

B

B edit descriptor, 133, 183
Binary data values, 182
BINARY,compiler option, 29, 44
BIOS routines - how to call them, 304
BREAK,compiler option, 44, 304
BREAK,RUN77 option, 234
BRIEF,compiler option, 44
Business editing, 133
ASTERISK (*), 134
comma, 135
CREDIT (CR), 135
decimal point (.), 135
DOLLAR sign ($), 134
MINUS sign (-), 134
number sign (#), 135
PLUS sign (+), 134
ZED (Z), 134

Index

C
C,compiler option, 47
C_EXTERNAL statemant, 213
CCOREL1 routine, 199
CELSE statement, 190
CENDIF statement, 190
Character

arrays, 162

assignments, 160

comparisons, 167, 171

constants, 159

expressions, 159

functions, 172

input/output, 164

substrings, 162
Character arguments,length of, 83
Character data,length of, 170
Character handling facilities, 157
Character variable,overheads when using long, 92
CHECK,compiler option, 30, 44, 79, 81, 181, 189, 205
Checking character data handling at run-time, 83
Checking substring expressions at run-time, 84
CIF statement, 190
CLOSE statement

Description of specifiers, 116

General form of, 116

Status of files at program termination, 116
CMNAM@ routine, 42
CODE compiler directive, 194
Code motion, 88
COFF, 241
Comment message, 27
Common blocks in dynamic link libraries, 239
COMMON statement,character data, 175
COMMON_BASE,LINK77 command, 233
Compilation, 21

conditional, 190

listing, 23

messages, 75

suppressing the listing of, 35
Compiler directive, 34

INCLUDE, 36

INTL, 178

INTS, 178

LIST, 35

LOGL, 178

LOGS, 178

Index-1

FTN77 User's Guide

NOLIST, 35

OPTIONS, 35
Compiler options

default, 49

reading from file, 33
COMPLEX*16 data, 139
CONFIG,compiler option, 32, 44, 49
CONFIGDB command, 297
Configuring DBOS, 297, 298
Constant folding, 86
CONTROL BREAK handler example, 206
Coprocessor emulation, 5
Coprocessor, use of, 5, 197
CORE intrinsic functions, 199
COREL1 routine, 199
COREZ2 routine, 199
COREA4 routine, 199

D
Data initialisation in type statement, 179
DATA statement, 163
setting address constants with, 200
special form of, 189
Data transfer statement
Description of specifiers, 122
Effect of first WRITE statement, 127
General form of, 122
DBOS options
DISK_CACHE, 294
EXTMEM, 293
memory limits, 295
NO_SHIFT_INTERRUPTS, 294
NOWEITEK, 294
PAGE, 294
PRIMELINK, 294
SEARCHMEM, 293
USE_XMS, 295
DBOS system, 193, 302

DBOS_SET and DBOS_RESET commands, 298

DBREAK,compiler option, 44, 304
DCLVAR,compiler option, 28, 44
DCORES routine, 199
DEBUG,compiler option, 30, 44
Debugging system

/BREAK option, 52

/DBREAK option, 52

invoking, 52
DEFCOM,LINK77 command, 233
Determination of storage address, 139
Diagnostic facilities, 75
Diagnostics, 2

compilation, 75

run-time, 79
Direct access, 101, 129
DISK_CACHE,DBOS option, 294
DO WHILE statement, 184

Index-2

DO1,compiler option, 45
DOCHECK,compiler option, 45

DOS routines - how to call them, 304
DOSCOM@ routine, 305

DOUBLE PRECISION,automatic use of, 31
DO-variable used as actual argument, 80
DREAL,compiler option, 31, 45, 98
Dynamic link libraries, 237

Dynamic storage, 29

E

EDOC compiler directive, 194
Efficient use of Fortran 77, 85
ENCODE Fortran 66 syntax, 180
END DO statement, 185
End-of-file condition, 103

to set from the screen, 106
ENTRY,LINK77 command, 232

EQUIVALENCE statement,error messages for, 76

Error message, 27
ERROR_NUMBERS,compiler option, 28, 45
Execution errors,list of, 325
EXIT statement, 186
Expanded source listing, 1
EXPLIST,compiler option, 24, 45, 206
Extensions to the ANSI standard

List-directed input, 133

OPEN statement, 133

RECL specifier, 133

RENAME specifier, 133
EXTERNAL statement, 139
EXTMEM,DBOS option, 293
EXTREFS,compiler option, 45

F

FCOREA4 routine, 199

File existence, 99

File names, 99

File Positioning statements
BACKSPACE statement, 132
Description of specifiers, 131
ENDFILE statement, 132
General form of, 131
REWIND statement, 132

File properties, 99

File structure, 99

FILE,LINK77 command, 230

Filename in the OPEN statement, 107

FORCE_LOAD,LINK77 command, 230

FORMAT statement,efficient use of, 93

Formats,contained in non-character arrays, 137

Fortran 77 extensions, 177
FORMAT statement, 137
Input/output, 132
Fortran compilers other than FTN77, 30
FTN77

Index

peep-hole optimisations in, 85 END=, 127
simple use of, 16 ERR=, 119, 126
treatment of common subexpressions in, 92 EXIST=, 119
treatment of constants in, 92 FMT=, 123
FTN77, simple use of, 8 FORM=, 120
FULLCHECK,compiler option, 45, 79, 81, 181, 189, 205 FORMATTED=, 120
FULLDCLVAR,compiler option, 45 FUNIT=, 121
FULLMAP,compiler option, 45 IOSTAT=, 119, 126
FULLXREF,compiler option, 45 NAME=, 119
NAMED=, 119
G NEXTREC=, 121
General Protection Exceptions, 303 NML=, 124
GUI, 223 NUMBER=, 119

OPENED=, 119
Permitted specifiers with, 96

H REC=, 127
HARDFAIL compiler option,use with load-and-go, 41 RECL=, 120
HARDFAIL,compiler option, 45 SEQUENTIAL=, 120
HELP,compiler option, 13, 45 INQUIRE statement '

HELP77 utility, 13
Hexadecimal data values, 182
Hollerith data, 180

Additional FTN77 feature of, 121
Description of specifiers, 119
examples in the use of, 121
Integer data,long and short, 178
| INTEGER* statement, 178

Identifier,internal files, 103 Internal files, 101
IGNORE,compiler option, 28, 45, 77 INTERNAL PROCEDURE
IMPLICIT NONE,compiler directive, 191 examples in the use of, 188
IMPLICIT_NONE,compiler option, 45 Interrupt routines, 191
INCLUDE,compiler directive, 36 INTL,compiler option, 30, 46, 98, 141, 178
INCLUDE,LINK77 command, 231 Intrinsic function, 139, 169
INDEX,usage of intrinsic function, 170 character manipulation with, 169
Induction weakening, 88 FTN77-specific, 185
Initial point,file position, 101 generic name for, 140
In-line assembler inline code for, 91
literals in, 196 integer arguments and results, 141
Input/output specifier logical arguments and results, 142
ACCESS=, 108 names not allowed as actual argument, 141
BLANK=, 110 names used as actual argument, 141
DRIVER=, 109 non-ANSI, 139
END=, 105 notes, 148
ERR=, 104 specific name for, 140
FILE=, 107 INTRINSIC statement, 139
FILETYPE=, 108 INTS,compiler option, 30, 98, 178
FORM=, 109 IOSTAT values,list of, 325
IOSTAT=, 104
RECL=, 110 K
RENAME=, 117
STATUS=, 107, 116 KILL_DBOS command, 7
UNIT=, 103
Input/output statements, 95 L
ACCESS=, 120 Language extensions
BLANK=, 121 input/output, 183
DIRECT=, 120 LARGE_FILE,LINK77 command, 231
End of record terminator, 98 Length of variable names, 182

Index-3

FTN77 User's Guide

LGO,compiler option, 8, 39, 46, 303, 304
LIBOFFSET,LINK77 command, 238
Libraries

dynamic link, 237

relocatable binary, 235
LIBRARY,compiler directive, 41, 78
LIBRARY,compiler option, 41, 46
LINK77 commands, 230

* 232

COMMON_BASE, 233

DEFCOM, 233

ENTRY, 232

FILE, 230

FORCE_LOAD, 230

INCLUDE, 231

LARGE_FILE, 231

LIBOFFSET, 238

LOAD, 230

LOAD_EXHAUSTIVE, 230

MAP, 231

NOSUPPRESS, 232

NOTIFY, 231

PERMIT_DUPLICATES, 231

PRESERVE_CASE, 232

QUIT, 231

REPORT_DEBUG_FILES, 232

SUPPRESS, 232

SUPPRESS_COMMON_WARNINGS, 232

SYMBOL, 233

XREF, 231
LINK77,compiler option, 40, 46, 229
LIST,compiler directive, 35
LIST,compiler option, 23, 46
List-direct I/O, use with internal files, 137
LOAD,LINK77 command, 230
LOAD_EXHAUSTIVE,LINK77 command, 230
Load-and-go facility, 39
Loader diagnostics, 78
Loading, 21
Loading FORTRAN programs using LINK77, 230
LOC intrinsic function, 200
Logical operations,bitwise, 139
LOGICAL* statement, 178
LOGL,compiler option, 31, 46, 98, 178
LOGS,compiler option, 31, 98, 178
Long variable names, 182
Loop invariants, 88

M

MAKE utility, 265

MAKEDA77 command, 99, 130
MAP,compiler option, 25, 46, 204
MAP,LINK77 command, 231
memory limits,DBOS option, 295
Memory map for DBOS, 306
MKLIB,compiler option, 46

Index-4

MKLIB77
command mode, 236
interactive mode, 236
Multiple opening of a file, 102

N

Namelist-directed I/O, 124

Negative addresses, 302

New line, surpression in FORMAT statement, 137
NO_BINARY,compiler option, 29, 46
NO_COMMENTS,compiler option, 46
NO_CR,compiler option, 29, 46
NO_FAIL,compiler option, 46

NO_FLOATING_TRACKING,compiler option, 46, 88, 94

NO_OFFSET,compiler option, 24, 46
NO_OPTIMISE,compiler option, 86
NO_PEEP_HOLE,compiler option, 47
NO_SHIFT_INTERRUPTS,DBOS option, 294
NO_WARN73,compiler option, 28, 47
NO_WARNINGS,compiler option, 47
NO_WEITEK,compiler option, 86
NOLINK,compiler option, 47
NOLIST,compiler directive, 35
NOSUPPRESS,LINK77 command, 232
NOTIFY,LINK77 command, 231
NOTRACKING,compiler option, 47
NOWEITEK,DBOS option, 294

Numeric checking of variables and array elements, 188

Numeric data,limits for, 79

O
O edit descriptor, 183
Object code
properties of, 29
Octal data values, 182
OLDARRAYS,compiler option, 47, 82
OMF, 241
ONLY_UNDEF,compiler option, 47
OPEN statement
Additional FTN77 features of, 108, 110
Description of specifiers, 107
DRIVER keyword, 109, 113
examples in the use of, 111
general form of, 106
specification of device drivers with, 109, 113
Optimisation, 85
OPTIMISE,compiler option, 47, 85, 86, 202
OPTIONS,compiler directive, 35, 79
OPTIONS,compiler option, 33, 47

P

Page memory exhausted, 301
PAGE,DBOS option, 294, 299
PAGETHROW,compiler option, 23, 47
Paging algorithm, 299

PARAMETER names in FORMAT statements, 137
PARAMETER statement, 161

PARAMS compiler option,use with load-and-go, 42
PARAMS,compiler option, 47

PARAMS,RUN77 option, 234

PE, 241

PERMIT_DUPLICATES,LINK77 command, 231
PERSIST,compiler option, 24, 47, 75

Plotter Interfacing, 313

Portable Executable, 241

PRELOAD,RUN77 option, 234
PRESERVE_CASE,LINK77 command, 232
PRIMELINK,DBOS option, 294

Printer,writing directly to, 109

PROFILE,compiler directives, 37
PROFILE,compiler option, 37, 48

Program development, 75

Protected mode, 193, 302

QUIT,LINK77 command, 231

R
Range-check for numeric variables, 189
READ,RUN77 option, 235
READONLY status, 102, 108
READU,RUN77 option, 235
Real mode, 193, 302
Real mode program calling, 315
REAL* statement, 179
Record types
Endfile, 98
Formatted, 98
Unformatted, 96
Register
dumps, 304
locking, 89
tracking, 87
Relocatable binary, 29
REPORT_DEBUG_FILES,LINK77 command, 232
Resource compiler, 19
Routines
Character-handling, 336
Data sorting, 337
File manipulation, 338
Graphics, 340
Graphics plotter/screen, 341
Graphics printer, 342
Mouse, 343
Printer, 344
Process control, 344
Random numbers, 344
Sound, 345
Storage management, 346
System information, 346

Index

Text screen/keyboard, 347
Text Windows, 348
Time and date, 348
RUN77 options
BREAK, 234
HARDFAIL, 234
PARAMS, 234
PRELOAD, 234
READ, 235
READU, 235
WRITE, 235
WRITEU, 235
RUN77 utility, 234
RUNERR@ routine, 105

S

SALFLIBC.DLL, 249
SALFLIBC.LIB, 249
SAVE,compiler option, 29, 48
SCREENSEG@ routine, 306
SEARCHMEM,DBOS option, 293
Sequential access, 101, 128
Sequential unformatted record structure, 100
SET_TRAP@ routine, 191, 200, 206, 301
Shifts, bitwise, 139
SILENT,compiler option, 27, 48
SLINK
Abbreviating commands, 243
Archives, 249
Command line mode, 242
Comment text, 247
Comments, 244
data, 253

Differences between command line mode and

interactive mode, 244

Direct linking with DLLs, 246
Dynamic link libraries, 250
Entry Points, 262
entryname252

Generation of archives, 250
Generation of DLLs and exporting of functions, 251
Import Libraries, 249
internalname 252

Link map, 245

Linking for Debug, 247

Linking multiple object files, 243

Mixing command line script files and interactive

mode script files, 244

Runtime tracebacks, 246

Script or command files, 243

Standard libraries and import libraries, 249
The export command, 252

Unresolved externals, 245

Virtual Common, 248

Index-5

FTN77 User's Guide

SLINK command T
addqu, 250, 253 Terminal point,file position, 101
archive, 253 TOUCH utility, 267, 269, 270
comment, 247, 253 TRAP routines in DBOS, 206
debug, 247
decorate, 253
dil, 254)
entry, 254 UNDEF,compiler option, 30, 48, 79, 82, 300
export, 251 Undefined variables,checking for, 82
exportall, 251, 255 UNDERFLOW compi_ler opti_on,use with load-and-go, 42
exportx, 251, 255 UN_DERFLOW,complIer option, 48
file, 255 Unit numbers,permitted values for, 102

UNSAFE,compiler option, 89
Use of the characters @ $ and _, 182
USE_XMS,DBOS option, 295

filealign, 256
heap, 256
imagealign, 257
imagebase, 257

load, 258 V
lure, 245, 257 Variables
map, 258 common, 202
notrace, 247, 258 dynamic, 201
quit, 259 static, 202
stack, 258 Virtual address space, 302
subsystem, 259
virtualcommon, 248, 258 W
Source file, 22 .
SPARAM,compiler option, 48, 190 Warning message, 27
SPECIAL ENTRY statement, 200 Weitek coprocessor, 91, 197, 201
SPECIAL PARAMETER statement, 190 WEITEK,compiler option, 32, 48, 86
SPECIAL SUBROUTINE statement, 200 WHILE statement, 184 o _
Compilation, 1 Windows 3.x,running DBOS applications with, 307
SRC, 19 WRITE,RUN77 option, 235
STACK,compiler option, 32, 48 WRITEU compiler op_tion,use with load-and-go, 42
Statement execution count, 36 WRITEU,RUN77 option, 235
Statement function,inline code for, 92
Statement label,use of, 91 X

Static storage, 29
Statistics,compilation, 27
STATISTICS,compiler option, 28, 48
STDCALL statement, 223

XREF,compiler option, 25, 49
XREF,LINK77 command, 231

Subroutines Z
u afguml%r;tS, 202 Z edit descriptor, 183
ubstring, ZEROISE,compiler option, 30, 49, 80

SUPPRESS,LINK77 command, 232
SUPPRESS_COMMON_WARNINGS,LINK77 command,
232

SVC pseudo-op’s, 303

SVC/3, 305

SYMBOL,LINK77 command, 233

Index-6

	FTN77 User Guide
	Preface
	Contents
	Introduction
	Installation (DOS/Win16)
	Installation (Win32)
	Compiling with FTN77
	Using /LGO and /LINK
	Compiler Options
	Using SDBG
	Program Development
	Optimisation and efficient use of Fortran
	Fortran input/output
	Intrinsic functions
	Fortran 77 character handling
	Language extensions
	In-line assembler
	The in-line assembler and DBOS
	Mixed language programming
	The COMGEN utility
	Calling the Windows API (Win32)
	Linking under DOS/Win16
	Linking under Win32
	Using MK and MK32
	Using Plato
	DBOS (DOS)
	Running DBOS applications under Windows (Win16)
	Plotter interfacing (DOS)
	Calling realmode libraries (DOS)
	Execution errors and IOSTAT values
	Error and exception handling
	Overview of the FTN77 run-time libraries
	Index

