
)71��

Library Reference

ii

IMPORTANT NOTICE

Salford Software Ltd. gives no warranty that all errors have been eliminated from
this manual or from the software or programs to which it relates and neither the
Company nor any of its employees, contractors or agents nor the authors of this
manual give any warranty or representation as to the fitness of such software or
any such program for any particular purpose or use or shall be liable for direct,
indirect or consequential losses, damages, costs, expenses, claims or fee of any
nature or kind resulting from any deficiency defect or error in this manual or such
software or programs.

Further, the user of such software and this manual is expected to satisfy
himself/herself that he/she is familiar with and has mastered each step described in
this manual before the user progresses further.

The information in this document is subject to change without notice.

May 1998

© Salford Software Ltd 1998

All copyright and rights of reproduction are reserved. No part of this document may
be reproduced or used in any form or by any means including photocopying, recording,
taping or in any storage or retrieval system, nor by graphic, mechanical or electronic
means without the prior written consent of the Salford Software Ltd.

iii

Preface

FTN77 provides a number of useful subroutines and functions in addition to those specified
in the ANSI Standard. Some of the functions that have been provided are defined as intrinsic
functions and are described in chapter 11 of the FTN77 User’s Guide. The remaining
functions, and all of the subroutines are described in this library reference, together with
examples of their use where appropriate. Most of this information is also available in the on-
line help systems. Some of these routines will be widely applicable, while others were
written primarily for use within the compiler system (FTN77 is itself written in Fortran) but
may be of use to some users in specialised circumstances and are therefore documented here.
Note that all functions obey the implicit typing rules in effect, so it will be necessary to
declare some of the functions before they can be used.

If you are using a routine which is not described in this manual, but which has been
suggested by Salford Software as a solution to some specific problem, there is no need to alter
your code. Any routine in DBOS.LIB which has been used by one of our users is guaranteed
to remain in the library in all subsequent versions of the software. If it is not documented it
is probably because a better routine has been made available. The routines are arranged in
chapters as functional groups. Within the chapters the routines are arranged in alphabetical
order.

The following symbols are used to denote the availability of each routine on the various
platforms:

no symbol Function is available on all platforms, DOS, Win16 and Win32.

n At the time of going to press, function is only available under DOS .

o Function is only available under DOS.

p Function is only meaningful under DOS. Under Win16 and Win32 the
function either has no operation or is not relevant. This category is for DOS
programs and programs that are being ported from DOS to Windows.

q Function is available under DOS and also in ClearWin+ but with slightly
different functionality. See this guide for the DOS function and the
Clearwin+ documentation (the manual or an information file on the release
disk) for information on the ClearWin+ variant.

r Function is only available under Win32.

On the next page you will find a list of chapter headings in this guide. A full table of
contents appears after the acknowledgements.

FTN77 Library Reference

iv

Chapter headings in this manual:
page

1. Bit-handling ... 1

2. Character-handling .. 3

3. Command line parsing... 11

4. Data sorting... 15

5. Error and exception handling .. 17

6. File-manipulation ... 27

7. Graphics drawing .. 45

8. Graphics plotter/screen ... 73

9. Graphics printer... 89

10. Hot key (DOS)... 105

11. In-line .. 109

12. Mouse ... 113

13. Printer (DOS) .. 125

14. Process control ... 127

15. Random numbers.. 133

16. Real mode interface (DOS) .. 135

17. Serial communications... 145

18. Sound ... 149

19. Storage management .. 151

20. System information.. 159

21. Text screen/keyboard .. 163

22. Text windows (DOS) ... 177

23. Time and date ... 185

v

Acknowledgements

* * *

FTN77 is a registered trademarks of Salford Software Ltd.

DBOS, Salford C++, SLINK and ClearWin+ are trademarks of Salford Software
Ltd.

FTN90 is a joint trademark of Salford Software Ltd and the Numerical Algorithms
Group Ltd.

MS-DOS, Windows, Windows 95 and Windows NT are trademarks of Microsoft
Corporation.

BRIEF is a trademark of Borland International Inc.

Intel is a registered trademark of Intel Corporation.

AUTOMAKE is a trademark of Polyhedron Software Ltd.

FTN77 Library Reference

vi

Contents-1

Table of Contents

1. Bit-handling1

CLEAR_BIT@...1
SET_BIT@...1
TEST_BIT@..2

2. Character-handling..........................3

ALLOCSTR@ ..3
APPEND_STRING@ ..3
CENTRE@...4
CHAR_FILL@ ..4
CHSEEK@ ...5
CNUM...6
COMPRESS@..6
GETSTR@ ...7
LCASE@ ..7
NONBLK..8
SAYINT..8
TRIM@...9
TRIMR@..9
UPCASE@..10

3. Command line parsing 11

CMNAM...11
CMNAM@ ...12
CMNAMR ..12
CMNARGS@ ..13
CMNUM@ ...13
CMPROGNM@ ..13
COMMAND_LINE..13
GET_PROGRAM_NAME@...14
SET_COMMAND_LINE@ ...14

4. Data sorting 15

CHSORT@...15
ISORT@ ...16
RSORT@..16
DSORT@..16

5. Error and exception handling17

ACCESS_DETAILS@ ...17
CLEAR_FLT_UNDERFLOW@18
DOS_ERROR_MESSAGE@..18
DOSERR@...18
ERR77..19
ERROR@...19
EXCEPTION_ADDRESS@ ..20
FORTRAN_ERROR_MESSAGE@...................................20
GET_VIRTUAL_COMMON_INFO@20
JUMP@ ..21
LABEL@..22
PERMIT_UNDERFLOW@..22
PRERR@..23
QUIT_CLEANUP@..23
RESTORE_DEFAULT_HANDLER@23
RUNERR@ ..24
SET_DISK_ERRORS@..24
SET_TRAP@ ..24
TRAP_EXCEPTION@ ...25
UNDERFLOW_COUNT@...26

6. File-manipulation27

ATTACH@..27
CLOSEF@..28
CLOSEFD@...28
CLOSEV@ ..28
CURDIR@ ...29
CURRENT_DIR@ ...29
DIRENT@..29
EMPTY@...31
ERASE@..31
FEXISTS@ ..31
FILE_EXISTS@ ...32
FILE_SIZE@ ...32
FILE_TRUNCATE@..32
FILEINFO@ ..33
FILES@..33

FTN77 Library Reference

Contents-2

FPOS@ ...34
FPOS_EOF@ ..34
GET_FILE_DATE_TIME_STAMP@34
GET_FILES@ ...35
GET_PATH@..35
GET_PATHV@ ..36
MKDIR@ ...36
OPENR@ ...36
OPENRW@..37
OPENV@ ..38
OPENW@ ..38
READF@..39
READFA@...39
RENAME@..40
RFPOS@ ..40
SELECT_FILE@ ..40
SET_FILE_ATTRIBUTE@..41
SET_SUFFIX@..41
SET_SUFFIX1@ ...42
TEMP_FILE@ ...43
TEMP_PATH@...43
WILDCHECK@ ...43
WRITEF@..44
WRITEFA@...44

7. Graphics drawing45

Introduction...45
Palette registers and 16 colour graphics.45
256 colour graphics...47
Polygon filling...47
Text attributes ...48
Additional fonts...48
Coordinate systems ...49

CLEAR_SCREEN@..50
CLEAR_SCREEN_AREA@...50
COMBINE_POLYGONS@..51
CREATE_POLYGON@...52
DELETE_POLYGON_DEFINITION@............................53
DRAW_HERSHEY@ ...53
DRAW_LINE@...55
DRAW_TEXT@..56
EGA@ ...56
ELLIPSE@...56
FILL_ELLIPSE@ ..57
FILL_POLYGON@ ..57
FILL_RECTANGLE@..58
GET_ALL_PALETTE_REGS@58
GET_DEVICE_PIXEL@ ...59

GET_GRAPHICS_MODES@ ... 59
GET_GRAPHICS_RESOLUTION@ 59
GET_PIXEL@ .. 60
GET_TEXT_MODES@ .. 60
GET_TEXT_SCREEN_SIZE@ .. 61
GET_VIDEO_DAC_BLOCK@ .. 61
GRAPHICS_MODE_SET@ .. 61
GRAPHICS_WRITE_MODE@... 62
HERSHEY_PRESENT@.. 63
HIGH_RESOLUTION_GRAPHICS_MODE@ 63
IS_TEXT_MODE@ ... 63
LOAD_STANDARD_COLOURS@ 64
MOVE_POLYGON@... 64
POLYLINE@ .. 65
RECTANGLE@.. 65
RESTORE_GRAPHICS_BANK@ 66
RESTORE_TEXT_SCREEN@ ... 66
SAVE_TEXT_SCREEN@ .. 67
SCREEN_TYPE@ ... 67
SET_ALL_PALETTE_REGS@ 67
SET_DEVICE_PIXEL@ .. 68
SET_PALETTE@ ... 68
SET_PIXEL@ ... 68
SET_TEXT_ATTRIBUTE@... 69
SET_VIDEO_DAC@ .. 70
SET_VIDEO_DAC_BLOCK@ ... 70
TEXT_MODE@ ... 71
TEXT_MODE_SET@ ... 71
USE_VESA_INTERFACE@ ... 71
VGA@ .. 72

8. Graphics plotter/screen 73

Introduction .. 73
Production of output ... 74
Virtual Screens and screen blocks.................................... 74
Saving and restoring the graphics screen.......................... 75

CLOSE_PLOTTER@ .. 76
CLOSE_VSCREEN@... 76
CREATE_SCREEN_BLOCK@ .. 76
GET_DACS_FROM_SCREEN_BLOCK@...................... 77
GET_SCREEN_BLOCK@... 77
NEW_PAGE@ .. 79
OPEN_PLOT_DEVICE@ ... 80
OPEN_PLOT_FILE@ .. 81
OPEN_VSCREEN@... 82
PCX_TO_SCREEN_BLOCK@ .. 82
PLOTTER_SET_PEN_TYPE@ 83
RESTORE_SCREEN_BLOCK@ 83

Table of Contents

Contents-3

SCREEN_BLOCK_TO_PCX@..84
SCREEN_BLOCK_TO_VSCREEN@...............................86
SCREEN_TO_VSCREEN@...87
VSCREEN_TO_PCX@...87
VSCREEN_TO_SCREEN@...88
WRITE_TO_PLOTTER@ ...88

9. Graphics printer............................. 89

Introduction...89
The default printer...89
PCL printers ..90
CLOSE_GRAPHICS_PRINTER@92
GET_PCL_PALETTE@ ..92
LOAD_PCL_COLOURS@ ..93
OPEN_GPRINT_DEVICE@ ...93
OPEN_GPRINT_FILE@ ..94
PRINT_GRAPHICS_PAGE@..94
SELECT_DOT_MATRIX@ ..95
SELECT_PCL_PRINTER@ ..95
SET_PCL_BITPLANES@ ...99
SET_PCL_GAMMA_CORRECTION@100
SET_PCL_GRAPHICS_DEPLETION@100
SET_PCL_GRAPHICS_SHINGLING@101
SET_PCL_LANDSCAPE@ ...102
SET_PCL_PALETTE@ ...102
SET_PCL_RENDER@ ...103

10. Hot key (DOS) 105

DEFINE_HOT_KEY@ ..107
REMOVE_HOT_KEY@ ..108
FEED_KEYBOARD@ ...108

11. In-line ... 109

FILL@...109
IN@ ...109
MATCH@ ..110
MOVE@ ...110
OUT@ ..110
POP@..111
PUSH@...111
SET_IO_PERMISSION@ ...111

12. Mouse... 113

DISPLAY_MOUSE_CURSOR@114
GET_MOUSE_BUTTON_PRESS_COUNT@114
GET_MOUSE_EVENT_MASK@115

GET_MOUSE_PHYSICAL_MOVEMENT@115
GET_MOUSE_POSITION@ ...115
GET_MOUSE_SENSITIVITY@116
HIDE_MOUSE_CURSOR@ ...116
INITIALISE_MOUSE@ ..116
MOUSE@ ..117
MOUSE_CONDITIONAL_OFF@117
MOUSE_LIGHT_PEN_EMULATION@117
MOUSE_SOFT_RESET@..118
QUERY_MOUSE_SAVE_SIZE@118
RESTORE_MOUSE_DRIVER_STATE@118
SAVE_MOUSE_DRIVER_STATE@119
SET_MOUSE_BOUNDS@ ...119
SET_MOUSE_GRAPHICS_CURSOR@119
SET_MOUSE_INTERRUPT_MASK@120
SET_MOUSE_MOVEMENT_RATIO@121
SET_MOUSE_POSITION@..122
SET_MOUSE_SENSITIVITY@122
SET_MOUSE_SPEED_THRESHOLD@122
SET_MOUSE_TEXT_CURSOR@123

13. Printer (DOS)125

PRINT_CHARACTER@ ...125
INITIALISE_PRINTER@ ...125
GET_PRINTER_STATUS@ ...126

14. Process control127

CISSUE...127
EXIT ...128
EXIT@ ...128
GET_KEY_OR_YIELD@..128
SLEEP@...129
SPAWN@ ..129
START_PROGRAM@ ..129
YIELD@ ..130

15. Random numbers.........................133

RANDOM ..133
DATE_TIME_SEED@ ...134
SET_SEED@...134

16. Real mode interface (DOS)135

ALLOCATE_REAL_MODE_MEMORY@136
COPY_FROM_REAL_MODE@137
COPY_FROM_REAL_MODE1@137
COPY_FROM_SEGMENT@ ...138

FTN77 Library Reference

Contents-4

COPY_TO_REAL_MODE@ ..138
COPY_TO_REAL_MODE1@ ..139
COPY_TO_SEGMENT@ ..139
DEALLOCATE_REAL_MODE_MEMORY@139
DOSCOM@ ..140
FTN77WT etc. ..140
LINEAR_ONE_MEG_SEG@ ...141
LOAD_REAL_MODE_LIBRARY@141
MODIFY_REAL_MODE_MEMORY@142
REAL_MODE@ ...142
REAL_MODE_ADDRESS_OF_DOSCOM@142
REAL_MODE_INTERRUPT@143
SCREENSEG@ ..144

17. Serial communications................145

GETTERMINATECOMMCHAR@.................................145
OPENCOMMDEVICE@ ..145
READCOMMDEVICE@..146
SETCOMMTERMINATECHAR@146
SETECHOONREADCOMM@ ..147
WRITECOMMDEVICE@..147

18. Sound ...149

BEEP@ ..149
SOUND@ ..149

19. Storage management...................151

FREE_SPACE_AVAILABLE@ 152
FREE_VIRTUAL_PAGES@ ...152
GET_MEMORY_INFO@ ...153
GET_STORAGE@..153
GET_STORAGE1@ ...154
LARGEST_BLOCK_AVAILABLE@154
MEMORY_AVAILABLE@ ..155
RETURN_STORAGE@ ...155
SET_PAGES_RESERVE@ ...155
SET_TRAP_ON_PAGE_TURN@155
SHRINK_STORAGE@...156
USE_STORAGE@ ...156
USE_VIRTUAL_SCRATCH_FILES@157

20. System information159

DBOS_VERSION@ ...159
DOSPARAM@ ..159
DYNT@ ..160
DYNT1@ ..160

GET_COPROCESSOR_ENVIRONMENT@ 160
GET_CURRENT_FORTRAN_IO@............................... 161
GET_CURRENT_FORTRAN_UNIT@.......................... 162
GETENV@ ... 162

21. Text screen/keyboard.................. 163

COU@.. 164
COUA@... 164
COUP@ ... 164
DOS_KEY_WAITING@ ... 165
ECHO_INPUT@ .. 165
ERRCOU@ ... 165
ERRCOUA@ .. 166
ERRNEWLINE@ ... 166
ERRSOU@ ... 166
ERRSOUA@ ... 166
GET_CURSOR_POS@ ... 167
GET_DOS_KEY@ ... 167
GET_DOS_KEY1@ .. 167
GET_EXTENDED_CHAR@ .. 168
GET_KEY@.. 168
GET_KEY1@ ... 169
GETCL@ .. 169
HIDE_CURSOR@ ... 170
KEY_WAITING@ ... 170
NEWLINE@.. 171
PRINT_BYTES@... 171
PRINT_BYTES_R@.. 171
PRINT_HEX1@.. 171
PRINT_HEX2@.. 172
PRINT_HEX4@.. 172
PRINT_I1@... 172
PRINT_I2@... 172
PRINT_I4@... 172
PRINT_R4@.. 173
PRINT_R8@.. 173
READ_EDITED_LINE@ .. 173
RESTORE_CURSOR@ ... 174
SET_CURSOR_POS@ .. 174
SET_CURSOR_TYPE@ ... 174
SOU@ .. 175
SOUA@.. 175

22. Text windows (DOS) 177

CONCEALW@ .. 177
KILLW@ .. 178
MOVEW@ .. 178

Table of Contents

Contents-5

POPW@ ...178
SCROLL_DOWN@ and SCROLL_UP@179
SET_CURSOR_POSW@ ...179
WBORDER@ ..179
WCLEAR@ ...180
WCOU@ ..180
WCOUP@ ...181
WCREATE@ ..181
WDBORDER@ ...181
WDSHADOW@ ...182
WMEMORY@ ..182
WREAD_EDITED_LINE@ ...182
WSHADOW@ ..183
WTITLE@ ...184

23. Time and date...............................185

CLOCK@...185
CONVDATE@ ...185
DATE@..186
DCLOCK@..186
EDATE@ ...186
FDATE@..187
HIGH_RES_CLOCK@...187
SECONDS_SINCE_1970@...188
SECONDS_SINCE_1980@...188
SET_ALARM_CLOCK@ ..188
TIME@...189
TODATE@ ...189
TOEDATE@ ...190
TOFDATE@ ...190
TOTIME@ ..190

FTN77 Library Reference

Contents-6

1

1.

Bit-handling

The routines in this chapter provide for bit packed logical arrays. The routines are
compiled in-line using the Intel bit manipulation instructions. The result executes
about as fast as a reference to a logical array, but the data is stored 8 or 16 or 32 times
more efficiently. The bit array may be held in an array (or even a simple variable) of
any type (usually INTEGER*2). These routines do not check that their arguments are
in range, even in CHECK mode. Bits are numbered from 0. Bit 0 is the least
significant bit of the first word of the array.

CLEAR_BIT@
Purpose To clear the N’th bit of an array.

Syntax BD1A>DC8=4 2;40AN18C/�80�=�

8=C464A�! 80����=

Description Clears the N’th bit of the array IA. N can be INTEGER*1, INTEGER*2 or
INTEGER*4 and IA can be of any datatype.

SET_BIT@
Purpose To set the N’th bit of an array.

Syntax BD1A>DC8=4 B4CN18C/�80�=�

8=C464A�! 80����=

Description Sets the N’th bit of the array IA. N can be INTEGER*1, INTEGER*2 or
INTEGER*4 and IA can be of any datatype.

FTN77 Library Reference

2

TEST_BIT@
Purpose To test if the N’th bit of an array is set.

Syntax 8=C464A�! 5D=2C8>= C4BCN18C/�80�=�

8=C464A�! 80����=

Description TEST_BIT@ may be declared as LOGICAL or INTEGER.

Return value TEST_BIT@ returns 1 or 0 (.TRUE. or .FALSE.) according to whether the
N’th bit of IA is set or not.

Example

2 a^dcX]T c^ \PX]cPX] [Xbc ^U QPS aTR^aSb X] P

2 UX[T � QXc�_PRZX]V P[[^fb U^a %���� aTR^aSb

BD1A>DC8=4 103A42�=�

;>6820;�! C4BCN18C/

8=C464A�! 8=5>� �����

B0E4 8=5>

30C0 8=5>� �������

20;; B4CN18C/�8=5>�=�

A4CDA=

4=CAH 2742:A42�=�

85�C4BCN18C/�8=5>�=��C74=

?A8=C ��´0ccT_c c^ dbT QPS aTR^aS ^U UX[T�´

BC>?

4=385

4=3

3

2.

Character-handling

The routines in this chapter provide various facilities for manipulating objects of
Fortran 77 CHARACTER type.

ALLOCSTR@ rr

Purpose To allocate dynamic storage and copy a string.

Syntax 8=C464A�# 5D=2C8>= 0;;>2BCA/�BCA8=6�

270A02C4A���� BCA8=6

Description ALLOCSTR@ copies STRING with trailing spaces removed and terminated by
a null (i.e. a C-format string), into a dynamic storage space which it allocates.
The string can be retrieved using the routine GETSTR@.

Return value The return value of the function is the address of the storage used.

Example See GETSTR@.

APPEND_STRING@
Purpose To add a string to the end of a line.

Syntax BD1A>DC8=4 0??4=3NBCA8=6/�;8=4�0338C8>=�

270A02C4A���� ;8=4�0338C8>=

Description This routine adds the string ADDITION to the end of string LINE after removing
trailing spaces from LINE. This can be used to build up complex strings without
the need to do many substring calculations.

FTN77 Library Reference

4

Example

270A02C4A�'� ;8=4

270A02C4A�!� B0H8=C

8=C464A�# =>N6A44=N1>CC;4B

;8=4,´C74A4 0A4´

A403 ��=>N6A44=N1>CC;4B

85�=>N6A44=N1>CC;4B�4@���C74=

20;; 0??4=3NBCA8=6/�;8=4�´ =>´�

4;B4

20;; 0??4=3NBCA8=6/�;8=4�´ ´��B0H8=C�=>N6A44=N1>CC;4B��

4=385

20;; 0??4=3NBCA8=6/�;8=4�´ BC0=38=6 >= 0 F0;;´�

20;; B>D/�;8=4�

4=3

CENTRE@
Purpose To position a string in the centre of a field.

Syntax 270A02C4A���� 5D=2C8>= 24=CA4/�BCA8=6�8F�

270A02C4A���� BCA8=6

8=C464A�! 8F

Return value CENTRE@ returns STRING after padding with blanks on the left so that the
non-blank part is centred in a field of IW characters. This is very useful for
titles.

Example

270A02C4A�'� 24=CA4/

?A8=C ��24=CA4/�´58=0; A4BD;CB´�'��

CHAR_FILL@ rr

Purpose To fill a string with a particular character.

Syntax BD1A>DC8=4 270AN58;;/�BCA8=6�58;;�

270A02C4A���� BCA8=6

270A02C4A� 58;;

Description This routine fills the string in STRING with the character FILL up to the full

Chapter 2 Character-handling

5

length of STRING.

CHSEEK@
Purpose To look for a given string in an ordered array.

Syntax BD1A>DC8=4 27B44:/�8C4<�;8BC�=�8A4B�

270A02C4A���� 8C4<�;8BC�=�

8=C464A�# =�8A4B

Description Seeks the string ITEM in the sorted array LIST using a binary chop. Returns the
position in IRES or 0 if not found. Note that the LIST array must be sorted in
ascending dictionary order.

Example

>?C8>=B�8=C;�

270A02C4A� � 5>>3B�$�

270A02C4A� ! <40;

30C0 5>>3B�´1DCC4A´�´466B´�´58B7´�´<DCC>=´�´BD60A´�

 A403 ���´�0�´�<40;

20;; 27B44:/�<40;�5>>3B�$�:�

6>C>� ��!��"��#��$��%���:�

 � ?A8=C ��´cWXb Xb]^c P U^^S 8 Z]^f PQ^dc´

6>C>

!� ?A8=C ��´b_aTPS Xc´

6>C>

"� ?A8=C ��´Q^X[Xc´

6>C>

#� ?A8=C ��´Uah Xc´

6>C>

$� ?A8=C ��´bcTf Xc´

6>C>

%� ?A8=C ��´_dc Xc X] R^UUTT´

6>C>

4=3

FTN77 Library Reference

6

CNUM
Purpose To convert an integer to character form.

Syntax 270A02C4A���� 5D=2C8>= 2=D<�9�

8=C464A�# 9

Description Converts the INTEGER*4 number J to characters, left-justified with sign if
negative.

Example

2 a^dcX]T c^ ^_T] P UX[T ^U]P\T 5A43]]]]

2 fWTaT]]]] Xb P #�SXVXc X]cTVTa

BD1A>DC8=4 5A43>?4=�:�

8=C464A�# :

270A02C4A�' 5A43�2=D<

2]^cT caXRZ c^ VTc [TPSX]V iTa^b

5A43�#)'� , 2=D<�:� �����

5A43�)#� , ´5A43´

>?4= �58;4,5A43�D=8C, �

4=3

COMPRESS@
Purpose To compress a string by using tabs.

Syntax BD1A>DC8=4 2><?A4BB/�;8=4�;�

270A02C4A���� ;8=4

8=C464A�! ;

Description COMPRESS@ replaces multiple blanks where possible in a line with tabs to
column positions which are multiples of eight. The new length of the line is
returned in L. The tabbing scheme is that used by DOS, so the resulting line can
be written to a DOS file.

Chapter 2 Character-handling

7

GETSTR@ rr

Purpose To get a string which was stored using ALLOCSTR@.

Syntax 270A02C4A���� 5D=2C8>= 64CBCA/�?CA�

8=C464A�# ?CA

Description This function can be used for strings allocated with the ALLOCSTR@ routine.
ALLOCSTR@ and GETSTR@ provide a simple way of storing and retrieving
large amounts of character information for which a maximum possible length of
each element is known, but where if all trailing spaces were stored the amount of
memory required would be excessive. For example, lines of text destined for
screen display could be stored in this way (usually a maximum of 80 characters,
but often with much trailing space).

Another application of this routine is for C string entities passed to Fortran
routines (see chapter 16).

Return value GETSTR@ returns the null-terminated string at address PTR as a Fortran
CHARACTER entity, truncating or blank-padding as necessary.

Example

8=C464A�# 0;;>2BCA/�?CA

270A02C4A�'� 64CBCA/

� � �

?CA,0;;>2BCA/�;8=4�

� � �

>DC;8=,64CBCA/�?CA�

?A8=C ´�0�´� >DC;8=

LCASE@
Purpose To alter a character argument so that all letters become lower case.

Syntax BD1A>DC8=4 ;20B4/�0�

270A02C4A���� 0

Example

270A02C4A� � 5A43

5A43 , ´012 !"´

20;; ;20B4/�5A43�

85�5A43�=4�´PQR !"´�?A8=C ��´;20B4/ a^dcX]T WPb UPX[TS´

4=3

FTN77 Library Reference

8

NONBLK
Purpose To obtain the position of the first non-blank character.

Syntax 8=C464A�! 5D=2C8>= =>=1;:�0�

270A02C4A���� 0

Return value NONBLK@ returns the position of the first non-blank character in the character
argument A. If the argument is wholly blank, 0 is returned.

Example

2 a^dcX]T c^ aTPS [X]T ^U cTgc P]S aTcda] UXabc f^aS

BD1A>DC8=4 A4034A�8C4<�

270A02C4A�!� 8C4<

270A02C4A�'� ;8=4

A403 ���´�0�´�;8=4

8C4< , ;8=4�)=>=1;:�;8=4��

4=3

SAYINT
Purpose To return an integer argument as text.

Syntax 270A02C4A���� 5D=2C8>= B0H8=C�8�

8=C464A�# 8

Description As an example, the value I=-270 would return the character value ’MINUS
TWO HUNDRED AND SEVENTY’.

Example

270A02C4A�'� B0H8=C

8=C464A�# 8

3> 8, �����

 ?A8=C ��B0H8=C�8�

?A8=C ��´fT WPeT [XUc ^UU�´

4=3

Chapter 2 Character-handling

9

TRIM@
Purpose To remove leading blanks.

Syntax BD1A>DC8=4 CA8</�G�

270A02C4A���� G

Description TRIM@ is used to remove leading blank characters from the character argument
X.

Example

2 aTPS]P\Tb Ua^\ P UX[T P]S _aX]c cWT\ [TUc YdbcXUXTS

270A02C4A� � =0<4

>?4= �58;4,´=0<4B´�D=8C, ��

 A403 � ��´�0�´�4=3,!�=0<4

20;; CA8</�=0<4�

?A8=C ��=0<4

6>C>

! 4=3

TRIMR@
Purpose To rotate a character string right until there are no trailing blanks.

Syntax BD1A>DC8=4 CA8<A/�G�

270A02C4A���� G

Notes If the string is blank, it is left unchanged.

Example

2 aTPS]P\Tb Ua^\ P UX[T P]S _aX]c cWT\ aXVWc YdbcXUXTS

270A02C4A� � =0<4

>?4= �58;4,´=0<4B´�D=8C, ��

 A403 � ��´�0�´�4=3,!�=0<4

20;; CA8<A/�=0<4�

?A8=C ��=0<4

6>C>

! 4=3

FTN77 Library Reference

10

UPCASE@
Purpose To alter a character argument so that all letters become upper case.

Syntax BD1A>DC8=4 D?20B4/�0�

270A02C4A���� 0

Example

270A02C4A� � 5A43

5A43 , ´01RS´

20;; D?20B4/�5A43�

85�5A43�=4�´0123´�?A8=C ��´D?20B4/ a^dcX]T WPb UPX[TS´

4=3

15

4.

Data sorting

The routines in this chapter provide facilities for sorting arrays of various types. The
routines described use a quicksort algorithm, and perform well for data which is
originally randomly ordered. Note, however, that these routines are not stable in the
strict sense. That is, equal keys do not necessarily maintain their order relative to each
other.

CHSORT@
Purpose To sort an array of characters.

Syntax BD1A>DC8=4 27B>AC/�0�27B�=�

270A02C4A���� 27B�=�

8=C464A�# 0�=��=

Description CHSORT@ sorts the character array CHS by setting pointers from 1 to N in
the array A. After sorting, A(1) contains a pointer to the “first” element of
CHS, A(2) to the “second”, and so on.

Example

>?C8>=B�8=C;�

270A02C4A�!� ?D?8;B� ���

8=C464A�# 8?� ���

3> 8, � ��

 A403 �$�´�0�´�?D?8;B�8�

20;; 27B>AC/�8?�?D?8;B� ���

?A8=C ��´b^acTS [Xbc ^U _d_X[b)�´

3> ! 8, � ��

! ?A8=C ��?D?8;B�8?�8��

4=3

FTN77 Library Reference

16

ISORT@
Purpose To sort an integer array.

Syntax BD1A>DC8=4 8B>AC/�0�80�=�

8=C464A�# 80�=�

8=C464A�# 0�=��=

Description ISORT@ sorts the integer array IA by setting pointers from 1 to N in the array
A in the same manner as CHSORT@.

RSORT@
Purpose To sort a REAL*4 array.

Syntax BD1A>DC8=4 AB>AC/�0�A�=�

A40;�# A�=�

8=C464A�# 0�=��=

Description RSORT@ sorts the REAL*4 array R by setting pointers from 1 to N in the
array A in the same manner as CHSORT@.

DSORT@
Purpose To sort a REAL*8 array.

Syntax BD1A>DC8=4 3B>AC/�0�3�=�

A40;�' 3�=�

8=C464A�# 0�=��=

Description DSORT@ sorts the REAL*8 array D by setting pointers from 1 to N in the
array A in the same manner as CHSORT@.

17

5.

Error and exception
 handling

The routines described in this chapter fall into two main categories:

� Those which allow interpretation of error codes returned by other routines.
Routines which fall into this category include ERR77 and
DOS_ERROR_MESSAGE@. Where a routine returns an error code it is of
course always good practice to check it for an acceptable value (usually zero).

� Those which allow control over the action taken in the event of a software-
generated exception (such as an underflow, or a DOS critical error). Some
“events”, such as mouse movements and button presses, can be treated as
exceptions in this context, and can be dealt with by the mechanisms described in
this chapter.

See also chapter 28 in the FTN77 User’s Guide.

ACCESS_DETAILS@ rr

Purpose Get the details of the access violation.

Syntax BD1A>DC8=4 0224BBN34C08;B/�033A4BB� <>34� 82�

8=C464A�# 033A4BB

;>6820;�# <>34

8=C464A�! 82

Description This subroutine is used after an access violation has accured to ascertain the
address that was being accessed when the exception occured. If this function is
successful, address contains the address that was being accessed. mode is set to
TRUE if the instruction was attempting to read from the address, FALSE if the
instruction was attempting to write to the address.

FTN77 Library Reference

18

ic is set to 0 on success, 1 on failure.

CLEAR_FLT_UNDERFLOW@ rr

Purpose Clear a floating point underflow exception.

Syntax BD1A>DC8=4 2;40AN5;CND=34A5;>F/

Description Decode the instruction that caused the floating point underflow and clear the
floating point underflow from the machine state.

DOS_ERROR_MESSAGE@
Purpose To get a DOS error message.

Syntax BD1A>DC8=4 3>BN4AA>AN<4BB064/�4AA>AN2>34�<4BB064�

8=C464A�! 4AA>AN2>34

270A02C4A���� <4BB064

Description Returns the DOS error string corresponding to the error number
ERROR_CODE. The error numbers are augmented in the same way as for
DOSERR@.

Example

270A02C4A�'� <4BB064

20;; >?4=A/�´30C0´�87�4AA>AN2>34�

20;; 3>BN4AA>AN<4BB064/�4AA>AN2>34�<4BB064�

?A8=C ��<4BB064

DOSERR@
Purpose To print a DOS error message and exit when an error occurs.

Syntax BD1A>DC8=4 3>B4AA/�4AA>AN2>34�

8=C464A�! 4AA>AN2>34

Description This routine does nothing if ERROR_CODE is zero, otherwise it prints the
DOS error message corresponding to ERROR_CODE and exits from the
program. It is typically used after system calls that use DOS and are normally

Chapter 5 Error and exception handling

19

expected to succeed.

Example:

20;; >?4=A/�´30C0´�87�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

ERR77
Purpose To print a DOS error message and terminate a program when an error occurs.

Syntax BD1A>DC8=4 4AA&&�<4BB064�4AA>AN2>34�

270A02C4A���� <4BB064

8=C464A�! 4AA>AN2>34

Description This routine has a null effect if ERROR_CODE is zero. Otherwise the string
MESSAGE is printed, followed by the text of the DOS error indicated by
ERROR_CODE. The program then terminates abnormally. This routine is
normally used to test for DOS error following another system call, as in the
example.

Example

270A02C4A�#� 58;4

A403���´�0�´�58;4

20;; >?4=A/�58;4�70=3;4�4AA>AN2>34�

20;; 4AA&&�58;4�4AA>AN2>34�

� � �

ERROR@
Purpose To print a user defined error message and terminate a program.

Syntax BD1A>DC8=4 4AA>A/�4AA>AN<4BB064�

270A02C4A���� 4AA>AN<4BB064

Description This routine generates a user defined error condition. If the program is running
under the debugger, then the message will be displayed in the error window.
Otherwise, the error is printed out and the EXIT routine is called with a code of 1
(exit to DOS).

Example

20;; 4AA>A/�´C^^ \P]h SPcP _^X]cb U^a ?;>C _a^VaP\´�

FTN77 Library Reference

20

EXCEPTION_ADDRESS@ rr

Purpose To find the address of the intruction which generated the exception

Syntax 8=C464A�# 4G24?C8>=N033A4BB/

Description EXCEPTION_ADDRESS@ returns the address of the instruction that
generated the exception event.

Return value Address of the instruction that generated the exception.

FORTRAN_ERROR_MESSAGE@
Purpose To get a Fortran error message.

Syntax BD1A>DC8=4 5>ACA0=N4AA>AN<4BB064/�4AA>AN2>34�<4BB064�

8=C464A�! 4AA>AN2>34

270A02C4A���� <4BB064

Description Returns the error message corresponding to the Fortran run time error number
ERROR_CODE. Some error messages are rather vague (e.g. Inconsistent call
to routine) but when these errors occur the system produces a more informative
error message.

Example

270A02C4A�'� <4BB064

8=C464A�! 4AA>AN2>34

>?4=�58;4,´5A43´�D=8C,%�8>BC0C,4AA>AN2>34�

20;; 5>ACA0=N4AA>AN<4BB064/�4AA>AN2>34�<4BB064�

?A8=C ��<4BB064

GET_VIRTUAL_COMMON_INFO@ rr

Purpose Get virtual common block details.

Syntax BD1A>DC8=4 64CNE8ACD0;N2><<>=N8=5>/�=0<4�10B4�

� B8I4�2><<8C�0<>DCN2><<8CC43�

270A02C4A���� =0<4

8=C464A�# 10B4�B8I4�2><<8C�0<>DCN2><<8CC43

Description When a program is linked using the virtual common (VC) option, all uninitialised

Chapter 5 Error and exception handling

21

data (i.e. the BSS section) is removed from the executable and placed into virtual
paged memory with default base address 0x20000000. Pages of memory are
committed when necessary. GET_VIRTUAL_COMMON_INFO@ allows a
user to determine how much memory is used and also provides other information.

The subroutine returns BASE, SIZE, COMMIT (amount of memory the system
automatically commits) and AMOUNT_COMITTED (amount of memory
already committed) for the allocated virtual common block.

Example

?A>6A0< CE2

8=C464A�# 10B4� B8I4� 2><<8C� 0<CN2><<8C

20;; 64CNE8ACD0;N2><<>=N8=5>/��CE2 �4G4��10B4� B8I4� 2><<8C�0<CN2><<8C�

?A8=C��� 10B4 , �� 10B4

?A8=C��� B8I4 , �� B8I4

?A8=C��� 2><<8C , �� 2><<8C

?A8=C��� 0<CN2><<8C , �� 0<CN2><<8C

4=3

JUMP@
Purpose To execute a non-local jump.

Syntax BD1A>DC8=4 9D<?/�;014;�

2><?;4G� % ;014;

Description This routine is described here since its most frequent use is in conjuction with
SET_TRAP@. It takes a label generated by LABEL@ and jumps to the label.
The label must exist in a still active routine, but this can be any distance down
the call stack.

Example Consider a program designed to process several sets of data and to carry on even
after errors had been diagnosed in earlier data sets:

2><?;4G� % A42>E4A

2><<>=�4AA�A42>E4A

20;; ;014;/�A42>E4A�� ��

 � 20;; A403N30C0

20;; ?A>24BB

6>C> �

4=3

BD1A>DC8=4 4AA>A�<4BB064�

2><?;4G� % A42>E4A

2><<>=�4AA�A42>E4A

FTN77 Library Reference

22

270A02C4A���� <4BB064

20;; 2>D/�<4BB064�

20;; 9D<?/�A42>E4A�

4=3

Subroutine ERROR could be called from anywhere inside PROCESS (even
many layers down inside subroutine calls) to return to label 10 ready to process
the next data set. The use of JUMP@ obviates the need to provide an explicit
error exit path back to the main program. It is the user’s responsibility to ensure
that the LABEL is still accessible when JUMP@ is called, i.e. that the routine
which is called LABEL@ has not yet exited.

LABEL@
Purpose To set a label for a non-local jump.

Syntax BD1A>DC8=4 ;014;/�;014;���

2><?;4G� % ;014;

Description This routine makes a label for use with JUMP@.

Example See JUMP@.

PERMIT_UNDERFLOW@
Purpose To switch off floating point underflow checking.

Syntax BD1A>DC8=4 ?4A<8CND=34A5;>F/�?4A<8BB8>=�

;>6820;�! ?4A<8BB8>=

Description If PERMISSION is .TRUE. then this routine forces subsequent floating point
underflows to return zero. If PERMISSION is .FALSE. then subsequent
underflows will force a program fault.

Chapter 5 Error and exception handling

23

PRERR@
Purpose To print the error message associated with a given error code.

Syntax BD1A>DC8=4 ?A4AA/�4AA>AN2>34�BCA8=6�

8=C464A�! 4AA>AN2>34

270A02C4A���� BCA8=6

Description This routine does nothing if ERROR_CODE is zero, otherwise it prints the
user-supplied string STRING followed by the system error message
corresponding to ERROR_CODE. The routine returns normally and program
execution continues. ERROR_CODE will normally be a value returned by an
earlier call to a routine that could generate a system error condition.

QUIT_CLEANUP@
Purpose To print a message and exit from a program with Control-break

Syntax BD1A>DC8=4 @D8CN2;40=D?/�<4BB064�

270A02C4A���� <4BB064

Description This routine uses SET_TRAP@ to trap Control-break. The system responds to
Control-break by printing the given message and returning to DOS. This routine
provides a simple way to enable programs to be terminated early in a graceful
fashion.

Example

20;; @D8CN2;40=D?/�´@dXc _aTbbTS � _a^VaP\ PQP]S^]TS´�

RESTORE_DEFAULT_HANDLER@ rr

Purpose Remove a user defined exception handler.

Syntax BD1A>DC8=4 A4BC>A4N3450D;CN70=3;4A/�4G24?C8>=�

8=C464A�# 4G24?C8>=

Description Remove the default exception handler for the exception event given by
EXCEPTION and re-install the default handler.

FTN77 Library Reference

24

RUNERR@
Purpose To print the run-time error corresponding to a given IOSTAT value.

Syntax BD1A>DC8=4 AD=4AA/�8BC0C�

8=C464A�! 8BC0C

Description RUNERR@ prints an error message on the screen corresponding to a given
IOSTAT value ISTAT. These are the error messages listed in chapter 27.

SET_DISK_ERRORS@
Purpose To control the critical event handler.

Syntax BD1A>DC8=4 B4CN38B:N4AA>AB/�;�

;>6820;�! ;

Description If L is .TRUE. critical errors will return an error code and not put up the “Abort,
Retry, Ignore” message. If L is .FALSE. the message will appear.

SET_TRAP@ nn

Purpose To trap a given event.

Syntax BD1A>DC8=4 B4CNCA0?/�CA0?�>;3033A�CH?4�

8=C464A�# >;3033A

8=C464A�! CH?4

4GC4A=0; CA0?

Description This routine assigns an address TRAP to an event number TYPE. This is the
address of a routine that is to be called when the given event occurs. The former
address for the event is returned in OLDADDR (for nested traps). TYPE can
currently take one of the numbers in the table below.

Chapter 5 Error and exception handling

25

TYPE Event

0 Trap CONTROL BREAK

1 Trap Floating Point faults

2 Trap on every key press or release

3 Trap on alarm clock interrupt

4 Trap on mouse event

5 Trap on reaching page reserve

6 Trap on user-defined event

7 Trap on general protection exception

8 Trap on invalid opcode

The routine which handles the trap must save the register set, and so requires
some assembler programming, see page 206 in the FTN77 User’s Guide.

TRAP_EXCEPTION@
Purpose Install a user defined exception handler

Syntax 8=C464A�# 5D=2C8>= CA0?N4G24?C8>=/�4G24?C8>=�A>DC8=4�

8=C464A�# 4G24?C8>=� A>DC8=4

Description The subroutine ROUTINE is installed as the default method of handling the
event specified by EXCEPTION.

Return value If EXCEPTION is a valid exception event, the location of the previous handler
is returned. 0 is returned if EXCEPTION is an invalid exception code

Example

BD1A>DC8=4 D=34A5;>FN70=3;4A

)

4=3

>;3 , CA0?N4G24?C8>=/�D=34A5;>F� D=34A5;>FN70=3;4A�

FTN77 Library Reference

26

UNDERFLOW_COUNT@
Purpose To get the number of floating point underflows.

Syntax BD1A>DC8=4 D=34A5;>FN2>D=C/�2>D=C�

8=C464A�# 2>D=C

Description COUNT is returned as the number of underflows that have occurred since the
start of the program.

27

6.

File-manipulation

FTN77 offers a wide variety of file manipulation routines. If at all possible these
should be used in preference to attempting explicit system calls with SVC/3 for
example. Routines which take operating system file handles as arguments must only
be used with file handles obtained with one of the file opening routines detailed in
this chapter. The reading and writing routines use a buffer to eliminate unnecessarily
frequent switches between real and protected mode, and to improve the performance in
general. These buffers are cleared when a file is closed or when a program terminates
and returns to the operating system. As a result of this, a file which has been open for
writing may give an error (e.g. full disk) as it is closed with CLOSEF@. In all cases
where a routine returns an error code, this may be interpreted by calling a routine such
as DOSERR@.

ATTACH@
Purpose To set the current directory.

Syntax BD1A>DC8=4 0CC027/�?0C7�4AA>AN2>34�

270A02C4A���� ?0C7

8=C464A�! 4AA>AN2>34

Description PATH should be the pathname of a directory (e.g. 2)K?A>942C). ATTACH@
makes this the current directory, switching disks if necessary. ERROR_CODE
is returned with a non-zero system error code if it fails.

Example

270A02C4A�$� ?0C7

20;; 2>D0/�´FWTaT S^ h^d fP]c c^ QT. ´�

A403���´�0�´�?0C7

20;; 0CC027/�?0C7�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

FTN77 Library Reference

28

20;; 2>D/�´>: � cWPc Xb fWTaT h^d PaT� ´�

� � �

CLOSEF@
Purpose To close a file.

Syntax BD1A>DC8=4 2;>B45/�70=3;4�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

Description CLOSEF@ closes a file opened by OPENR@, OPENW@ or OPENRW@.
ERROR_CODE is returned with a non-zero system error code if it fails.

Example See OPRNRW@

CLOSEFD@
Purpose To close and delete a file.

Syntax BD1A>DC8=4 2;>B453/�70=3;4�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

Description CLOSEFD@ is the same as CLOSEF@ but CLOSEFD@ also deletes the
file from the disc. This is useful for temporary files.

CLOSEV@ oo

Purpose Closes a file opened with OPENV@

Syntax BD1A>DC8=4 2;>B4E/�B4;42C>A�4AA>AN2>34�

8=C464A�! 4AA>AN2>34�B4;42C>A

Description CLOSEV@ closes a file and removes the corresponding memory segment. It is
important to ensure that no segment register still holds the selector before calling
this routine. ERROR_CODE is returned as zero if the operation has succeeded,
otherwise it is returned with the relevant system error code.

Chapter 6 File-manipulation

29

CURDIR@
Purpose To get the current directory.

Syntax 270A02C4A���� 5D=2C8>= 2DA38A/��

Return value CURDIR@ returns the fully qualified pathname of the current directory.

Example

270A02C4A�$� 2DA38A/

?A8=C ��´H^d PaT RdaaT]c[h X] ´�2DA38A/��

CURRENT_DIR@ rr

Purpose To get the current directory.

Syntax BD1A>DC8=4 2DAA4=CN38A/�38A�4AA>AN2>34�

270A02C4A���� 38A

8=C464A�! 4AA>AN2>34

Description This routine is obsolete. Use CURDIR@ instead.

Return value Returns the name of the current working directory in DIR, or a non-zero error
code ERROR_CODE if failed. ERROR_CODE is returned as ERANGE if
the variable DIR is not of sufficient length. (ERANGE is defined in the include
file errno.ins.)

DIRENT@
Purpose To obtain directory information.

Syntax BD1A>DC8=4 38A4=C/�?0C�0CCA81DC4�A4BD;C�A4BD;CN0CCA81DC4�

� A4BD;CN30C4�A4BD;CNC8<4�58;4NB8I4�4AA>AN2>34�

270A02C4A���� ?0C�A4BD;C

8=C464A�! 0CCA81DC4�A4BD;CN0CCA81DC4�A4BD;CN30C4�

� A4BD;CNC8<4�4AA>AN2>34

8=C464A�# 58;4NB8I4

Description DIRENT@ returns directory information for files selected by PAT (e.g.
0)K��5>A). That is, each call of the routine searches for a single file in the
directory and with the extension implied by PAT. The attribute of the first file

FTN77 Library Reference

30

returned is selected by setting ATTRIBUTE to one of the following values:

0 Return a normal file

2 Return a hidden file

4 Return a system file

6 Return a volume name

16 Return a subdirectory

The name of the file that has been found is returned in RESULT. Other file
information is returned in RESULT_ATTRIBUTE, RESULT_DATE,
RESULT_TIME and FILE_SIZE. The file attributes are returned in DOS
coded form using bits 0 to 5 of the result. The date and time are returned in
DOS compressed format.

After the first call of the routine, ATTRIBUTE should be set to -1 in order to
continue the search for another file with the same attribute as before. When no
more files can be found, ERROR_CODE is returned with the corresponding
system error code.

Notes A sequence of calls to DIRENT@ with a given PAT must not be interrupted by
a call to DIRENT@ with a different PAT.

The FILES@ routine has a simpler interface and is usually preferred to this
routine.

Example

270A02C4A�!� ?0C�58;4

8=C464A�! 0CCA�30C4�C8<4�42

8=C464A�# B8I4

20;; 2>D0/�´8]_dc SXaTRc^ah _PccTa])´�

A403 ���?0C

42,�

F78;4 �42�4@��� 3>

20;; 38A4=C/�?0C���58;4�0CCA�30C4�C8<4�B8I4�42�

85 �42�4@��� ?A8=C � �58;4�0CCA�30C4�C8<4�B8I4

2 3^]^c RP[[38A4=C/�?0C!����� Ua^\ WTaT

4=3F78;4

 �� 5>A<0C�0�

 � 5>A<0C�0�8%�8%�8%�8%�

4=3

Chapter 6 File-manipulation

31

EMPTY@
Purpose To clear a file for writing.

Syntax BD1A>DC8=4 4<?CH/�70=3;4�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

Description EMPTY@ clears the file open with file handle HANDLE (which must not be
open for reading only). ERROR_CODE is returned as zero for success or with
a system error code if it fails.

ERASE@
Purpose To delete a file.

Syntax BD1A>DC8=4 4A0B4/�58;4�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�! 4AA>AN2>34

Description ERASE@ deletes a file. The file name may be a local name, for example:
5>>�CGC, or a fully qualified pathname, for example, 2)K?A>942CK9D=:�CGC.
ERROR_CODE is returned as zero for success or with the system error code.

Example

20;; 4A0B4/�´DB4;4BB�30C´�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

FEXISTS@ rr

Purpose To search for a file with a given path name or wildcard.

Syntax ;>6820;�# 5D=2C8>= 54G8BCB/�?0C7� 4AA>AN2>34�

270A02C4A���� ?0C7

8=C464A�# 4AA>AN2>34

Return value FEXISTS@ returns a logical value which is .TRUE. if the name supplied in
PATH is that of a file which does exist, or is a wildcard which matches one file
only. It returns .FALSE. if such a file does not exist, or if an error occurs in
which case ERROR_CODE returns a non-zero system error code.

FTN77 Library Reference

32

FILE_EXISTS@ rr

Purpose To search for a file with a given path name or wildcard.

Syntax ;>6820;�# 5D=2C8>= 58;4N4G8BCB/�?0C7�

270A02C4A���� ?0C7

Description This function is obsolete. Use FEXISTS@ instead.

FILE_EXISTS@ returns a logical value which is .TRUE. if the name supplied
in PATH is that of a file which does exist, or is a wildcard which matches one
file only. It returns .FALSE. if such a file does not exist, or if any kind of error
occurs.

FILE_SIZE@
Purpose To get the size of FILE in bytes.

Syntax BD1A>DC8=4 58;4NB8I4/�58;4�B8I4�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�# B8I4

8=C464A�! 4AA>AN2>34

FILE_TRUNCATE@
Purpose To truncate an open file at its current position.

Syntax BD1A>DC8=4 58;4NCAD=20C4/�70=3;4�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

Description This routine uses the handle of a file that has already been opened by
OPENW@ or OPENRW@ and truncates the file at the current writing
position. ERROR_CODE is returned as zero if the process is carried out
successfully, otherwise ERROR_CODE returns a system error code.

Chapter 6 File-manipulation

33

FILEINFO@ rr

Purpose To get information about a specified file.

Syntax BD1A>DC8=4 58;48=5>/�?0C7�<>34�34E�A34E�

� =;8=:�B8I4�0C8<4�<C8<4�2C8<4�4AA>AN2>34�

270A02C4A���� ?0C7

8=C464A�! <>34�34E�A34E�=;8=:�4AA>AN2>34

8=C464A�# B8I4�0C8<4�<C8<4�2C8<4

Description Returns information about the file specified by PATH. This routine can be used
to return the size of a file in SIZE and the date and time that the file was last
accessed in ATIME. The returned value of ATIME can then be supplied to
TOTIME@, TOEDATE@ etc.. ERROR_CODE is returned as zero if the
process is carried out successfully, otherwise ERROR_CODE returns a system
error code.

Note Arguments that do not appear in the above description are redundant in this
operating system environment.

FILES@
Purpose To obtain directory information.

Syntax BD1A>DC8=4 58;4B/�?0C�=�=<0G�58;4B�0CCA�30C4�C8<4�

� 58;4NB8I4�

270A02C4A���� ?0C�58;4B�=<0G�

8=C464A�! =�=<0G

8=C464A�! 0CCA�=<0G��30C4�=<0G��C8<4�=<0G�

8=C464A�# 58;4NB8I4�=<0G�

Description Returns directory information for files selected by PAT (e.g. 0)K��5>A). N is
returned as the number of file names returned. If N is equal to NMAX there may
be more matches which could not be returned. The remainder of the arrays
return information about the files. Hidden files and directories are returned by
this routine together with ordinary files. Such files may be distinguished by
using the DOS file attribute returned in the ATTR array. The date and time are
returned in the DOS compressed format.

Example See SET_FILE_ATTRIBUTE@.

FTN77 Library Reference

34

FPOS@
Purpose To reposition a file.

Syntax BD1A>DC8=4 5?>B/�70=3;4�?>B8C8>=�=4FN?>B8C8>=�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

8=C464A�# ?>B8C8>=�=4FN?>B8C8>=

Description FPOS@ attempts to reposition an open file with the given HANDLE to the
given POSITION. NEW_POSITION is returned as either the requested
POSITION or as the position of end-of-file, whichever is less.
ERROR_CODE is returned as zero or with a system error code if it fails.

Notes If the input value of POSITION is supplied as a constant, it is usually necessary
to force its length to 4 bytes (e.g. 0L for the beginning of the file).

FPOS_EOF@ rr

Purpose To move the file pointer to end-of-file

Syntax BD1A>DC8=4 5?>BN4>5/�34B2�=4FN?>B8C8>=�4AA>AN2>34�

8=C464A�! 34B2�4AA>AN2>34

8=C464A�# =4FN?>B8C8>=

Description Move the file pointer associated with the file open on DESC to end-of-file.
NEW_POSITION is the new value of the file pointer.

GET_FILE_DATE_TIME_STAMP@ oo

Purpose To get the DOS date and time stamp for a particular file.

Syntax BD1A>DC8=4 64CN58;4N30C4NC8<4NBC0<?/�58;4�30C4�C8<4�

270A02C4A���� 58;4

8=C464A�! 30C4�C8<4

Description This routine gets the date and time stamp for FILE. DATE and TIME will be
returned with the value -1 if the file does not exist.

Chapter 6 File-manipulation

35

GET_FILES@ rr

Purpose To get a list of files in the current working directory.

Syntax BD1A>DC8=4 64CN58;4B/�F8;320A3�58;4B�

� <0G58;4B�=58;4B�4AA>AN2>34�

270A02C4A���� F8;320A3�58;4B�<0G58;4B�

8=C464A�! <0G58;4B�=58;4B�4AA>AN2>34

Description Returns a list of all the files in the current working directory which can be
matched by WILDCARD.

Returns error code ERROR_CODE as ERANGE if FILES is not big enough,
but the entries which are stored in FILES will be valid.

GET_PATH@
Purpose To get the fully qualified pathname.

Syntax BD1A>DC8=4 64CN?0C7/�70=3;4�A4BD;C�4AA>AN2>34�

270A02C4A���� A4BD;C

8=C464A�! 70=3;4�4AA>AN2>34

Description GET_PATH@ returns the pathname of the file open on file handle HANDLE.
This works regardless of whether a local or global name was used when the file
was originally opened. ERROR_CODE is returned as zero for success or it is
returned as a system error code.

Example

270A02C4A� �� 5D;;N?0C7

20;; >?4=A/�´<H30C0´�70=3;4�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

20;; 64CN?0C7/�70=3;4�5D;;N?0C7�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

?A8=C ��5D;;N?0C7

� � �

FTN77 Library Reference

36

GET_PATHV@ oo

Purpose To get the fully qualified pathname.

Syntax BD1A>DC8=4 64CN?0C7E/�B46<4=C�A4BD;C�4AA>AN2>34�

270A02C4A���� A4BD;C

8=C464A�! B46<4=C�4AA>AN2>34

Description GET_PATHV@ returns the pathname of a file opened with OPENV@ to
memory segment SEGMENT. This works regardless of whether a local or
global name was used when the file was originally opened. ERROR_CODE is
returned as zero or contains a system error code.

MKDIR@
Purpose To create a new system directory.

Syntax BD1A>DC8=4 <:38A/�38A�4AA>AN2>34�

270A02C4A���� 38A

8=C464A�! 4AA>AN2>34

Description The argument DIR can be either the local name of a directory, or the full path
name. In either case, if the directory cannot be created for any reason, a non-
zero system error code will be returned.

Example

20;; <:38A/�´2)K022>D=CB´�82�

20;; 3>B4AA/�82�

OPENR@
Purpose To open a file for reading.

Syntax BD1A>DC8=4 >?4=A/�58;4�70=3;4�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�! 70=3;4�4AA>AN2>34

Description This routine opens the given file FILE for reading and returns the file handle
HANDLE for use with other file handling routines in this chapter.
ERROR_CODE is returned as zero if the operation has succeeded, otherwise it

Chapter 6 File-manipulation

37

is returned with the relevant system error code.

Notes HANDLE can also be obtained by using the standard Fortran routine OPEN
followed by INQUIRE together with FUNIT=<filehandle> (see the User’s Guide
for further details).

Example See OPENRW@

OPENRW@
Purpose To open a file for reading or writing.

Syntax BD1A>DC8=4 >?4=AF/�58;4�70=3;4�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�! 70=3;4�4AA>AN2>34

Description This routine opens a file FILE for reading or writing and returns the file handle
HANDLE for use with other file handling routines. If the file does not exist it is
created, however an existing file is not emptied and may be over-written at the
current position. If the intended action depends on whether or not a given file
exists, then a prior call to OPENR@ can be used to test if it does exist.
ERROR_CODE is returned as zero if the operation has succeeded, otherwise it
is returned with the relevant system error code.

Notes HANDLE can also be obtained by using the standard Fortran routine OPEN
followed by INQUIRE together with FUNIT=<filehandle> (see the User’s Guide
for further details).

Example

2 Ad] cWT _a^VaP\ P]S [Xbc C4BC�30C PUcTa TPRW ad]�

8=C464A�! 70=3;4�4AA>AN2>34

8=C464A�# 1HC4B

270A02C4A�'� ;8=4

20;; >?4=A/�´C4BC�30C´�70=3;4�4AA>AN2>34�

85�4AA>AN2>34�=4��� C74=

20;; >?4=F/�´C4BC�30C´�70=3;4�4AA>AN2>34�

20;; FA8C450/�´CTbc SPcP�����´�70=3;4�4AA>AN2>34�

4;B4

20;; 2;>B45/�70=3;4�4AA>AN2>34�

20;; >?4=AF/�´C4BC�30C´�70=3;4�4AA>AN2>34�

;8=4,´ ´

20;; A40350/�;8=4�70=3;4�1HC4B�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

FTN77 Library Reference

38

FA8C4����� ;8=4

20;; FA8C450/�´<^aT X]U^�����´�70=3;4�4AA>AN2>34�

4=385

4=3

OPENV@ oo

Purpose To open a file for reading.

Syntax BD1A>DC8=4 >?4=E/�58;4�B4;42C>A�=1�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�! 4AA>AN2>34�B4;42C>A

8=C464A�# =1

Description This routine opens a file FILE for reading only to form a separate memory
segment. The selector of that segment is returned in SELECTOR, and NB is
returned as the size of the file in bytes. The file is read (as needed) using the
paging mechanism. ERROR_CODE is returned as zero if the operation has
succeeded, otherwise it is returned with the relevant system error code.

OPENW@
Purpose To open a file for writing.

Syntax BD1A>DC8=4 >?4=F/�58;4�70=3;4�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�! 70=3;4�4AA>AN2>34

Description This routine opens a file FILE for writing, by creating a file or emptying the file
if it already exists. It returns the file handle HANDLE for use with other file
handling routines. ERROR_CODE is returned as zero if the operation has
succeeded, otherwise it is returned with the relevant system error code.

Notes HANDLE can also be obtained by using the standard Fortran routine OPEN
followed by INQUIRE together with FUNIT=<filehandle> (see the User’s Guide
for further details).

Description See OPENRW@

Chapter 6 File-manipulation

39

READF@
Purpose To read binary data from a file.

Syntax BD1A>DC8=4 A4035/�30C0�70=3;4�=1HC4B�=1HC4BNA403�

� 4AA>AN2>34�

270A02C4A���� 30C0

8=C464A�! 70=3;4�4AA>AN2>34

8=C464A�# =1HC4B�=1HC4BNA403

Description This routine reads NBYTES of data from an open file with a given HANDLE.
ERROR_CODE is returned as zero for success or a system error code. If end
of file is reached, NBYTES_READ is returned as -1, with an ERROR_CODE
of zero. Also NBYTES_READ may be returned as less than NBYTES. This
routine should be used on binary data.

Notes If the input value of NBYTES is supplied as a constant, it is usually necessary
to force its length to 4 bytes (append L to the decimal value).

READFA@
Purpose To read ASCII text from a file.

Syntax BD1A>DC8=4 A40350/�30C0�70=3;4�=1HC4BNA403�4AA>AN2>34�

270A02C4A���� 30C0

8=C464A�! 70=3;4�4AA>AN2>34

8=C464A�# =1HC4BNA403

Description READFA@ reads a line of text from an open file with a given HANDLE. Tabs
are expanded as necessary. ERROR_CODE is returned as zero for success or
with a system error code. If end of file is reached, NBYTES_READ is returned
as -1, with an ERROR_CODE of zero.

Example See OPENRW@

FTN77 Library Reference

40

RENAME@
Purpose To rename a file.

Syntax BD1A>DC8=4 A4=0<4/�58;4 �58;4!�4AA>AN2>34�

270A02C4A���� 58;4 �58;4!

8=C464A�! 4AA>AN2>34

Description RENAME@ renames FILE1 as FILE2 in exactly the same way as the
DOS RENAME command.

RFPOS@
Purpose To get the position of a file.

Syntax BD1A>DC8=4 A5?>B/�70=3;4�?>B8C8>=�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

8=C464A�# ?>B8C8>=

Description This routine returns the POSITION of the file open on the given HANDLE.
ERROR_CODE is returned as zero or with a system error code if it fails.

SELECT_FILE@ oo

Purpose To select from a displayed list of files.

Syntax BD1A>DC8=4 B4;42CN58;4/�?0CC4A=�A4BD;C���

270A02C4A���� ?0CC4A=�A4BD;C

Description SELECT_FILE@ takes a file pattern and displays all files that correspond to
that pattern in a window. A file may be selected using the up and down cursor
keys (or the mouse) and pressing Enter or a mouse button on the right one. If no
files are found or the user presses Esc to indicate that he does not choose any of
the files on display, then RESULT is set to spaces and the alternate return is
taken. This routine makes it easy to provide an interactive startup interface to a
program as illustrated in the example.

Example
270A02C4A�'� 58;4

20;; B4;42CN58;4/�´2)KC4BCBK��30C´�58;4�� ��

>?4=�58;4,58;4�D=8C,$�BC0CDB,´A403>=;H´�

Chapter 6 File-manipulation

41

� � �

 � ?A8=C ��´=> 58;4 B4;42C43´

4=3

SET_FILE_ATTRIBUTE@
Purpose To set a file attribute.

Syntax BD1A>DC8=4 B4CN58;4N0CCA81DC4/�58;4�80C�4AA>AN2>34�

270A02C4A���� 58;4

8=C464A�! 80C�4AA>AN2>34

Description This routine sets the attributes of the file FILE to IAT. ERROR_CODE is
returned as zero for success or it is the system error code. This routine is useful
for performing such tasks as changing the read-only status of a file, hiding or
revealing a file, reseting the backup bit etc..

The following program will read a file name (possibly including wild cards) from
the terminal and make the files read-only.

Example

270A02C4A� !� 58;4�58;4B� �����2<=0<

8=C464A�! 0CCA� �����30C4� �����C8<4� ����

8=C464A�# 58;4NB8I4� ����

20;; 58;4B/�2<=0<���=� ����58;4B�0CCA�30C4�C8<4�58;4NB8I4�

3> 8, �=

20;; B4CN58;4N0CCA81DC4/�58;4B�8��>A�0CCA�8�� ��82�

20;; 3>B4AA/�82�

 2>=C8=D4

4=3

SET_SUFFIX@
Purpose To change the extension of a given file name.

Syntax BD1A>DC8=4 B4CNBD558G/�58;4=0<4�BD558G�;�

270A02C4A���� 58;4=0<4

270A02C4A�" BD558G

;>6820;�! ;

Description SET_SUFFIX@ changes the file extension of a given file with name

FTN77 Library Reference

42

FILENAME. SUFFIX is the new extension required, given without the period
(“.”). The value L will be set to .TRUE. if the file had an extension that was not
SUFFIX. L will be given the value .FALSE. if the file had the same or no
extension.

Example

0,´R)KUc]&&�SXaKUX[T�SPc´

20;; B4CNBD558G/�0�´0B2´�;�

2 0c cWXb _^X]c 0 R^]cPX]b ´R)KUc]&&�SXaKUX[T�0B2´

2 P]S ; R^]cPX]b �CAD4�

SET_SUFFIX1@
Purpose To add an extension to a given file name.

Syntax BD1A>DC8=4 B4CNBD558G /�58;4=0<4�BD558G�;�

270A02C4A���� 58;4=0<4

270A02C4A�" BD558G

;>6820;�! ;

Description SET_SUFFIX1@ will add a file-extension SUFFIX to the string FILENAME
containing a filename if none is present. The filename will be left as it is if the
filename already contains an extension. The extension should be given without
the period (“.”). The value L will be set to .TRUE. if the file had an extension
that was not SUFFIX. L will be given the value .FALSE. if the filename had the
same or no extension.

Example

0,´R)KUc]&&�SXaKUX[T�SPc´

20;; B4CNBD558G /�0�´0B2´�;�

2 0c cWXb _^X]c 0 R^]cPX]b ´R)KUc]&&�SXaKUX[T�SPc´

2 P]S ; R^]cPX]b �CAD4�

Chapter 6 File-manipulation

43

TEMP_FILE@
Purpose To provide a unique name for a file.

Syntax BD1A>DC8=4 C4<?N58;4/�58;4G�4AA>AN2>34�

270A02C4A���� 58;4G

8=C464A�! 4AA>AN2>34

Description TEMP_FILE@ provides a name which may be used for the creation of a
temporary file. This name (of the form F$dddddd.TMP where d is a digit) is
different from all the file names within the current directory. It is important to
note that this routine does not create or open a file.

TEMP_PATH@
Purpose To get a suitable name for a temporary file.

Syntax BD1A>DC8=4 C4<?N?0C7/�?0C7�

270A02C4A���� ?0C7

8=C464A�! 4AA>AN2>34

Description This routine is obsolete. Use TEMP_FILE@ instead.

TEMP_PATH@ makes up a path name for a temporary file. The file name
component is created in the same way as for TEMP_FILE@. The directory is
that given by the TMPDIR environment variable (or “\TMP” if this is not set).
Note that this routine does not actually open the file.

WILDCHECK@ rr

Purpose To check for the matching of a file name with a wild card.

Syntax ;>6820;�! 5D=2C8>= F8;32742:/�F8;320A3�=0<4�

270A02C4A���� F8;320A3�=0<4

Description Returns .TRUE. if NAME can be matched with WILDCARD, .FALSE.
otherwise (including when the syntax of WILDCARD or NAME is invalid).

FTN77 Library Reference

44

WRITEF@
Purpose To write binary data to a file.

Syntax BD1A>DC8=4 FA8C45/�30C0�70=3;4�=1HC4B�4AA>AN2>34�

270A02C4A���� 30C0

8=C464A�! 70=3;4�4AA>AN2>34

8=C464A�# =1HC4B

Description Writes NBYTES of binary data DATA to the file with the given handle.
ERROR_CODE is returned as zero for success or a system error code on
failure. No data compression on insertion of control characters is performed.

Notes If the input value of NBYTES is supplied as a constant, it is usually necessary
to force its length to 4 bytes (append L to the decimal value).

WRITEFA@
Purpose To write a line of data to an ASCII file.

Syntax BD1A>DC8=4 FA8C450/�30C0�70=3;4�4AA>AN2>34�

270A02C4A���� 30C0

8=C464A�! 70=3;4�4AA>AN2>34

Description WRITEFA@ writes DATA to an open file with a given HANDLE. A carriage
return/linefeed is added to the end of the data. ERROR_CODE is returned as
zero for success, otherwise it returns the system error code.

Example

8=C464A�! 70=3;4�4AA>AN2>34

20;; >?4=F/�´C4BC�30C´�70=3;4�4AA>AN2>34�

20;; 3>B4AA/�4AA>AN2>34�

20;; FA8C450/�´CTbc SPcP�����´�70=3;4�4AA>AN2>34�

20;; FA8C450/�´<^aT X]U^�����´�70=3;4�4AA>AN2>34�

4=3

45

7.

Graphics drawing

Introduction
FTN77 supports screen, printer and HP-GL (plotter) compatible graphics. The
printer, plotter and “virtual screen” are auxiliary devices (for convenience these are
described separately in the next two chapters). You can only open one auxiliary device
at a time. If you open another whilst one is open then the old device will be closed. All
the graphics output produced by the routines described in this chapter will be directed
to the auxiliary device if one is open, otherwise the output will be directed to the
screen. Even when an auxiliary device is open, however, it is still possible to use the
routines in this chapter which only relate to the screen (e.g. EGA@,
TEXT_MODE@, CLEAR_SCREEN@).

Palette registers and 16 colour graphics.
The colour number which is used for 16 colour graphics is a Palette Register Number
(PRN) in the range 0..16. Each register takes a Palette Register Value (PRV) in the
range 0..63 which defines the colour.

In EGA mode the PRV specifies the colour directly, with the 6 least significant bits
having the following symbolic meaning

bit 5 4 3 2 1 0

red green blue Red Green Blue

one third intensity two thirds intensity

FTN77 Library Reference

46

The default PRVs are given by:

PRN Colour PRV

0 Black 0

1 Blue 1

2 Green 2

3 Cyan 3

4 Red 4

5 Magenta 5

6 Brown 20

7 White 7

8 Dark Grey 56

9 Light Blue 57

10 Light Green 58

11 Light Cyan 59

12 Light Red 60

13 Light Magenta 61

14 Yellow 62

15 Intense White 63

16 Black 0

PRNs 1..15 represent available colours for pixels, lines, etc.

PRN 0 provides the default background colour.

PRN 16 specifies the screen border (overscan) colour.

PRN 7 provides the default text colour attribute.

The PRVs can be changed using SET_PALETTE@ and
SET_ALL_PALETTE_REGISTERS@.

In 16 colour VGA mode the PRV specifies the colour indirectly by providing a pointer
in the range 0..255 to certain DAC (digital-to-analogue converter) registers. The DAC
registers provide a means of defining 256 colours (although only 16 different colours
can appear on the screen at any one time). Each DAC register contains three values
representing the red, green and blue intensities in the range 0..63.

The default palette register values are the same as for EGA mode and the default
values for the DAC registers 0..63 emulate EGA mode. For example, palette register
7 has value 20 (brown) corresponding to two thirds intensity red with one third
intensity green. The default values in DAC register 20 are (R=42; G=21; B=0).

Chapter 7 Graphics drawing

47

256 colour graphics.
The colour number which is used for 256 colour graphics is a DAC register number in
the range 0..255 with the same construction as for 16 colour modes. In this case all
256 colours can appear simultaneously on the screen.

The DAC values can be changed using SET_VIDEO_DAC@ and
SET_VIDEO_DAC_BLOCK@.

Polygon filling
A polygon is a closed polygonal line, i.e. a line joining an ordered set of vertices. The
edges of the polygon may intersect and polygons may be combined. There is no limit
to either the complexity of a polygon (many thousands of intersecting edges are
possible), or to the number of polygon definitions that you have currently defined,
beyond the memory space available on your machine.

A polygon is filled by colouring all points in its interior. A point is on the interior of a
polygon if an odd number of boundaries have to be crossed to reach the exterior of the
polygon. Specifying the vertices of the polygon in a different order may, therefore,
produce a different fill result.

A polygon definition is created in memory by making a call to
CREATE_POLYGON@. This call will return a polygon “handle”. Use this handle
in all subsequent calls that affect the polygon. The position of the polygon is part of
the polygon definition. However, the polygon definition may be altered by making a
call to MOVE_POLYGON@ to shift the position relatively.

Some polygons contain sub-polygons. For example, an area may have several holes in
it, or its boundary may be intersected by other polygons. Every sub-polygon in the
polygon should be created and the definitions combined to make a new polygon with
COMBINE_POLYGON@. The original definitions will remain and be available.
Subsequent operations on these polygons will have no effect whatever on the combined
polygon, which is now an entirely separate and distinct entity. You will be given a new
polygon handle for the combined polygon.

The polygon may be filled by making a call to FILL_POLYGON@. The polygon
definition will remain and still be available for later use. When the useful life of a
polygon definition has expired it may be deleted by calling
DELETE_POLYGON_DEFINITION@. This releases memory for future use.

FTN77 Library Reference

48

Text attributes
Text written to a graphics device using DRAW_TEXT@ has attributes which can be
selected by using SET_TEXT_ATTRIBUTE@. These are:

FONT: the shape of the characters.

SIZE: the replication factor from the original definition of the characters.

ROTATION: this is the direction of the character string; the string is rotated about
the bottom left corner of the first character in the string.

ITALIC: this is a shear transformation applied to the character.

Both of the raster devices (i.e. screen and graphics printer) use the same fonts. The
plotter has its own built-in fonts which are different from those used by the raster
devices. The text attributes are available globally (i.e. when you have selected a font,
size, rotation and italic, these do not have to be re-selected) and are used in every
subsequent call to DRAW_TEXT@.

These attributes should be used with some caution on the raster devices when using bit
mapped fonts. Whilst increasing the size merely increases the chunkiness of the text,
pixel rounding effects may make the text untidy for certain rotations and italicisations.
The situation might be improved in these cases by altering the size of the text.

Here are a few pertinent hints:

For rotations in multiples of 90 degrees:
Keep the size of the characters an integer.

For rotations in multiples of 45 degrees:

Multiply an integer size by √2 and use this. i.e. instead of using size
5.0 use size 5∗√2=7. For best effects the size should be divisible by
1.4.

For other rotations:
A certain amount of thought and experimentation is necessary. Avoid
character sizes below 2.0.

Additional fonts
In addition to the fonts provided with the display adapters and the plotter, a set of
proportionally spaced fonts has been made available. These fonts have characters of
varying widths, unlike the fixed (or monospaced) fonts provided with the display
adapters. You should also be aware that they are stroke fonts and more suitable to
plotter output than to screen or printer output.

Chapter 7 Graphics drawing

49

A list of these fonts is given below:

Font No. Description Style Weight

101 Simplex Roman sans serif

102 Duplex Roman sans serif bold

103 Simplex Greek sans serif

104 Complex Roman seriffed

105 Complex Italic seriffed

106 Triplex Roman seriffed bold

107 Triplex Italic seriffed bold

108 Simplex Script

109 Complex Script bold

110 Complex Greek seriffed

111 Complex Cyrillic seriffed

112 Gothic English

113 Gothic German

114 Gothic Italian

Coordinate systems
Every device has its own sense and range of coordinates. All devices have x=0 on the
left of the screen or page but in the case of the screen and printer y=0 is on the top
whereas for the plotter it is on the bottom. Due to differences between the horizontal
and vertical sizes of the pixels on the raster devices, a circle in coordinate space will
not appear as a true circle on the screen or page. You should take this into account
when designing your software. The following table illustrates the situation for the
raster devices:

Device Position
of (0,0)

Range Resolution Pixel Size Ratio
Hor:Ver

EGA top left (0,0)-(639,349) 640x350 1.37:1.0

VGA top left (0,0)-(639,479) 640x480 1.0:1.0

printer top left (0,0)-(959,575) 960x576 5.0:3.0

virtual-screen top left (0,0)-(xx,yy) xx+1, yy+1

Note that the printer referred to above is an Epson 9 pin dot matrix (or compatible)
printer. This is the default type.

The following figure illustrates the situation for plotters:

FTN77 Library Reference

50

HP7550A:

Paper Size Position of (0,0) Range Resolution

A4 bottom left (0,0)-(10870,7600) 0.025mm

A3 bottom left (0,0)-(15970,10870) 0.025mm

A bottom left (0,0)-(10170,7840) 0.025mm

B bottom left (0,0)-(16450,10170) 0.025mm

HP7475A:

Paper Size Position of (0,0) Range Resolution

A4 bottom left (0,0)-(11040,7721) 0.025mm

A3 bottom left (0,0)-(16158,11040) 0.025mm

A bottom left (0,0)-(10365,7962) 0.025mm

B bottom left (0,0)-(16640,10365) 0.025mm

CLEAR_SCREEN@
Purpose To clear the screen.

Syntax BD1A>DC8=4 2;40ANB2A44=/

Description CLEAR_SCREEN@ clears the screen to the default background colour in
either text or graphics mode and sets the text cursor position to (0,0).

See also CLEAR_SCREEN_AREA@, FILL_RECTANGLE@.

CLEAR_SCREEN_AREA@
Purpose To clear a rectangular area of the screen.

Syntax BD1A>DC8=4 2;40ANB2A44=N0A40/�8G �8H �8G!�8H!�82>;�

8=C464A�! 8G �8G!�8H �8H!�82>;

Description This routine clears an area of the graphics screen to colour number ICOL.
(IX1,IY1) are the coordinates of the top left corner of the rectangle whilst
(IX2,IY2) are the coordinates of the bottom right. If any portion of the area is

Chapter 7 Graphics drawing

51

off screen or the screen is not in graphics mode then no action will be taken.

See also CLEAR_SCREEN@, FILL_RECTANGLE@.

COMBINE_POLYGONS@
Purpose To get the handle for a combination of polygons.

Syntax BD1A>DC8=4 2><18=4N?>;H6>=B/�70=3;4N0AA0H�=�70=3;4�

� 4AA>AN2>34�

8=C464A�! 70=3;4N0AA0H�=��=�70=3;4�4AA>AN2>34

Description This routine combines N polygons with handles HANDLE_ARRAY(1) to
HANDLE_ARRAY(N), to make one complex polygon and returns the handle
HANDLE for it. All of the polygons must be valid otherwise no action will be
taken and the value ERROR_CODE=2 is returned. Other error codes are the
same as those for CREATE_POLYGON@. All of the original polygons
remain defined and available for use.

See also FILL_POLYGON@, MOVE_POLYGON@, DELETE_POLYGON_DEFINITION@.

Example

2 C^ bTT fWPc cWT TUUTRc ^U R^\QX]X]V _^[hV^]b Xb�

2 cPZT P [PaVT aTRcP]V[T P]S R^\QX]T Xc fXcW P b\P[[Ta

2 aTRcP]V[T� 0 W^[T fX[[QT RaTPcTS X] cWT [PaVTa aTRcP]V[T�

2 8c Xb X_^acP]c c^ aTP[XbT cWPc cWT aTbd[c S^Tb]^c ST_T]S

2 ^] cWT ^aSTa X] fWXRW cWT _^[hV^]b PaT R^\QX]TS�

?A>6A0< 1>G&

8=C464A�! G �$��H �$��G!�$��H!�$��:�70=3;4�"��

� 4AA>AN2>34

2 3PcP U^a cWT [PaVT aTRcP]V[T

30C0 G �$��"���"��� $��$��

30C0 H �$�� $��"���"���$��

2 3PcP U^a cWT b\P[[aTRcP]V[T

30C0 G!� ���!���!��� ��� ���

30C0 H!� ��� ���!���!��� ���

2 2aTPcT cWT Q^gTb Pb _^[hV^] STUX]XcX^]b

2 CWTaT Xb]^]TTS c^ PRcdP[[h QT X] VaP_WXRb \^ST

2 ^a WPeT P VaP_WXRb STeXRT ^_T]

20;; 2A40C4N?>;H6>=/�G �H �$�70=3;4� ��4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> !�

20;; 2A40C4N?>;H6>=/�G!�H!�$�70=3;4�!��4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> !�

FTN77 Library Reference

52

2 ?a^SdRT P]Tf _^[hV^] Qh R^\QX]X]V cWT [PaVT P]S b\P[[Q^gTb

20;; 2><18=4N?>;H6>=B/�70=3;4�!�70=3;4�"��4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> !�

2 4]cTa VaP_WXRb \^ST

20;; 460/

2 5X[[cWT]Tf _^[hV^] fXcW R^[^da #

20;; 58;;N?>;H6>=/�70=3;4�"��#�4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> �

2 FPXc U^a P ZTh _aTbb

20;; 64CN:4H/�:�

2 ATcda] c^ cTgc \^ST

20;; C4GCN<>34/

BC>? ´����� >:´

2 4aa^a WP]S[X]V

 � 20;; C4GCN<>34/

!� 85�4AA>AN2>34�4@� �C74=

BC>? ´����� 4AA>A) >dc ^U \T\^ah´

4;B485�4AA>AN2>34�4@�!�C74=

BC>? ´����� 4AA>A) 8]eP[XS _^[hV^] WP]S[T´

4=385

4=3

CREATE_POLYGON@
Purpose To get a handle for a specified polygon.

Syntax BD1A>DC8=4 2A40C4N?>;H6>=/�G�H�=�70=3;4�4AA>AN2>34�

8=C464A�! G�=��H�=��=�70=3;4�4AA>AN2>34

Description This routine creates a polygon with ordered set of edges
(IX(1),IY(1))..(IX(N),(IY(N)) in memory and returns the value HANDLE for use
in other polygon functions (see page 47).

If the polygon is not closed then the function will close it automatically.
However, it is good practice to provide a closed polygon. It is also recommended
that a polygon that is filled on a plotter should also be edged.

The creation of a polygon is independent of the graphics screen mode or device
for which it is intended.

The polygon error codes in this and other polygon functions are:

Chapter 7 Graphics drawing

53

ERROR_CODE Description

0 operation successful

1 out of memory; the polygon is too complex to be created or filled with the
available memory

2 invalid polygon handle; the polygon specified is not present

It is advisable to check the error code on every call of a polygon function.

See also COMBINE_POLYGONS@, MOVE_POLYGON@, FILL_POLYGON@,
DELETE_POLYGON_DEFINITION@.

Example See FILL_POLYGON@

DELETE_POLYGON_DEFINITION@
Purpose To delete a polygon definition.

Syntax BD1A>DC8=4 34;4C4N?>;H6>=N3458=8C8>=/�70=3;4�4AA>AN2>34�

8=C464A�! 70=3;4�4AA>AN2>34

Description This routine frees the memory associated with a polygon formed by using
CREATE_POLYGON@ and disassociates the handle. The error codes are the
same as those for CREATE_POLYGON@.

DRAW_HERSHEY@
Purpose To draw an Hershey character.

Syntax BD1A>DC8=4 3A0FN74AB74H/�874AB7�87�8E�82>;�87N4=3�8EN4=3�

8=C464A�! 874AB7�87�8E�82>;�87N4=3�8EN4=3

Description This function draws the Hershey character number IHERSH at the position
(IH, IV) in the colour ICOL. The position which could be used for a following
character is returned as (IH_END, IV_END). In the Hershey set of occidental
character digitisations, every character graphic was assigned a number in the
range 1..3926, though not every value in this range was used. Here the
convention of using 0 as the space character is adopted. The character is drawn
using the current attributes of size, rotation and italicisation (the default values
can be changed by calling SET_TEXT_ATTRIBUTE@; the font number is not
relevant in this context).

FTN77 Library Reference

54

Example

2 CWXb _a^VaP\ dbTb 3A0FN74AB74H/ P]S 74AB74HN?A4B4=C/ c^

2 SaPf 7TabWTh RWPaPRcTab� CWT RWPaPRcTa QPbT [X]T P]S

2 Q^d]SPaXTb PaT X]SXRPcTS Qh R^a]Ta bTRcX^]b SaPf] X] aTS�

2 CWT _a^VaP\ aT`dXaTb 0=B8�BHB c^ QT [^PSTS�

?A>6A0< 74AB7

;>6820;�! H4B=>

8=C464A�! 8�83�87�8E

270A02C4A ?>B=�!%�4B2

2 DbT 0=B8 R^]ca^[bcaX]Vb c^ _^bXcX^] cTgc Rdab^a

4B2,270A�!&�

?>B=,4B2��´J �*!U7TabWTh RWPaPRcTa ´

2 BT[TRc RWPaPRcTa bXiT $� cWT 5>=C _PaP\TcTa fX[[

2]^c QT dbTS U^a cWXb _a^VaP\

20;; B4CNC4GCN0CCA81DC4/� �$�����������

2 2WP]VT c^ E60 VaP_WXRb \^ST

20;; E60/

2 ;T]VcW ^U [X]T bTV\T]c dbTS X] SaPfX]V R^a]Tab

83, �

2 1TVX] bTPaRW ^U SPcPQPbT Pc 7TabWTh RWPaPRcTa � R^]R[dSX]V

2 Pc RWPaPRcTa "(!%

3> 8, �"(!%

2 BTT XU cWT RWPaPRcTa Xb _aTbT]c

20;; 74AB74HN?A4B4=C/�8�H4B=>�

2 8U _aTbT]c� SaPf cWT RWPaPRcTa

85�H4B=>�C74=

2 ?aX]c cTgc bcaX]V dbX]V 0=B8 Rdab^a R^]ca^[b

?A8=C ´�0�8$�´�?>B=�8

2 3aPf aTS [TUc R^a]Ta P]V[T

20;; 3A0FN;8=4/�$��83�"���$��"���#�

20;; 3A0FN;8=4/�$��"���$��"���83�#�

2 3aPf cWT RWPaPRcTa XcbT[U�

2 cWT aXVWc WP]S Q^d]SPah fX[[QT aTcda]TS X] 87 P]S 8E

20;; 3A0FN74AB74H/�8�$��"���&�87�8E�

2 3aPf aTS aXVWc R^a]Ta P]V[T

20;; 3A0FN;8=4/�87�8E�87�83�8E�#�

20;; 3A0FN;8=4/�87�8E�87�8E�83�#�

2 FPXc ^] ZTh _aTbb

20;; 64CN:4H/�:�

2 8U TbRP_T fPb _aTbbTS TgXc Ua^\ _a^VaP\

85�:�4@�!&�6>C> !

2 >cWTafXbT R[TPa cWT bRaTT] aTPSh U^a cWT]Tgc RWPaPRcTa

20;; =4FN?064/

4=385

 2>=C8=D4

Chapter 7 Graphics drawing

55

2 ATcda] c^ cTgc \^ST

! 20;; C4GCN<>34/

4=3

DRAW_LINE@
Purpose To draw a straight line in graphics mode.

Syntax BD1A>DC8=4 3A0FN;8=4/�8G �8H �8G!�8H!�82>;�

8=C464A�! 8G �8H �8G!�8H!�82>;

Description DRAW_LINE@ draws a line with colour number ICOL from (IX1, IY1) to
(IX2, IY2). The screen must be in graphics mode and the coordinates are pixel
numbers so the result depends on the graphics mode in use.

See also POLYLINE@.

Example

2 3aPf P Q^g �$��$��� �!���!��� ^U R^[^da ! X] 460 VaP_WXRb

2 \^ST� =^cT cWPc Xc f^d[S QT bX_[Ta c^ dbT cWT a^dcX]T

2 A42C0=6;4/ X] cWXb RPbT� Qdc cWXb TgP_[T bTaeTb cWT _da_^bT

2 ^U X[[dbcaPcX^]�

?A>6A0< 1>G

8=C464A�! G �H �G!�H!�:

30C0 G �H �G!�H!�$��$��!���!���

2 4=C4A 460 6A0?782B <>34

20;; 460/

2 3A0F C74 # B834B >5 C74 1>G

20;; 3A0FN;8=4/�G �H �G!�H �!�

20;; 3A0FN;8=4/�G!�H �G!�H!�!�

20;; 3A0FN;8=4/�G!�H!�G �H!�!�

20;; 3A0FN;8=4/�G �H!�G �H �!�

2 F08C 5>A 0 :4H ?A4BB 0=3 A4CDA= C> C4GC <>34

20;; 64CN:4H/�:�

20;; C4GCN<>34/

4=3

FTN77 Library Reference

56

DRAW_TEXT@
Purpose To draw text in graphics mode.

Syntax BD1A>DC8=4 3A0FNC4GC/�BCA�87�8E�82>;�

270A02C4A���� BCA

8=C464A�! 87�8E�82>;

Description DRAW_TEXT@ draws text on an EGA or VGA screen at the point (IH, IV).
STR contains the character string to be drawn. The text is positioned to the
nearest pixel (unlike the corresponding BIOS routine). The screen must be in
graphics mode. ICOL provides the colour number for the text which appears on
the existing background. The text attributes of font, size, rotation and
italicisation can be assigned using SET_TEXT_ATTRIBUTE@.

See also DRAW_HERSHEY@.

EGA@ qq

Purpose To switch to EGA graphics mode.

Syntax BD1A>DC8=4 460/

Description EGA@ switches a console with an EGA or VGA card to graphics mode with
EGA resolution (640x350,16 colours) and clears the screen.

See also VGA@, GRAPHICS_MODE_SET@, TEXT_MODE@.

ELLIPSE@
Purpose To draw an ellipse.

Syntax BD1A>DC8=4 4;;8?B4/�8G2�8H2�80�81�82>;�

8=C464A�! 8G2�8H2�80�81�82>;

Description ELLIPSE@ draws an ellipse with centre at (IXC, IYC), with horizontal semi-
axis IA, vertical semi-axis IB and colour number ICOL. This routine can be
used to produce a circle on the current graphics device if the axes are scaled
appropriately by the values given on page 49.

See also FILL_ELLIPSE@.

Chapter 7 Graphics drawing

57

FILL_ELLIPSE@
Purpose To fill an ellipse.

Syntax BD1A>DC8=4 58;;N4;;8?B4/�8G2�8H2�80�81�82>;�

8=C464A�! 8G2�8H2�80�81�82>;

Description FILL_ELLIPSE@ fills an ellipse with centre at (IXC, IYC), with horizontal
semi-axis IA, vertical semi-axis IB and colour number ICOL. This routine can
be used to fill a circle on the current graphics device if the axes are scaled
appropriately by the values given on page 49.

See also ELLIPSE@.

FILL_POLYGON @

Purpose To fill a polygon.

Syntax BD1A>DC8=4 58;;N?>;H6>=/�70=3;4�82>;�4AA>AN2>34�

8=C464A�! 70=3;4�82>;�4AA>AN2>34

Description This routine fills the polygon which has handle HANDLE with colour number
ICOL. If the target device is a plotter then it is recommended that the polygon
should be edged using POLYLINE@ (assuming that the polygon has not been
moved or combined). The error codes are the same as those for
CREATE_POLYGON@.

See also CREATE_POLYGON@, COMBINE_POLYGONS@,
MOVE_PLOYGON@.

Example

?A>6A0< 1>G"

8=C464A�! G�$��H�$��:�70=3;4�4AA>AN2>34

30C0 G�$��!���!��� $��$��

30C0 H�$�� $��!���!���$��

2 2aTPcT cWT Q^g Pb P _^[hV^] STUX]XcX^]

2 CWTaT Xb]^]TTS c^ PRcdP[[h QT X] VaP_WXRb \^ST

2 ^a WPeT P VaP_WXRb STeXRT ^_T]

20;; 2A40C4N?>;H6>=/�G�H�$�70=3;4�4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> !�

2 4]cTa TVP VaP_WXRb \^ST

20;; 460/

2 5X[[cWT Q^g fXcW R^[^da #� Xc Xb ^][h]^f cWPc cWT Q^g

FTN77 Library Reference

58

2 fX[[P__TPa Pc P[[^] cWT bRaTT]

20;; 58;;N?>;H6>=/�70=3;4�#�4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> �

2 4SVT cWT Q^g� Qdc dbT P SXUUTaT]c R^[^da

2 =^cT cWT aTcda] c^ �$��$�� c^ R[^bT cWT Q^g

20;; ?>;H;8=4/�G�H�$�&�

2 FPXc U^a P ZTh _aTbb aTcda] c^ cTgc \^ST

20;; 64CN:4H/�:�

20;; C4GCN<>34/

BC>? ´���� >:´

2 4aa^a WP]S[X]V

 � 20;; C4GCN<>34/

!� 85�4AA>AN2>34�4@� �C74=

BC>? ´����� 4AA>A) >dc ^U \T\^ah´

4;B485�4AA>AN2>34�4@�!�C74=

BC>? ´����� 4AA>A) 8]eP[XS _^[hV^] WP]S[T´

4=385

4=3

FILL_RECTANGLE@
Purpose To fill a rectangle.

Syntax BD1A>DC8=4 58;;NA42C0=6;4/�8G �8H �8G!�8H!�82>;�

8=C464A�! 8G �8H �8G!�8H!�82>;

Description FILL_RECTANGLE@ fills a rectangle in colour number ICOL where
(IX1, IY1) and (IX2,IY2) are opposite corners. This routine is similar to
CLEAR_SCREEN_AREA@.

See also RECTANGLE@, CLEAR_SCREEN_AREA@.

GET_ALL_PALETTE_REGS@ qq

Purpose To get all palette registers for colour graphics.

Syntax BD1A>DC8=4 64CN0;;N?0;4CC4NA46B/�2A46B�

270A02C4A� & 2A46B

Description This routine gets the contents of all of the 17 palette registers. CREGS is an
array of 17 bytes containing the palette register values (see page 45).

Chapter 7 Graphics drawing

59

See also GET_VIDEO_DAC_BLOCK@.

GET_DEVICE_PIXEL@ qq

Purpose To get the pixel colour for a virtual screen or printer.

Syntax BD1A>DC8=4 64CN34E824N?8G4;/�8G�8H�82>;�

8=C464A�! 8G�8H�82>;

Description Returns the colour of the pixel at (IX, IY) for the current graphics device in
ICOL. This routine differs from GET_PIXEL@ in that GET_PIXEL@
always relates to the screen, whereas GET_DEVICE_PIXEL@ relates to a
currently open virtual screen or printer (not a plotter).

See also SET_DEVICE_PIXEL@, GET_PIXEL@

GET_GRAPHICS_MODES@ pp

Purpose To get details of all the graphics modes.

Syntax BD1A>DC8=4 64CN6A0?782BN<>34B/�GA4B�HA4B�2>;>DAB�<>34�

� 10=:43�

8=C464A�! GA4B����HA4B����<>34���

8=C464A�# 2>;>DAB���

;>6820;�! 10=:43���

Description This routine returns arrays containing the horizontal and vertical resolutions, the
number of colours, the corresponding mode and a logical array (0 or 1) indicating
if the mode uses “banked” memory. An array size of 20 should be sufficient for
all the modes. This function has the side effect of configuring the library to your
graphics board.

See also GRAPHICS_MODE_SET@, SCREEN_TYPE@.

GET_GRAPHICS_RESOLUTION@ pp

Purpose To get details of the high resolution graphics mode.

Syntax BD1A>DC8=4 64CN6A0?782BNA4B>;DC8>=/�7B8I4�EB8I4�=2>;>DAB�

FTN77 Library Reference

60

8=C464A�! 7B8I4�EB8I4�=2>;>DAB

Description This routine gets details of a predefined high resolution graphics mode that has
been assigned using the CONFIGDB utility (or has a default value, see page 309
of the FTN77 User’s Guide).

The function yields the horizontal and vertical resolutions HSIZE and VSIZE
and the number of colours NCOLOURS.

Notes In most situations it is better to use GET_GRAPHICS_MODES@ instead.

GET_PIXEL@ qq

Purpose To get a pixel colour.

Syntax BD1A>DC8=4 64CN?8G4;/�87�8E�82>;�

8=C464A�! 87�8E�82>;

Description GET_PIXEL@ gets the colour number ICOL of the pixel at (IH, IV) on the
screen. Higher order bits of ICOL may contain unwanted bit planes. For
example, with 16 colours, and with Z’F’ to mask off higher order bits.

See also SET_PIXEL@, GET_DEVICE_PIXEL@, SET_DEVICE_PIXEL@.

GET_TEXT_MODES@ oo

Purpose To get information about the available text modes.

Syntax BD1A>DC8=4 64CNC4GCN<>34B/�2>;D<=B�A>FB�<>34�24;;N74867C�

� 24;;NF83C7�

8=C464A�! 2>;D<=B����A>FB����<>34����24;;N74867C����

� 24;;NF83C7���

Description This routine returns the text modes supported by your video card in a set of
arrays. The arrays are filled with the number of columns and rows, the mode
number and the size of the character cell for each supported mode. Please ensure
that your arrays are large enough to hold all the returned data. An array size of
30 will suffice for all graphics cards currently supported. On return the last
MODE array element will be followed by the value -1.

This routine has the side-effect of configuring DBOS to your graphics board.

Chapter 7 Graphics drawing

61

See also TEXT_MODE_SET@

GET_TEXT_SCREEN_SIZE@ oo

Purpose To get the resolution of the current text mode.

Syntax BD1A>DC8=4 64CNC4GCNB2A44=NB8I4/�7B8I4�EB8I4�

8=C464A�! 7B8I4�EB8I4

Description Reads the text screen size from the BIOS data area (this data may be incorrect if
your graphics board does not set this area up correctly). Returns the number of
character columns in HSIZE and the number of character rows in VSIZE.

See also TEXT_MODE_SET@, GET_TEXT_MODES@

GET_VIDEO_DAC_BLOCK@ qq

Purpose To get a block of VGA DAC registers.

Syntax BD1A>DC8=4 64CNE834>N302N1;>2:/�858ABC�=A46B�8A61�

8=C464A�! 858ABC�=A46B

8=C464A� 8A61�"�=A46B�

Description This routine gets a block of video DAC registers. It passes information in the
same manner as SET_VIDEO_DAC_BLOCK@.

See also GET_DACS_FROM_SCREEN_BLOCK@.

GRAPHICS_MODE_SET@ qq

Purpose To set the graphics mode to a given resolution.

Syntax BD1A>DC8=4 6A0?782BN<>34NB4C/�8GA4B�8HA4B�=2>;>DAB�

� 4AA>AN2>34�

8=C464A�! 8GA4B�8HA4B�4AA>AN2>34

8=C464A�# =2>;>DAB

FTN77 Library Reference

62

Description This routine finds a graphics mode with IXRES horizontal resolution, IYRES
vertical resolution and the number of colours NCOLOURS. If no suitable mode
exists on your graphics board or the specified mode could not be entered then
ERROR_CODE is returned as a non-zero value. It is important to always
check the value of ERROR_CODE after calling this routine. Reasons for
failure to enter a mode might be:

� insufficient memory on the board for the mode; some modes require 1Mb of
graphics memory

� you have an early version of the board that does not support the mode,

� you have an incorrect monitor type; some boards detect the monitor type and
will not enter a mode that needs a monitor different from the one which is
attached.

� the compiler does not support the mode; only modes returned by
GET_GRAPHICS_MODES@ are supported.

WARNING:
Entering a mode for which the monitor is unsuitable is likely to damage
the monitor and graphics board. It is THE USER'S responsibility to
check the board and monitor for suitability.

See also EGA@, TEXT_MODE@, VGA@, HIGH_RESOLUTION_GRAPHICS_MODE@,
USE_VESA_INTERFACE@.

GRAPHICS_WRITE_MODE@
Purpose To select replace/XOR mode before writing to the screen, virtual screen or

printer.

Syntax BD1A>DC8=4 6A0?782BNFA8C4N<>34/�<>34�

8=C464A�! <>34

Description This routine sets the graphics write mode for the screen depending on the value of
MODE. It also sets the mode for a virtual screen or printer if one of these is
open. Values of 0, 1 or 2 will force all subsequent graphics output to replace
existing pixels. A value of 3 will cause the output to be XORed with previous
pixels.

Chapter 7 Graphics drawing

63

HERSHEY_PRESENT@
Purpose To test if a character number has a Hershey representation.

Syntax BD1A>DC8=4 74AB74HN?A4B4=C/�874AB7�H4B�

8=C464A�! 874AB7

;>6820;�! H4B

Description This routine tests if the character number IHERSH is present as a digitised
character in the database. YES is returned as .TRUE. if the Hershey character
IHERSH is present in the database, otherwise YES=.FALSE.

Example See DRAW_HERSHEY@

HIGH_RESOLUTION_GRAPHICS_MODE@ qq

Purpose To switch to high resolution graphics mode.

Syntax BD1A>DC8=4 7867NA4B>;DC8>=N6A0?782BN<>34/

Description This routine switches to a predefined high resolution graphics mode that has been
assigned using the CONFIGDB utility (or has a default value). The
CONFIGDB utility edits a file called DBOS.CFG which automatically
configures DBOS when it is loaded. The routine also clears the screen.

Notes In most situations it is better to use GRAPHICS_MODE_SET@ instead.

IS_TEXT_MODE@ oo

Purpose To test if the screen is in text or graphics mode.

Syntax BD1A>DC8=4 8BNC4GCN<>34/�BC0C4�

;>6820;�! BC0C4

Description STATE is returned as .TRUE. if the screen is in text mode and is returned as
.FALSE. if the screen is in graphics mode. In the case of a VGA board, this
routine interrogates the CRTC (cathode ray tube controller). Otherwise the
information is obtained from the video BIOS data area.

FTN77 Library Reference

64

LOAD_STANDARD_COLOURS@ qq

Purpose To load the standard colours for 256 colour mode.

Syntax BD1A>DC8=4 ;>03NBC0=30A3N2>;>DAB/

Description This routine loads the video DACs with the standard colour values of the
320x200x256 VGA mode. It should only be used in 256 colour modes since the
video DAC values for the 16 colour modes are different (see page 47).

Video DAC registers 0..15 give the standard EGA colours 0..15. Registers
16..31 are a grey scale of increasing intensity. There follow three 72 colour
structures of decreasing intensity. Each 72 structure itself is three 24 colour
structures of decreasing saturation. The 24 colour structures can be regarded as
a colour wheel going from blue to red to green and back to blue again with all the
intermediate hues.

The effect is like this:

high
saturation:

medium
saturation:

low
saturation:

high intensity: 32-55 56-79 80-103

medium intensity: 104-127 128-151 152-175

low intensity: 176-199 200-223 224-247

Registers 248..255 give black.

MOVE_POLYGON@
Purpose To move the position of a polygon.

Syntax BD1A>DC8=4 <>E4N?>;H6>=/�70=3;4�83G�83H�4AA>AN2>34�

8=C464A�! 70=3;4�83G�83H�4AA>AN2>34

Description This routine redefines the polygon with handle HANDLE by shifting the former
polygon an amount IDX horizontally and IDY vertically. The error codes are the
same as those for CREATE_POLYGON@.

See also CREATE_POLYGON@, FILL_POLYGON@,
COMBINE_POLYGONS@.

Chapter 7 Graphics drawing

65

POLYLINE@
Purpose To draw a number of connected straight lines.

Syntax BD1A>DC8=4 ?>;H;8=4/�8G�8H�=�82>;�

8=C464A�! 8G�=��8H�=��=�82>;

Description POLYLINE@ draws a straight line from (IX(1), IY(1)) to (IX(2), IY(2)), and
continues until (IX(N), IY(N)). That is, it joins N points with straight lines.
ICOL specifies the colour number.

For a plotter, POLYLINE@ can be used to draw a continuous line without
lifting the pen from the paper.

For a closed polygon, simply set the last pair of coordinates equal to the first
pair. For a plotter it is recommended that a filled polygon should be edged using
POLYLINE@.

See also DRAW_LINE@

Example

?A>6A0< 1>G!

8=C464A�! G�$��H�$��:

30C0 G�$��!���!��� $��$��

30C0 H�$�� $��!���!���$��

2 4]cTa 460 VaP_WXRb \^ST

20;; 460/

2 3aPf cWT # bXSTb ^U cWT Q^g�

2]^cT cWT aTcda] c^ �$��$�� c^ R[^bT cWT Q^g

20;; ?>;H;8=4/�G�H�$�!�

2 FPXc U^a P ZTh _aTbb

20;; 64CN:4H/�:�

2 ATcda] c^ cTgc \^ST

20;; C4GCN<>34/

4=3

RECTANGLE@
Purpose To draw a rectangle.

Syntax BD1A>DC8=4 A42C0=6;4/�8G �8H �8G!�8H!�82>;�

8=C464A�! 8G �8H �8G!�8H!�82>;

Description RECTANGLE@ draws a rectangle in colour ICOL where (IX1, IY1) and

FTN77 Library Reference

66

(IX2, IY2) are opposite corners.

RESTORE_GRAPHICS_BANK@ pp

Purpose To restore the graphics bank after a BIOS call.

Syntax BD1A>DC8=4 A4BC>A4N6A0?782BN10=:/

Description If any action has been taken which directly or indirectly uses BIOS to calculate a
screen address whilst in graphics mode then the current graphics 64k bank
number maintained by DBOS may be invalidated. This may result in graphics
drawing occurring at the wrong place on the screen.

To remedy this effect, call RESTORE_GRAPHICS_BANK@ after any such
action. This routine is not needed if the current graphics mode is any of the
standard VGA graphics modes ie 640x350x16 colours, 640x480x16 colours or
320x200x256 colours.

RESTORE_TEXT_SCREEN@ oo

Purpose To restore a text screen saved with SAVE_TEXT_SCREEN@.

Syntax BD1A>DC8=4 A4BC>A4NC4GCNB2A44=/�8?�84AA�

8=C464A�# 8?

8=C464A�! 84AA

Description Restores the entire text screen saved in IP. IP must be a pointer to a valid text
screen block previously obtained from a call to SAVE_TEXT_SCREEN@.

A non-zero returned value for IERR denotes one of the following error
conditions:

IERR=1, IP is not a valid text screen block (IP = 0 or IP = -1),

IERR=2, text screen block is corrupt - invalid header.

Chapter 7 Graphics drawing

67

SAVE_TEXT_SCREEN@ oo

Purpose To save the whole of the text screen.

Syntax BD1A>DC8=4 B0E4NC4GCNB2A44=/�8?�

8=C464A�# 8?

Description This routine allocates its own memory using GET_STORAGE@ and returns
its address in IP. You can free this memory by calling
RETURN_STORAGE@. A returned value of IP = -1 indicates that there is
insufficient heap space.

See also RESTORE_TEXT_SCREEN@.

SCREEN_TYPE@ oo

Purpose To get the graphics screen type.

Syntax BD1A>DC8=4 B2A44=NCH?4/�CH?4�

8=C464A�! CH?4

Description SCREEN_TYPE@ gets the type of the screen as follows:

TYPE description

0 No graphics available

1 CGA screen

2 EGA screen

3 VGA screen

See also GET_GRAPHICS_MODES@.

SET_ALL_PALETTE_REGS@ qq

Purpose To set all palette registers for colour graphics.

Syntax BD1A>DC8=4 B4CN0;;N?0;4CC4NA46B/�2A46B�

270A02C4A� & 2A46B

Description This routine is like SET_PALETTE@ but sets the contents of all of the 17
palette registers. CREGS is an array of 17 bytes containing the palette register

FTN77 Library Reference

68

values, all of which must be supplied. CREGS(17) is for the overscan (border)
colour (see page 45).

See also SET_PALETTE@, SET_VIDEO_DAC_BLOCK@.

SET_DEVICE_PIXEL@
Purpose To set a pixel colour for a virtual screen or printer.

Syntax BD1A>DC8=4 B4CN34E824N?8G4;/�8G�8H�82>;�

8=C464A�! 8G�8H�82>;

Description Sets a single pixel at (IX,IY) for the current graphics device to the colour ICOL.
This routine differs from SET_PIXEL@ in that SET_PIXEL@ always relates
to the screen, whereas SET_DEVICE_PIXEL@ relates to a currently open
virtual screen or printer (not a plotter).

See also GET_DEVICE_PIXEL@, SET_PIXEL@

SET_PALETTE@ qq

Purpose To set a palette register for colour graphics.

Syntax BD1A>DC8=4 B4CN?0;4CC4/�8A46�8E0;�

8=C464A�! 8A46�8E0;

Description SET_PALETTE@ is used to change the palette register number IREG (0..15 in
this function) to the value IVAL (0..63) for 16 colour EGA and VGA modes (see
page 45).

See also SET_ALL_PALETTE_REGS@, SET_VIDEO_DAC_BLOCK@.

SET_PIXEL@ qq

Purpose To set a pixel to a colour.

Syntax BD1A>DC8=4 B4CN?8G4;/�87�8E�82>;�

8=C464A�! 87�8E�82>;

Description SET_PIXEL@ sets the pixel at (IH,IV) on the screen to colour number ICOL.

Chapter 7 Graphics drawing

69

See also GET_PIXEL@, GET_DEVICE_PIXEL@, SET_DEVICE_PIXEL@.

SET_TEXT_ATTRIBUTE@
Purpose To set the current graphics text attributes.

Syntax BD1A>DC8=4 B4CNC4GCN0CCA81DC4/�5>=C�B8I4�A>C0C8>=�8C0;82�

8=C464A�! 5>=C

A40;�# B8I4�8C0;82�A>C0C8>=

Description This routine selects FONT to be the current font for use with DRAW_TEXT@
and sets the text attributes as follows:

� For display adapter and printers, fonts 1..3 are the 8x14 (default), the 8x8 and
the 8x16 fonts respectively.

For the plotter, refer to the manual supplied by the manufacturer. For all
devices, fonts 101..114 are the Hershey proportionally spaced stroke fonts
listed on page 48.

� SIZE is the replication factor from the original which corresponds to
SIZE=1.

� Text strings will be written rotated through ROTATION degrees in an anti-
clockwise direction about the bottom left corner of the first character in the
string (see page 48).

� Text will be sheared ITALIC degrees clockwise from the vertical.

The use of 0 for any parameter will select a default value for that parameter. In
general, the screen and printer use different fonts from the plotter. The only
exceptions to this are the Hershey fonts which may be used for all graphics
output devices.

Notes The colour attributes are not selected with this function.

See also DRAW_TEXT@, DRAW_HERSHEY@.

FTN77 Library Reference

70

SET_VIDEO_DAC@ qq

Purpose To set a VGA DAC register.

Syntax BD1A>DC8=4 B4CNE834>N302/�8A46�8A�86�81�

8=C464A�! 8A46�8A�86�81

Description This routine sets the values of the VGA DAC register number IREG (it is not
relevant to EGA mode). IR, IG, and IB are the red, green and blue intensities in
the range 0..63.

In 16 colour VGA mode, the colour is given by the palette register number
(0..16) each with a value in the range 0..63, which is a DAC register number. In
this case only DAC registers 0..63 can be changed using this routine (see page
45).

In 256 colour VGA mode the DAC register number is used to specify the colour
in graphics functions and any of the registers 0..255 can be changed using this
function (see page 47).

See also RESTORE_GRAPHICS_BANK@, SET_VIDEO_DAC_BLOCK@.

SET_VIDEO_DAC_BLOCK@ qq

Purpose To set a block of VGA DAC registers.

Syntax BD1A>DC8=4 B4CNE834>N302N1;>2:/�858ABC�=A46B�8A61�

8=C464A�! 858ABC�=A46B

8=C464A� 8A61�"�=A46B�

Description This routine sets a block of video DAC registers (see pages 45 and 47).
NREGS is the number of registers to be set starting at IFIRST. The registers
are numbered 0..255 and each consists of a red/green/blue triple with components
in the range 0..63. IRGB is a two dimensional array containing the number
NREGS of triples to be set.

IRGB(1,M) is the red gun level for DAC register

IFIRST + M - 1 etc..

See also RESTORE_GRAPHICS_BANK@, SET_VIDEO_DAC@.

Chapter 7 Graphics drawing

71

TEXT_MODE@ pp

Purpose To return to text mode.

Syntax BD1A>DC8=4 C4GCN<>34/

Description TEXT_MODE@ clears the screen and switches to text mode, setting the text
cursor position to (0,0) (i.e.the top left-hand corner).

See also EGA@, VGA@, GRAPHICS_MODE_SET@,
HIGH_RESOLUTION_GRAPHICS_MODE@.

TEXT_MODE_SET@ qq

Purpose To select the current text mode.

Syntax BD1A>DC8=4 C4GCN<>34NB4C/�2>;D<=B�A>FB�24;;N74867C�

� 24;;NF83C7�82>34�

8=C464A�! 2>;D<=B�A>FB�24;;N74867C�24;;NF83C7�82>34

Description This routine looks for and selects a suitable text mode, with the given resolution
COLUMNS by ROWS and the given cell size of at least CELL_HEIGHT by
CELL_WIDTH (in pixels). Supplying a zero value for CELL_HEIGHT and/or
CELL_WIDTH will result in a sensible default being used for the corresponding
parameter(s) (in most cases it is sufficient to set both of these to zero). If a mode
which satisfies these conditions is not available, then ICODE will be returned as
a non-zero value.

See also GET_TEXT_MODES@

USE_VESA_INTERFACE@ pp

Purpose To force the VESA interface to be used.

Syntax BD1A>DC8=4 DB4NE4B0N8=C4A5024/

Description This routine forces use of the VESA interface for graphics mode changing and
display memory banking. Most graphics boards now contain a video bios
extension in the form of a TSR program on the utility disks. The bios extension
TSR must be loaded before this routine is used and preferably before DBOS is
invoked.

FTN77 Library Reference

72

See also GET_GRAPHICS_MODES@, GRAPHICS_MODE_SET@.

VGA@ qq

Purpose To switch to VGA graphics mode.

Syntax BD1A>DC8=4 E60/

Description VGA@ switches a console with a VGA card to graphics mode with VGA
resolution (640x480,16 colours) and clears the screen.

See also EGA@, GRAPHICS_MODE_SET@

89

9.

Graphics printer

Introduction
The routines described in this chapter provide support for printer graphics. For
convenience the graphics routines are divided between this chapter and chapters 7 and
8. (Note also that chapter 13, includes the routines PRINT_CHARACTER@,
INITIALISE_PRINTER@, and GET_PRINTER_STATUS@. These routines are
not usually needed but may be used to drive the printer via low level BIOS calls.)

The graphics printer is one of three so-called “auxiliary” graphics devices. The other
two are the screen and the plotter (see the introduction to chapter 7 for general
information on auxiliary devices).

The default printer
The default printer type is an Epson 9 pin dot matrix or compatible printer with a map
size of 960x576 pixels. When using the default printer, a device is firstly opened
(using OPEN_GPRINT_DEVICE@ to output to a printer, or
OPEN_GPRINT_FILE@ to output to a file), then drawn to (using drawing routines
described in chapter 7) and finally closed (using CLOSE_GRAPHICS_PRINTER@).

In the case of the screen and plotter, output is produced simultaneously with the
drawing command. However, in the case of the graphics printer, a high resolution bit
map is maintained and is updated when a call to one of the graphics output routines is
made. When the printer is closed, the bit map is written to the device or to the file.
Printer output may also be produced by making a call to NEW_PAGE@ or
PRINT_GRAPHICS_PAGE@. NEW_PAGE@ clears the graphics bit map whilst
PRINT_GRAPHICS_PAGE@ does not.

FTN77 Library Reference

90

If the default printer is not appropriate then the printer type should be selected by a
single call to SELECT_DOT_MATRIX@ (for a dot matrix printer which is different
from the default) or to SELECT_PCL_PRINTER@ (for a PCL type printer). The
printer type should be selected before the printer device is opened.

PCL printers
SELECT_PCL_PRINTER@ provides access to all of the major Hewlett Packard
PCL printer families. It is expected that many other PCL compatible printers will also
function correctly, however, it should be noted that 100% compatibility with the
relevant Hewlett Packard printer has been assumed. A number of routines are also
available for configuring the PCL printer driver. These routines must be used at the
appropriate point in the output process and may only be used after a call to
SELECT_PCL_PRINTER@. For this reason it is convenient to arrange the
configuring routines into three groups as follows:

1) Routines that may only be called before the printer is opened:

SET_PCL_BITPLANES@
SET_PCL_LANDSCAPE@.

2) Routines that may only be called after the printer is opened:

LOAD_PCL_COLOURS@
GET_PCL_PALETTE@
SET_PCL_PALETTE@.

3) Routines that may be called before or after the printer is opened:

SET_PCL_GAMMA_CORRECTION@
SET_PCL_GRAPHICS_DEPLETION@
SET_PCL_GRAPHICS_SHINGLING@
SET_PCL_RENDER@.

The general process for outputting to a PCL printer may then be summarised as
follows.

a) select the printer type using SELECT_PCL_PRINTER@.

b) configure the driver (optional first stage) using routines in groups (1) and (3).

c) open the printer using OPEN_GPRINT_DEVICE@ or OPEN_GPRINT_FILE@.

d) send the image to the printer buffer using one or more of the drawing routines in
chapter 7.

Chapter 9 Graphics printer

91

e) configure the driver (optional second stage) using routines in groups (2) and (3).

f) print the image using NEW_PAGE@ or PRINT_GRAPHICS_PAGE@.

g) close the printer using CLOSE_GRAPHICS_PRINTER@.

Steps (d) and (e) are interchangable.

A printer driver is configured by using of one or more of the subroutines in groups (1),
(2) and (3) above. A particular routine may not apply to all printers. For example, the
LaserJet series do not print in colour so using a routine to set the number of bit planes
is not appropriate.

Note that the whole of the configuration process is carried out after the printer has been
selected (step a) and before the image is printed (step f). Certain aspects of the
configuration, such as selecting the number of bit planes and the landscape or portrait
orientation, must be carried out before the printer is opened (step c). Other aspects like
setting the colour palette must be carried out after the printer is opened. Some aspects,
like setting the gamma correction, may be carried out either before or after the printer
is opened.

Where printers support colour, by default the background colour is set to white using
the standard colour mapping. The default colour mappings are RGB based, even
though the DeskJet 500C and 550C use CMY and CMYK planes. The conversion is
carried out for you.

For 8 colour configurations, the definitions are:

Colour index Colour drawn

0 Black

1 Blue

2 Green

3 Cyan

4 Red

5 Magenta

6 Yellow

7 White

For 16 and 256 colour configurations, the default colour mapping is approximately the
same as for VGA 16 and 256 colour display modes.

FTN77 Library Reference

92

CLOSE_GRAPHICS_PRINTER@
Purpose To close the graphics printer device or file.

Syntax BD1A>DC8=4 2;>B4N6A0?782BN?A8=C4A/

Description This routine calls NEW_PAGE@ (if the printer buffer has been changed),
closes the printer and, if the screen is in graphics mode, graphics output is
reverted to the screen.

Example See OPEN_GPRINT_DEVICE@.

GET_PCL_PALETTE@ qq

Purpose To get the colour definitions for a given number of colours.

Syntax BD1A>DC8=4 64CN?2;N?0;4CC4/�8?0;�858ABC�=A46B�84AA�

8=C464A� 8?0;�"���

8=C464A�! 858ABC�=A46B�84AA

Description GET_PCL_PALETTE@ returns the colour definitions for a given number of
colours.

NREGS is the number of registers to be returned starting at IFIRST. This
routine is applicable only to the PaintJet XL and XL300 printers. Each colour is
specified as a set of RGB values. Each component of the RGB value taking
values from 0 (zero intensity) to 255 (full intensity).

Input arguments:
IFIRST first colour in the range
NREGS the number of colours in the range

Output arguments:
IPAL an array containing the colour definitions for

each of the colours in the specified range.

IERR = 0, success
= 1, printer not open
= 2, printer not capable of palette loading
= 3, IFIRST out of range

Chapter 9 Graphics printer

93

LOAD_PCL_COLOURS@ qq

Purpose To load the standard colour definitions.

Syntax BD1A>DC8=4 ;>03N?2;N2>;>DAB/

Description This routine loads the standard 16 and 256 colour definitions into the current
printer bit map. This is carried out by default when the printer bit map is
created.

OPEN_GPRINT_DEVICE@ qq

Purpose To open a graphics printer.

Syntax BD1A>DC8=4 >?4=N6?A8=CN34E824/�834E�84AA�

8=C464A�! 834E�84AA

Description Opens the graphics printer for use on IDEV where:

IDEV =1 is LPT1

IDEV =2 is LPT2

IDEV =3 is LPT3

IDEV =4 is LPT4

Opening the printer will close any other auxiliary device (i.e. the plotter or the
virtual screen). When the printer is open, graphics output is directed to the
printer and not to the screen. IERR = 2 denotes an invalid IDEV value otherwise
a non-zero value for IERR denotes the system extended error code.

Example

?A>6A0< 1>G#

8=C464A�! G�$��H�$��:�70=3;4�4AA>AN2>34

30C0 G�$��!���!��� $��$��

30C0 H�$�� $��!���!���$��

2 2aTPcT cWT Q^g Pb P _^[hV^] STUX]XcX^]

2 CWTaT Xb]^]TTS c^ PRcdP[[h QT X] VaP_WXRb \^ST

2 ^a WPeT P VaP_WXRb STeXRT ^_T]

20;; 2A40C4N?>;H6>=/�G�H�$�70=3;4�4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> !�

2 >_T] cWT _aX]cTa ^] ;?C

20;; >?4=N6?A8=CN34E824/� �4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> "�

FTN77 Library Reference

94

2 5X[[cWT Q^g fXcW R^[^da #� cWT Q^g fX[[QT UX[[TS X]c^

2 cWT X]cTa]P[QXc \P_�]^ ^dc_dc fX[[P__TPa hTc

20;; 58;;N?>;H6>=/�70=3;4�#�4AA>AN2>34�

85�4AA>AN2>34�=4���6>C> �

2 CWTaT Xb]^ _^X]c X] TSVX]V cWT Q^g� Pb ^][h ! R^[^dab

2 PaT PePX[PQ[T P]S]^ TUUTRc fX[[QT bTT]

2 FPXc U^a P ZTh _aTbb

20;; 64CN:4H/�:�

2 2[^bX]V cWT _aX]cTa fX[[_a^SdRT cWT ^dc_dc

20;; 2;>B4N6A0?782BN?A8=C4A/

BC>? ´����� >:´

2 4aa^a WP]S[X]V

 � 20;; 2;>B4N6A0?782BN?A8=C4A/

!� 85�4AA>AN2>34�4@� �C74=

BC>? ´����� 4AA>A) >dc ^U \T\^ah´

4;B485�4AA>AN2>34�4@�!�C74=

BC>? ´����� 4AA>A) 8]eP[XS _^[hV^] WP]S[T´

4=385

"� 20;; 3>B4AA/�4AA>AN2>34�

4=3

OPEN_GPRINT_FILE@ qq

Purpose To direct graphics printer output to a file.

Syntax BD1A>DC8=4 >?4=N6?A8=CN58;4/�58;4�84AA�

8=C464A�! 84AA

270A02C4A���� 58;4

Description OPEN_GPRINT_FILE@ is an alternative to OPEN_GPRINT_DEVICE@
and directs graphics printer output to the given file. A non-zero value for IERR
denotes the system extended error code.

Example See SELECT_PCL_PRINTER@.

PRINT_GRAPHICS_PAGE@
Purpose To print a graphics page.

Syntax BD1A>DC8=4 ?A8=CN6A0?782BN?064/

Description The graphics page is printed to the graphics printer destination (device or file).

Chapter 9 Graphics printer

95

Unlike the NEW_PAGE@ routine, the page is not cleared and can still be
drawn to.

Notes Graphics operations are drawn to an internal high resolution bit map and do not
produce their own output. The result of the drawing can only be seen by calling
this routine, NEW_PAGE@ or CLOSE_GRAPHICS_PRINTER@.

Example See SELECT_PCL_PRINTER@.

SELECT_DOT_MATRIX@ oo

Purpose To select an Epson compatible dot matrix printer

Syntax BD1A>DC8=4 B4;42CN3>CN<0CA8G/�8CH?4�=7>AI�=E4AC�

8=C464A�! 8CH?4�=7>AI�=E4AC

Description This routine should be called before opening a printer device (using
OPEN_GPRINT_DEVICE@ or OPEN_GPRINT_FILE@) in order to select an Epson
compatible dot matrix printer (other than the default) and to provide a printer
map with a given resolution. If neither this routine nor SELECT_PCL_PRINTER@

is called then the default printer type (i.e. Epson compatible 9 pin dot matrix
printer with a printer map size of 960x576) is used. The routine specifies the
resolution of a printer map, where:

ITYPE is the printer type (set this to zero).

NHORZ is the number of pixels horizontally in the printer map.

NVERT is the number of pixels vertically in the printer map.

Note that all arguments are input arguments.

SELECT_PCL_PRINTER@ qq

Purpose To specify attributes of a PCL printer.

Syntax BD1A>DC8=4 B4;42CN?2;N?A8=C4A/�8CH?4�?0?4ANB8I4� 83?8�

� =7>AI�=E4AC�

8=C464A�! 8CH?4�83?8�=7>AI�=E4AC

270A02C4A���� ?0?4ANB8I4

Description This routine should be called before opening a printer device (using

FTN77 Library Reference

96

OPEN_GPRINT_DEVICE@ or OPEN_GPRINT_FILE@) in order to select
a PCL type printer and to specify its attributes. If neither this routine nor
SELECT_DOT_MATRIX@ is called then the default printer type (i.e. Epson
compatible 9 pin dot matrix printer with a printer map size of 960x576) is used.

ITYPE represents a family of printers, and is referred to below as the driver
number. Current values are:

LaserJet series 200
LaserJet 2 202
LaserJet 3 203
LaserJet 4 204

PaintJet series 300
PaintJet 302
PaintJet XL 303
PaintJet XL300 304

DeskJet series 400
DeskJet 500, 500+ 402
DeskJet 500C 403
DeskJet 550C 404

In addition to these, the values of 0 and 2 are also supported for compatibilty
with the old version of the LaserJet 2 driver.

Although, within the families, the lowest level of printer is usually compatible
with the higher specification models, there is not necessarily any advantage in
(say) specifying a LaserJet 2 when a LaserJet 3 is attached.

As far as possible, the user should try to match the driver number with the printer
that is attached. In this way, full advantage will be taken of any driver specific
features such as better image compression or better colour choice or
representation. Better image compression means better transmission times which
in turn means faster drawing.

The improvement in speed can be substantial. For example, if the file is saved to
disc, the file size can be as small as 7% of the size of the uncompressed image.

The exception to this is the PaintJet XL300. This has a different dot pitch from
previous printers in this range.

Although images generated for the PaintJet and PaintJet XL will still draw on
this printer, the image will be the wrong size and may even be clipped in order to
fit on the page. Images generated for one family of printers may not produce
anything meaningful on the other families. One of the reasons for this is differing

Chapter 9 Graphics printer

97

palette representations.

For example, images produced for the DeskJet 500C or 550C may simply
produce a solid black page on one of the PaintJet range and vice versa.

The tables below give a brief outline of the advantages of using a particular
driver against using drivers for the lower specification models in the range.

LaserJet LaserJet 3 LaserJet 4

better image compression 600 dpi resolution

Paintjet Paintjet XL

more colours

higher resolution colour

better image compression

DeskJet 500 DeskJet 500C DeskJet 550C

colour true black rather than
composite black

better image compression

PAPER_SIZE specifies the name of the paper size e.g. ´0#´ or ´;4CC4A´.
Values differ for each of the printer families. An incorrectly specifed
PAPER_SIZE will default to ́ 0#´. The table below gives the allowable values
for each paper size.

LaserJet PaintJet DeskJet

2 3 4 - XL XL300 500 500C 550C

EXECUTIVE 9 9 9 8 8 8 9 9 9

LETTER 9 9 9 9 9 9 9 9 9

LEGAL 9 9 9 9 9 9 9 9 9

LEDGER 8 8 8 9 9 9 8 8 8

A4 9 9 9 9 9 9 9 9 9

B4 8 8 8 9 9 9 8 8 8

A3 8 8 8 8 8 9 8 8 8

FTN77 Library Reference

98

IDPI specifies the number of pixels per inch that you want to use.

LaserJet 2,3, PaintJet XL300 and all DeskJet models:
IDPI is one of 300, 150, 100, 75

LaserJet 4:
IDPI is one of 600, 300, 200, 150, 100, 75

PaintJet and PaintJet XL:
IDPI is one of 180, 90

If IDPI is incorrectly specified, the resolution used is the next device resolution
higher than that specified, if one is available, or the highest if one higher is not
available. For example, suppose 150 dpi were specified with a PaintJet XL. The
printer map would use 180 dpi. If 75 dpi were specified, then 90 dpi would be
used. However, if 300 dpi were specified then 180 dpi would be used as this is
the highest resolution available.

NHORZ and NVERT are returned values and provide the total number of
horizontal and vertical pixels in the image.

Do not assume that these values will remain fixed as they may vary for
compatibility with new devices.

Example

?A>6A0< ?A8=C4A

8=C464A�! =7>AI�=E4AC�84AA

20;; B4;42CN?2;N?A8=C4A/�#�#��0#�� $��=7>AI�=E4AC�

20;; B4CN?2;N18C?;0=4B/�"�84AA�

85�84AA�=4��� 6>C> �

20;; B4CN?2;N;0=3B20?4/� �=7>AI�=E4AC�84AA�

85�84AA�=4��� 6>C> �

20;; >?4=N6?A8=CN34E824/� �84AA�

85�84AA�=4��� 6>C> �

2 ;>03N?2;N2>;>DAB/� 64CN?2;N?0;4CC4/ � B4CN?2;N?0;4CC4/ \Ph

2 QT dbTS WTaT� CWT]Tgc cf^ a^dcX]Tb \Ph P[b^ QT RP[[TS

2 QTU^aT cWT _aX]cTa Xb ^_T]TS�

20;; B4CN?2;N6A0?782BN34?;4C8>=/�"�84AA�

85�84AA�=4��� 6>C> �

20;; B4CN?2;N6A0?782BNB78=6;8=6/� �84AA�

85�84AA�=4��� 6>C> �

20;; 4;;8?B4/�=7>AI�!�=E4AC�!�=7>AI�#�=E4AC�#� �

20;; ?A8=CN6A0?782BN?064/��

20;; 58;;N4;;8?B4/�=7>AI�!�=E4AC�!�=7>AI�#�=E4AC�#� �

20;; 2;>B4N6A0?782BN?A8=C4A/��

BC>?

Chapter 9 Graphics printer

99

2 ?a^RTbb Taa^ab

 � �����

4=3

SET_PCL_BITPLANES@ pp

Purpose To set the number of colours in the image.

Syntax BD1A>DC8=4 B4CN?2;N18C?;0=4B/�=18C�84AA�

8=C464A�! =18C�84AA

Description The defaults are:
LaserJet series = 1
PaintJet series = 4 (16 colours)
DeskJet series = 3

At present only the PaintJet series drivers can alter the number of colours. This
routine may only be used after SELECT_PCL_PRINTER@ and before the
printer is opened.

Input arguments:
NBIT allowable values are:

LaserJet series = 1
PaintJet = 1, 3
Paintjet XL & XL300 = 1, 3, 4, 8
DeskJet 500 = 1
DeskJet 500C & 550C = 1, 3

Number of bit
planes

Number of
colours

1 2

3 8

4 16

8 256

FTN77 Library Reference

100

Output arguments:
IERR = 0 success

= 1 printer already open
= 2 invalid value for NBIT

Example See SELECT_PCL_PRINTER@.

SET_PCL_GAMMA_CORRECTION@ pp

Purpose To alter the “gamma correction” for colours.

Syntax BD1A>DC8=4 B4CN?2;N60<<0N2>AA42C8>=/�60<<0�84AA�

8=C464A�! 84AA

A40;�' 60<<0

Description This routine is applicable only to the PaintJet XL and XL300 series. Gamma
correction adjusts colour intensities on the printer to match those of the human
eye and is rather similar to altering the contrast of the image.

Unless there is a real need to depart from the default gamma correction, you are
advised to avoid this routine. The default is GAMMA = 1.0.

Input argument:
0.0 < GAMMA < 2.0

Output argument:
IERR = 0, success

= 2, printer not capable of gamma correction
= 3, GAMMA out of range

SET_PCL_GRAPHICS_DEPLETION@ pp

Purpose To improve the image quality.

Syntax BD1A>DC8=4 B4CN?2;N6A0?782BN34?;4C8>=/�834?�84AA�

8=C464A�! 834?�84AA

Description Reduces the amount of ink laid down, so improving the image quality and the ink
saturation of the media. This routine is applicable only to the DeskJet series of
printers operating in colour mode. Unless there is a real need to depart from the

Chapter 9 Graphics printer

101

default depletion, you are advised to avoid this routine.

Input argument:
IDEP = 1, no depletion - monochrome graphics default

= 2, 25% - colour graphics default
= 3, 50%

Output argument:
IERR = 0, success

= 2, printer not capable of gamma correction
= 3, IDEP out of range

Example See SELECT_PCL_PRINTER@.

SET_PCL_GRAPHICS_SHINGLING@ pp

Purpose To make a number of print passes.

Syntax BD1A>DC8=4 B4CN?2;N6A0?782BNB78=6;8=6/�8B78=6�84AA�

8=C464A�! 8B78=6�84AA

Description This routine makes a setable number of print passes, each pass filling vacant
pixels from previous passes. This routine is applicable only to the DeskJet series
of printers. This is used to prevent liquid inks of different types from coming
into contact with each other by giving them a moment to dry. This is
particularly useful with the DeskJet 550C printer where the black ink is
chemically different from the colour inks. Use this routine when printing on
glossy paper or transparencies.

Input argument:
ISHING = 0, no shingling

= 1, two pass printing
= 2, four pass printing - default

Output argument:
IERR = 0, success

= 2, printer not capable of shingling
= 3, ISHING out of range

Example See SELECT_PCL_PRINTER@.

FTN77 Library Reference

102

SET_PCL_LANDSCAPE@ pp

Purpose To set LANDSCAPE or PORTRAIT orientation.

Syntax BD1A>DC8=4 B4CN?2;N;0=3B20?4/�8E0;�=7>AI�=E4AC�84AA�

8=C464A�! 8E0;�=7>AI�=E4AC�84AA

Description PCL printers do not usually rotate graphics images so the rotation is carried out
internally by the driver.

This routine may only be used after SELECT_PCL_PRINTER@ and before
the printer is opened.

Input argument:
IVAL = 0 sets PORTRAIT orientation

= 1 sets LANDSCAPE orientation

Output arguments
NHORZ returns the number of pixels horizontally
NVERT returns the number of pixels vertically
IERR returns 1 if the printer is open.

Example See SELECT_PCL_PRINTER@.

SET_PCL_PALETTE@ pp

Purpose To load the colour definitions.

Syntax BD1A>DC8=4 B4CN?2;N?0;4CC4/�8?0;�858ABC�=A46B�84AA�

8=C464A� 8?0;�"���

8=C464A�! 858ABC�=A46B�84AA

Description SET_PCL_PALETTE@ loads the colour definitions for a given number of
colours. NREGS is the number of registers to be set starting at IFIRST. This
routine is applicable only to the PaintJet XL and XL300 printers.

Each colour is specified as a set of RGB values. Each component of the RGB
value taking values from 0 (zero intensity) to 255 (full intensity).

Input arguments:
IPAL an array containing the colour definitions for each of the

colours in the specified range
IFIRST first colour in the range

Chapter 9 Graphics printer

103

NREGS the number of colours in the range

Output argument:
IERR = 0, success

= 1, printer not open
= 2, printer not capable of palette loading
= 3, IFIRST out of range

SET_PCL_RENDER@ pp

Purpose To set the “rendering algorithm”.

Syntax BD1A>DC8=4 B4CN?2;NA4=34A/�8A4=3�84AA�

8=C464A�! 8A4=3�84AA

Description Sets the “rendering algorithm” for the way that colours are rendered by the
printer.

This routine is applicable only to the PaintJet series. Unless there is a real need
to depart from the default rendering, the user is advised to avoid this routine.

Input argument:
IREND = 0 no algorithm

= 1 snap to primaries
= 2 snap black to white, all other colours black
= 3 ordered dither (default)
= 4 error diffusion
= 5 monochrome ordered dither
= 6 monochrome error diffusion
= 7 clustered ordered dither
= 8 monochrome clustered ordered dither.

Output argument:
IERR = 0, success

= 2, printer not capable of rendering
= 3, IREND out of range

FTN77 Library Reference

104

105

10.

Hot key (DOS)

One of the attractive features of MS-DOS is the way in which programs can be made
to stay resident and become active on pressing a “hot key”. However, most such
programs are written in assembler and are hard to code. Furthermore, because such
programs stay resident over the top of DOS they use up valuable memory space.
FTN77 offers a mechanism to write “hot key” programs which do not consume
memory when not in use, and which in any case utilise the memory above 640K, which
is usually plentiful. All the complexities of hot-key software are catered for by a small
(5K bytes) TSR program called HOTKEY77. This program should be run after
DBOS has been loaded, and may be incorporated in your AUTOEXEC.BAT file.

Once the HOTKEY77 program has been executed it is possible to use one hot key
immediately by executing HELP77. This program (which you may also usefully
include in AUTOEXEC.BAT) defines the key sequence Control-Alt-H, which is
normally inactive, to cause the display of FTN77 help information (starting at the
index). Here is the source of HELP77:

4GC4A=0; 5C=&&N74;?/

20;; 3458=4N7>CN:4H/�´2>=CA>;�0;C�7´�5C=&&N74;?/� 82�

20;; 3>B4AA/�82�

20;; 2>D/�´2^]ca^[�0[c�7 fX[[]^f VXeT 5C=&& WT[_ bRaTT]b´�

4=3

The routine FTN77_HELP@ is present in the system library, and
DEFINE_HOT_KEY@ is defined below. HELP77 uses up no extra memory, it
simply sets up information inside HOTKEY77. Since the hot key program is not
limited in size by memory considerations, there would be no problem defining a hot key
to simulate an oil refinery (say) if this were thought useful! Users of HOTKEY77
should note the following:

� An additional benefit of HOTKEY77 is that the standard keyboard buffer of 16
keystrokes is increased to 512. This has been done to facilitate hot key applications
which feed data back to the interrupted program (e.g. a spelling checker which

FTN77 Library Reference DOS

106

corrects what it finds on an editor screen), but it also means that you can type much
further ahead while the PC is performing a task.

� Hot key applications should be written as dynamic link libraries (and included in the
LIBRARIES.DIR file like any other such library).

� The ‘main program’ of such an application should be written as an INTERRUPT
SUBROUTINE. For example the system routine FTN77_HELP@ is written as
an interrupt subroutine.

� If you define a hot key whose handler is not in a dynamic link library or if you alter
the library after the hot key has been defined you will almost certainly crash DOS.

� After a hot key has been pressed, it will take effect as soon as the program attempts
to read the keyboard. Normally a program will be awaiting keyboard input when
you press a hot key, so the effect will be immediate.

� Hot keys may be used from within FTN77 programs (or utilities like LINK77). In
this case they act like trap routines (see SET_TRAP@) and are subject to the
same restrictions. In particular, if a hot key program is likely to be invoked while
an FTN77 program is performing a READ statement, then it must not itself
perform Fortran I/O.

� Usually a hot key application would operate within a window which it would create
as it starts and remove before it exits. In this way the underlying screen is not
disturbed.

� Hot keys must not be invoked from within the FTN77 debugger.

� If you use other hot key programs not involving HOTKEY77 they should be loaded
after DBOS and HOTKEY77.

� Hot key programs should be written so that they always finish cleanly by returning
from the top level INTERRUPT SUBROUTINE.

Termination as a result of an error, or as a result of executing STOP etc. will leave
DOS in an ill-defined state.

Chapter 10 Hot key (DOS)

107

DEFINE_HOT_KEY@ oo

Purpose To associate a hotkey routine with a given key.

Syntax BD1A>DC8=4 3458=4N7>CN:4H/�:4H�A>DC8=4�4AA>AN2>34�

8=C464A�! 4AA>AN2>34

270A02C4A���� :4H

4GC4A=0; A>DC8=4

Description DEFINE_HOT_KEY@ associates routine ROUTINE with the key named
KEY. The names of keys are case insensitive and are best illustrated by
example:

CONTROL-ALT-DEL
the key which normally reboots the machine;

ctrl-alt-del
this is the same key under a different name;

Shift-Alt-Delete
this refers to the Delete key as opposed to the key on the numeric
keypad;

alt-9
this is not the numeric keypad;

FOUR
this is the numeric keypad left arrow.

Hot keys are unaffected by the state of the shift lock, numlock or scroll lock
toggles.

Thus it is possible to define hot keys using key combinations which have no
normal effect - for example Ctrl-Alt-L. It would even be possible to redefine
Ctrl-Alt-Del so that it did not reboot the machine. The hot key will work whether
or not an FTN77 program is active at the time it is pressed. If you already have
20 active hot keys, or if you have not loaded HOTKEY77, then
ERROR_CODE will come back with a non-zero error code which can be
interpreted by DOSERR@.

FTN77 Library Reference DOS

108

REMOVE_HOT_KEY@ oo

Purpose To disassociate a hotkey routine from a given key.

Syntax BD1A>DC8=4 A4<>E4N7>CN:4H/�:4H�

270A02C4A���� :4H

Description This routine removes the key KEY from the hot key table. A key with special
meaning such as Ctrl-Alt-Del recovers that meaning. This routine never returns
an error - if the HOTKEY77 program has not been loaded, or if the key in
question has never been defined, then no action is taken.

FEED_KEYBOARD@ oo

Purpose To push a keycode into the keyboard buffer.

Syntax BD1A>DC8=4 5443N:4H1>0A3/�30C0�4AA>AN2>34�

8=C464A�! 30C0�4AA>AN2>34

Description This routine takes the scan code/ASCII pair in DATA (scan code in high byte)
and pushes it into the keyboard buffer. Although this routine may be used
without HOTKEY77, it is then limited by the 16 keystroke buffer. With
HOTKEY77 the buffer is increased to 512 keystrokes. This routine is usually
used to “return a result” from a hot key program.

Example

4GC4A=0; 68E4N30C4

2 3458=4 2^]ca^[�0[c�3 C> A4CDA= C74 30C4

20;; 3458=4N7>CN:4H/�´2>=CA>;�0;C�3´�%�68E4N30C4�82�

20;; 3>B4AA/�82�

4=3

2 C78B 2>34 <DBC A4B834 8= 0 3H=0<82 ;8=: ;81A0AH

8=C4AAD?C BD1A>DC8=4 68E4N30C4

270A02C4A�!' 530C4/�30C4

30C4,530C4/��

3> 8, �;4=6�30C4�

2 =>C4 C70C C74 B20=�2>34 ?>AC8>= >5 C74 :4H 8B =>C DB43

2 1H <>BC ?A>6A0<B 5>A 0B288 :4HB 0=3 70B 144= ;45C I4A>

 20;; 5443N:4H1>0A3/�8270A�30C4�8)8���

4=3

109

11.

In-line

The routines in this chapter (except for SET_IO_PERMISSION@) are converted to
in-line code, rather than procedure calls, and are therefore extremely efficient. They
can often be used as a convenient alternative to resorting to assembler. Those routines
described here which are functions should be explicitly declared to be of the right type.

FILL@
Purpose To set an array of N bytes to a particular value.

Syntax BD1A>DC8=4 58;;/�0�=�1�

8=C464A�# 0�1�=

Description This routine fills A (which may be of any type and is usually an array) with N
bytes of value B. Thus if A is of type INTEGER*4 and N=4, each of the 4
bytes of A will be assigned to the value of B. B may be of any type but only the
lowest byte is used.

IN@ oo

Purpose To input one byte from an I/O port.

Syntax 8=C464A�! 5D=2C8>= 8=/�?>AC�

8=C464A�! ?>AC

Description To read and write I/O ports you must have set the I/O permission level (IOPL) to
3 (see SET_IO_PERMISSION@).

FTN77 Library Reference

110

MATCH@
Purpose To compare two arrays of N bytes.

Syntax ;>6820;�! 5D=2C8>= <0C27/�0�1�=�

8=C464A�! 0�1�=

Description This function compares N bytes of data for equality. The first two arguments
can be of any type and are usually arrays. N can be INTEGER*1,
INTEGER*2 or INTEGER*4.

Return value MATCH@ returns .TRUE. if the two arrays are identical, otherwise .FALSE..

MOVE@
Purpose To copy an array of N bytes.

Syntax BD1A>DC8=4 <>E4/�5A><�C>�=�

Description This routine copies N bytes of data from FROM to TO. No data conversion is
performed and no checks are made to ensure that the source and destination are
large enough (even in /CHECK mode). Arguments FROM and TO may be of
any type, N must be INTEGER*1, INTEGER*2 or INTEGER*4.

OUT@ oo

Purpose To output one byte of data to an I/O port.

Syntax BD1A>DC8=4 >DC/�?>AC�E0;D4�

8=C464A�! ?>AC�E0;D4

Description To read and write I/O ports you must have set the I/O permission level (IOPL) to
3 (see SET_IO_PERMISSION@).

Chapter 11 In-line

111

POP@
Purpose To pop a value off the system stack.

Syntax BD1A>DC8=4 ?>?/�0�

8=C464A�# 0

Description This routine is the opposite of PUSH@.

PUSH@
Purpose To push a value on the system stack.

Syntax BD1A>DC8=4 ?DB7/�0�

8=C464A�# 0

Description The argument A is pushed on to the system stack. Two bytes will be pushed for
INTEGER*2, four for INTEGER*4 etc. Values saved in this way can be
restored again with POP@. The corresponding POP@ call must have an
argument of the same type (otherwise the wrong number of bytes would be
popped). A routine may return with data still pushed on the stack - such data is
then lost.

SET_IO_PERMISSION@ oo

Purpose To set the I/O permission level to 3 or 0.

Syntax BD1A>DC8=4 B4CN8>N?4A<8BB8>=/�>?C8>=�

;>6820;�! >?C8>=

Description This routine sets the I/O permission level (IOPL) to 3 if OPTION is .TRUE..
Typically this routine is called before one or more calls to IN@ or OUT@.

Each call to SET_IO_PERMISSION@ with OPTION=.TRUE. pushes the
value 3 on to a stack. The top level of the stack gives the current permission
level. The bottom level gives the initial default level (zero). Each call with
OPTION =.FALSE. pops a value off the stack. It is good practice to return
IOPL to zero when it is no longer needed, as this helps to protect the program
from corrupting the system.

FTN77 Library Reference

112

113

12.

Mouse

A number of routines are provided by FTN77 to support Microsoft-compatible mouse
drivers. These routines are simply bindings to built-in functions of the mouse driver.
The exact way in which some of these work may vary from supplier to supplier: some
may not work at all with your mouse. You are advised to check the functionality of
your mouse with these routines before using them with confidence.

A mouse can be used in either graphics mode (using EGA@ for example) or text
mode. Programs must initialise the mouse before use, and if a mouse interrupt mask is
set then this must be cleared before exiting from the program. Some care is needed
when using these routines. In particular, the mouse should be turned off during any
screen operations which may alter the screen data underneath the mouse cursor,
otherwise the area will not be properly repaired when the mouse is moved.

Some of these routines take screen units (pixels) as arguments whilst others take
physical mouse movements (mickeys). A mickey is approximately 0.5 mm. It is
possible to alter the ratio of mickeys to pixels so that the display cursor may be made
more or less sensitive to mouse movements.

There are routines to reposition the mouse cursor and to constrain the cursor movement
to a box. These may be used to position the cursor on the first item of a menu, for
example, and to prevent mouse movements outside of a selected range so that only
certain menu items may be chosen. Similarly the mouse cursor may be moved to a safe
area of the screen whilst another area is being updated. The most usual use, however,
will be to make the whole screen area available to the mouse and this should be done as
soon as the appropriate screen mode is entered and the mouse initialised.

In order to use a mouse together with (say) the keyboard, it is usual to construct an
“event handler” of some kind. One possible approach is to use the
GET_MOUSE_BUTTON_PRESS_COUNT@ routine (with GET_KEY1@ say).
Mouse movements and button presses may be trapped using SET_TRAP@ and
SET_MOUSE_INTERRUPT_MASK@. However, since you are effectively
providing an interrupt handler for these events there are strict rules governing your

FTN77 Library Reference

114

allowed actions. In particular, no system routines may be called, the register set must
be saved, and interrupts must not be re-enabled.

It should be noted that mouse drivers usually do not recognise non-standard VGA
screen modes. In other words, the mouse driver cannot tell that you are in a particular
graphics mode if that mode is not standard. This means that you should not attempt to
use a mouse driver routine to display the mouse cursor in 800x600 graphics mode for
example. If the mouse driver returns the mouse coordinates in 8 pixel (rather than
single pixel) increments then this indicates that it has not recognised the current
graphics mode.

DISPLAY_MOUSE_CURSOR@ pp

Purpose To show the mouse cursor on the screen.

Syntax BD1A>DC8=4 38B?;0HN<>DB4N2DAB>A/

Description This routine causes the mouse cursor to appear on the screen. A change of mode
between text and graphics will hide the cursor. Similarly moving into a region
defined by MOUSE_CONDITIONAL_OFF@ will also hide the cursor.

If HIDE_MOUSE_CURSOR@ is called twice then DISPLAY_MOUSE_CURSOR@

must also be called twice before the cursor reappears and so on.

GET_MOUSE_BUTTON_PRESS_COUNT@
Purpose To get the number of times a button has been pressed.

Syntax BD1A>DC8=4 64CN<>DB4N1DCC>=N?A4BBN2>D=C/�81�82�

8=C464A�! 81�82

Description This routine gets the count of the number of times a button has been pressed. IB
is set to 0 for the left button and 1 for the right button. After each call to this
routine, the count IC for the specified button is reset to zero.

Chapter 12 Mouse

115

GET_MOUSE_EVENT_MASK@
Purpose To get the mask for the most recent mouse interrupt.

Syntax BD1A>DC8=4 64CN<>DB4N4E4=CN<0B:/�<0B:�

8=C464A�! <0B:

Description This routine returns the mask for the most recent mouse interrupt. The bits in the
mask are used as in SET_MOUSE_INTERRUPT_MASK@ and are set if that
event has occurred. This routine should only be called after a mouse interrupt
has occurred and is normally called from within the interrupt routine that handles
the interrupt.

GET_MOUSE_PHYSICAL_MOVEMENT@ pp

Purpose To get the mouse pad distance from the last call.

Syntax BD1A>DC8=4 64CN<>DB4N?7HB820;N<>E4<4=C/�3G�3H�

8=C464A�! 3G�3H

Description This routine gets the relative position of the mouse on the mouse pad since the
last call. The displacement is measured in mickeys (see
SET_MOUSE_SENSITIVITY@ and GET_MOUSE_SENSITIVITY@).
The mouse cursor on the screen is confined to a rectangle (the full screen
perhaps), so the values given will not represent the screen displacement.

GET_MOUSE_POSITION@
Purpose To get the present state of the mouse cursor.

Syntax BD1A>DC8=4 64CN<>DB4N?>B8C8>=/�87�8E�1DCC>=NBC0CDB�

8=C464A�! 87�8E�1DCC>=NBC0CDB

Description This routine returns the position of the mouse in pixel coordinates (IH, IV) from
the top-left of the screen. It also returns the state of the mouse buttons as either
depressed or not. The least significant bit of BUTTON_STATUS, (bit 0) = 1 if
the left-hand button is depressed. Bit 1 = 1 if the right-hand button is depressed.
Bit 2 = 1 if a middle button is depressed. Any combination of values is possible.

FTN77 Library Reference

116

Example See SET_MOUSE_INTERRUPT_MASK@

GET_MOUSE_SENSITIVITY@ pp

Purpose To get the values of the physical movement ratios and the double speed threshold.

Syntax BD1A>DC8=4 64CN<>DB4NB4=B8C8E8CH/�3G�3H�B?443�

8=C464A�! 3G�3H�B?443

Description This routine gets the values described in SET_MOUSE_MOVEMENT_RATIO@
and SET_MOUSE_SPEED_THRESHOLD@.

HIDE_MOUSE_CURSOR@ pp

Purpose To hide the mouse cursor on the screen.

Syntax BD1A>DC8=4 7834N<>DB4N2DAB>A/

Description This routine causes the mouse cursor to disappear from the screen. Unlike the
DISPLAY_MOUSE_CURSOR@ routine, it need only be called once no
matter how many times the other routine has been called.

INITIALISE_MOUSE@ pp

Purpose To initialise the mouse driver.

Syntax BD1A>DC8=4 8=8C80;8B4N<>DB4/

Description This routine initialises the mouse driver and resets the mouse. It should be called
before the first use of the mouse in order to obtain a reproducible state and so
that both DISPLAY_MOUSE_CURSOR@ and HIDE_MOUSE_CURSOR@
work reliably. It does not cause the mouse cursor to appear on the screen.

Chapter 12 Mouse

117

MOUSE@ pp

Purpose To perform a mouse interrupt.

Syntax BD1A>DC8=4 <>DB4/�80�81�82�83�

8=C464A�! 80�81�82�83

Description This routine performs a mouse interrupt with the registers loaded with IA, IB, IC
and ID. The results are also returned in these variables. This routine should
rarely be needed. Usually the services provided by the built-in mouse routines
will suffice.

This routine should not be used with other routines which cause interrupt activity
such as GET_MOUSE_PHYSICAL_MOVEMENT@.

The SET_MOUSE_INTERRUPT_MASK@ and SET_TRAP@ routines
should be used to cause mouse interrupt activity.

MOUSE_CONDITIONAL_OFF@ pp

Purpose To switch off the cursor when it enters a specified rectangle.

Syntax BD1A>DC8=4 <>DB4N2>=38C8>=0;N>55/�;G�;H�7G�7H�

8=C464A�! ;G�;H�7G�7H

Description This routine switches off the mouse cursor when it enters the region defined with
(LX, LY) and (HX, HY) at opposite corners. (0,0) is the top left and values are
in pixels.

The routine is a conditional form of HIDE_MOUSE_CURSOR@, so the
cursor is restored by a call to DISPLAY_MOUSE_CURSOR@. The cursor
is switched off when any part of its 16x16 pixel form enters the rectangle.

MOUSE_LIGHT_PEN_EMULATION@ pp

Purpose To use the mouse as a light-pen.

Syntax BD1A>DC8=4 <>DB4N;867CN?4=N4<D;0C8>=/�B4C�

;>6820;�! B4C

Description This routine enables/disables the use of the mouse in place of a light pen.
SET=1 enables the emulation, SET=0 disables it. When a mouse button is

FTN77 Library Reference

118

depressed, the ROM-BIOS video service 4 reports that the light-pen has been
triggered and returns the coordinates of the mouse.

MOUSE_SOFT_RESET@
Purpose To initialise the mouse software.

Syntax BD1A>DC8=4 <>DB4NB>5CNA4B4C/�8=BC0;;�

;>6820;�! 8=BC0;;

Description This routine resets the mouse software, but not the mouse. It is identical to
INITIALISE_MOUSE@ except that the mouse is not reset. INSTALL is
returned as .TRUE. if the mouse driver is installed, and .FALSE. if it is not.

QUERY_MOUSE_SAVE_SIZE@ pp

Purpose To get the buffer size for the mouse state.

Syntax BD1A>DC8=4 @D4AHN<>DB4NB0E4NB8I4/�B8I4�

8=C464A�! B8I4

Description In preparation for a call to SAVE_MOUSE_DRIVER_STATE@, this routine
is used to determine the buffer size in bytes that is required to store the mouse
state. Drivers vary in the amount of storage they require, but typically about 500
bytes are needed.

RESTORE_MOUSE_DRIVER_STATE@ pp

Purpose To restore a former state of the mouse driver.

Syntax BD1A>DC8=4 A4BC>A4N<>DB4N3A8E4ANBC0C4/�1D554A�=1HC4B�

8=C464A�! 1D554A�=1HC4B

Description This routine restores the state of the mouse driver corresponding to an earlier call
to SAVE_MOUSE_DRIVER_STATE@. The contents of the buffer are
determined by the call to SAVE_MOUSE_DRIVER_STATE@. NBYTES is
given by a call to QUERY_MOUSE_SAVE_SIZE@. The mouse cursor is
not automatically redrawn.

Chapter 12 Mouse

119

SAVE_MOUSE_DRIVER_STATE@ pp

Purpose To save the current state of the mouse driver.

Syntax BD1A>DC8=4 B0E4N<>DB4N3A8E4ANBC0C4/�1D554A�=1HC4B�

8=C464A�! 1D554A�=1HC4B

Description This routine stores the current mouse driver state in the array pointed to by
BUFFER. NBYTES is the size of the buffer in bytes obtained by a call to
QUERY_MOUSE_SAVE_SIZE@.

SET_MOUSE_BOUNDS@ pp

Purpose To restrict mouse movements to a specified rectangle.

Syntax BD1A>DC8=4 B4CN<>DB4N1>D=3B/�;G�;H�7G�7H�

8=C464A�! ;G�;H�7G�7H

Description This routine defines a rectangle, with (LX, LY) and (HX, HY) at opposite
corners, within which the mouse cursor will be confined. If, in the default state,
the mouse cursor is too restricted then this routine can be used to extend the
bounds.

SET_MOUSE_GRAPHICS_CURSOR@ pp

Purpose To specify the shape of the mouse cursor for graphics mode.

Syntax BD1A>DC8=4 B4CN<>DB4N6A0?782BN2DAB>A/�7>CNG�7>CNH�

� 2DAB>AN345�

8=C464A�! 7>CNG�7>CNH�2DAB>AN345�"!�

Description This routine allows the user to specify the shape of cursor in graphics mode and
how it reacts with the screen data underneath. The position of the hot-spot can
also be set.

The hot-spot is the point (relative to the top left (0,0) of a 16x16 array of pixels)
to which the cursor points. For example, if the default cursor is an arrow, then
the hot-spot would be the tip of this arrow. For a cross, the hot-spot would
naturally be the point where the bars intersect.

CURSOR_DEF points to an array of 32 elements. Elements 1..16 define the

FTN77 Library Reference

120

“data mask” whilst elements 17..32 define the “cursor mask”. Each element of
the array represents a bit-mapped row of the cursor. On a bit-by-bit basis, the
screen under the cursor is anded with the data mask and then xored with the
cursor mask in order to produce the visible effect of the cursor.

The default cursor can be restored by reinitialising the mouse.

Example

2 CWT U^[[^fX]V fX[[STUX]T P bX_[T Ra^bb c^ QT g^a´TS

2 PVPX]bc cWT bRaTT] SPcP

8=C464A�! 2DAB>AN345�"!�

2 CWT bRaTT] \PbZ T]bdaTb cWPc P[[cWT bRaTT] SPcP Xb

2 _aTbTaeTS U^a G^a´X]V fXcW cWT Rdab^a \PbZ

2DAB>AN345� �, 1´ ´

�����

2DAB>AN345� %�,1´ ´

2 4[T\T]cb & c^ "! PaT cWT Rdab^a \PbZ P]S STUX]T

2 cWT bWP_T ^U cWT Rdab^a

2DAB>AN345� &�,1´����������������´

2DAB>AN345� '�,1´�������� �������´

�����

2DAB>AN345�!#�,1´�������� �������´

2DAB>AN345�!$�,1´� �´

2DAB>AN345�!%�,1´�������� �������´

�����

2DAB>AN345�" �,1´�������� �������´

2DAB>AN345�"!�,1´����������������´

2 4]cTa E60 \^ST

20;; E60/

2 BTc cWT Rdab^a bWP_T fXcW W^c�b_^c Pc �'�'�

20;; B4CN<>DB4N6A0?782BN2DAB>A/�'�'�2DAB>AN345�

2 3Xb_[Ph Rdab^a

20;; 38B?;0HN<>DB4N2DAB>A/

�����

SET_MOUSE_INTERRUPT_MASK@
Purpose To enable mouse actions to produce interrupts.

Syntax BD1A>DC8=4 B4CN<>DB4N8=C4AAD?CN<0B:/�<0B:�

8=C464A�! <0B:

Description This routine causes certain mouse actions to produce interrupts. The

Chapter 12 Mouse

121

SET_TRAP@ routine or its equivalent must first be called with a trap code of 4
to trap mouse events. Each bit in the mask corresponds to an event that may be
trapped. The least significant bit is bit 0.

bit interrupt

0 interrupt on cursor position change

1 interrupt on left button press

2 interrupt on left button release

3 interrupt on right button press

4 interrupt on right button release

Thus MASK = 2+8 = 10 gives an interrupt on left and right button presses.

Example

2 DbT ^U X]cTaad_cb ^] Rdab^a \^eT\T]c P]S Qdcc^] _aTbbTb

4GC4A=0; <>DB4NCA0?

8=C464A�# @

8=C464A�! 2DAB>AN7�2DAB>ANE�1DCC>=NBC0CDB

2><<>= 2DAB>AN7�2DAB>ANE�1DCC>=NBC0CDB

2 BTc d_ P caP_ U^a \^dbT TeT]cb �R^ST # b_TRXUXTb \^dbT�

20;; B4CNCA0?/�<>DB4NCA0?�@�#�

2 BPh fT fP]c c^ X]cTaad_c ^] Rdab^a \^eT\T]c P]S Qdcc^]

2 _aTbb

20;; B4CN<>DB4N8=C4AAD?CN<0B:/� �

2 ?TaU^a\ b^\T _a^RTbb fWXRW dbTb cWT

2 2dab^a R^^aSX]PcTb Ua^\ cX\T c^ cX\T

�

�

8=C4AAD?C BD1A>DC8=4 <>DB4NCA0?

8=C464A�! 2DAB>AN7�2DAB>ANE�1DCC>=NBC0CDB

2><<>= 2DAB>AN7�2DAB>ANE�1DCC>=NBC0CDB

20;; 64CN<>DB4N?>B8C8>=/�2DAB>AN7�2DAB>ANE�1DCC>=NBC0CDB�

4=3

SET_MOUSE_MOVEMENT_RATIO@ pp

Purpose To set the mouse cursor sensitivity.

Syntax BD1A>DC8=4 B4CN<>DB4N<>E4<4=CNA0C8>/�87�8E�

8=C464A�! 87�8E

FTN77 Library Reference

122

Description This routine sets the cursor sensitivity to horizontal and vertical changes in the
mouse position. It may also be used to adjust the mouse movements to changes
in the horizontal and vertical pixel sizes so that, for example, a circular
movement of the mouse causes circular movement of the mouse cursor. The
larger the values of IH and IV, the less sensitive is the mouse cursor to physical
mouse movements. IH=8m and IV=8n where m is the horizontal and n the
vertical number of mickeys per pixel. The minimum value for IH and for IV is 1.
The default values are likely to be IH=8 and IV=16.

SET_MOUSE_POSITION@
Purpose To move the mouse cursor to a particular position.

Syntax BD1A>DC8=4 B4CN<>DB4N?>B8C8>=/�87�8E�

8=C464A�! 87�8E

Description This routine sets the hot-spot of the mouse cursor to the position (IH, IV) on the
screen. The coordinates are in pixels from the top left of the screen.

SET_MOUSE_SENSITIVITY@ pp

Purpose To set the mouse cursor sensitivity and the threshold for the double speed.

Syntax BD1A>DC8=4 B4CN<>DB4NB4=B8C8E8CH/�3G�3H�B?443�

8=C464A�! 3G�3H�B?443

Description This routine combines the actions of the routines
SET_MOUSE_MOVEMENT_RATIO@ and SET_MOUSE_SPEED_THRESHOLD@.
Please refer to these routines for further details.

SET_MOUSE_SPEED_THRESHOLD@ pp

Purpose To set the threshold for double speed.

Syntax BD1A>DC8=4 B4CN<>DB4NB?443NC7A4B7>;3/�B?443�

8=C464A�! B?443

Description This routine sets the mouse double speed threshold. When the mouse is moved at
a speed above SPEED mickeys per second the mouse cursor will move across

Chapter 12 Mouse

123

the screen at double speed.

SET_MOUSE_TEXT_CURSOR@ pp

Purpose To specify details of the mouse cursor for text mode.

Syntax BD1A>DC8=4 B4CN<>DB4NC4GCN2DAB>A/�B4;42C�80�81�

8=C464A�! B4;42C�80�81

Description This routine allows the user to specify details of the cursor for text mode. There
are two possible types of cursor, the “hardware” cursor and the “attribute
cursor”.

By default, the hardware cursor is usually the familiar flashing under-score
character which otherwise relates to keyboard input. By setting SELECT=1,
this hardware cursor is assigned to the mouse position. In this mode the value
assigned to IA is the start line of the rectangle and IB is the end line (IA=6, IB=7
is often the default) and these values have the same effect as parameters in
SET_CURSOR_TYPE@. The effect will endure after the program terminates
unless the default is reset. In this mode there will normally be only one visible
cursor since the mouse takes over the hardware cursor.

The attribute cursor is more like the associated graphics cursor and can co-exist
with the hardware cursor. By setting SELECT=0, this attribute cursor is
assigned to the mouse position. In this mode the value assigned to IA is anded
with the underlying screen character and its attribute. The result is then xored
with the value assigned to IB.

The screen character/attribute takes a two byte form with the low byte giving the
ASCII code for the character and the high byte giving its attributes in the bit
pattern fbbbtttt where f is set for a flashing character, bbb is the palette register
for the background colour (0..7) and tttt is the palette register for the text colour
(0..15).

Thus (0, Z’FFFF’, Z’7700’) first preserves the underlying character/attribute
and then inverts the colour. Similarly (0, Z’FFFF’, Z’F700’) will be the same
but will also invert the flashing mode. Likewise (0, Z’FF00’, Z’7720’) will
remove the underlying character, replace it with a space (hex 20) and invert the
colour.

Particular care needs to be taken with the attribute cursor since, although it is
more flexible than the hardware cursor, it is susceptible to screen changes. For
example, if the screen scrolls, the original attributes will not be restored at the old

FTN77 Library Reference

124

cursor position, unless the cursor is first switched off.

125

13.

Printer (DOS)

The following routines drive the printer via BIOS calls. The printer number can be 1,
2, or 3 (LPT1, LPT2 or LPT3).

PRINT_CHARACTER@ oo

Purpose To send one character to the printer.

Syntax BD1A>DC8=4 ?A8=CN270A02C4A/�270A�?�

270A02C4A 270A

8=C464A�! ?

Description The printer number P should be in the range 1 to 3.

INITIALISE_PRINTER@ oo

Purpose To initialise the printer.

Syntax BD1A>DC8=4 8=8C80;8B4N?A8=C4A/�?�

8=C464A�! ?

Description The printer number P should be in the range 1 to 3.

FTN77 Library Reference DOS

126

GET_PRINTER_STATUS@ oo

Purpose To obtain status information for the printer.

Syntax BD1A>DC8=4 64CN?A8=C4ANBC0CDB/�?�B�

8=C464A�! ?�B

Description S is returned with the status information for printer P. The printer number P
should be in the range 1 to 3.

The bits of S have the following significance:

bit value significance

1 Time-out

2 Reserved

4 Reserved

8 I/O error

16 Selected

32 Out of paper

64 Acknowledge

128 Not busy

127

14.

Process control

CISSUE
Purpose To issue a system command.

Syntax BD1A>DC8=4 28BBD4�0�8508;�

270A02C4A���� 0

8=C464A�! 8508;

Description Issues the command stored as a character string in A. IFAIL is returned as one
of the following:

IFAIL Meaning

0 Successful invocation of a command processor to execute the command

1 A command processor could not be invoked

Notes The value of IFAIL refers to the success or failure of invoking the MS-DOS
command processor COMMAND.COM. Unfortunately, MS-DOS does not
provide a mechanism whereby the success or failure of the invocation of the
particular command can be reported back to the caller. So, for example, if you
get a system error such as “Not found” for the command, IFAIL will be
returned as zero.

It is not possible to issue a command which itself uses DBOS (e.g. run another
FTN77 program). Also the use of CISSUE to start TSR programs should be
avoided since this can fragment memory.

Example

FTN77 Library Reference

128

20;; 2>D/�´cWT R^]cT]cb ^U cWXb 3XaTRc^ah PaT)�´�

20;; 28BBD4�´38A´�:�

85�:�=4���20;; 2>D/�´38A UPX[TS U^a b^\T aTPb^]´�

� � �

EXIT
Purpose To terminate a program.

Syntax BD1A>DC8=4 4G8C�4AA>AN2>34�

8=C464A�! 4AA>AN2>34

Description This routine terminates the program and returns to the operating system. If the
error code is non zero the termination will be abnormal. Abnormal termination
will interrupt the flow of a .BAT file (as if control break had been pressed).

EXIT@
Purpose To terminate a program.

Syntax BD1A>DC8=4 4G8C/�4AA>AN2>34�

8=C464A�! 4AA>AN2>34

Description EXIT@ is a synonym for EXIT.

GET_KEY_OR_YIELD@
Purpose To get the next keycode.

Syntax BD1A>DC8=4 64CN:4HN>ANH84;3/�:4H�

8=C464A�! :4H

Description This routine returns a key typed on the keyboard in exactly the same way as
GET_KEY@ except that it will yield control to other tasks (if any) when no
keypress is pending. This routine is used in READ_EDITED_LINE@ and
WREAD_EDITED_LINE@. Care should be taken to ensure that only one
process is performing keyboard input with these routines at any one time -
otherwise the characters will be shared randomly across several tasks!

Chapter 14 Process control

129

See also SPAWN@, YIELD@.

SLEEP@
Purpose To suspend program execution for a specified time interval.

Syntax BD1A>DC8=4 B;44?/�C8<4�

A40;�# C8<4

Description The time is given in seconds and is accurate to within one tick (18.2 ticks per
second).

SPAWN@ oo

Purpose To initiate a concurrent subtask.

Syntax BD1A>DC8=4 B?0F=/�BD1C0B:�BC02:�BC02:B8I4�70=3;4�

8=C464A�! 70=3;4

4GC4A=0; BD1C0B:

8=C464A�# BC02:B8I4

8=C464A� BC02:�BC02:B8I4�

Description SPAWN@ creates a subtask which executes routine SUBTASK (no
arguments) concurrently with the rest of the program. Up to nine such subtasks
may be created, though one will suffice for most purposes. The STACK array
will hold the stack for the new task. It should be big enough to ensure that stack
overflow cannot occur in the subtask. It is suggested that the array be made very
large (say 10 Megabytes) and put in an uninitialised common block so that
DBOS will only allocate memory for it as it is actually used. HANDLE is
returned as an integer which defines the task.

See also YIELD@, GET_KEY_OR_YIELD@.

START_PROGRAM@ oo

Purpose To start another Salford (DBOS) program.

Syntax BD1A>DC8=4 BC0ACN?A>6A0</�58;4�5;06B�

FTN77 Library Reference

130

270A02C4A���� 58;4

8=C464A�# 5;06B

Description This routine offers a way to start another Salford program (operating under
DBOS) from within an FTN77 program (for example, another FTN77
program). Control will never return to the caller of START_PROGRAM@.
The flags parameter is bit significant with the following meaning:

bit
value

meaning

1 set if you want the program to behave as if /BREAK had
been specified on the command line

2 set if underflows are to be treated (by default) as errors

4 set if you want /HARDFAIL

All other bits in the flags are reserved and must be set to 0.

Notes This routine can only be used to execute programs which have been compiled
with FTN77 or one of its sister compilers.
The full pathname must be provided when the file is not in the current directory.
SET_COMMAND_LINE@ can be used to provide command line arguments
for the call.

Example

20;; BC0ACN?A>6A0</�´?A>6�4G4´���

4=3

YIELD@ oo

Purpose To yield control to a subtask.

Syntax BD1A>DC8=4 H84;3/�D=2>=38C8>=0;�

;>6820;�! D=2>=38C8>=0;

Description If the logical UNCONDITIONAL is set to .FALSE., YIELD@ will yield
control to another task (initialised by SPAWN@) if one exists and the present
task has run for about 2 clock ticks. If YIELD@ is called and does not actually
yield control it consumes very little time, so it should be called in one of the loops
of a task which is going to perform a long calculation.

Chapter 14 Process control

131

If UNCONDITIONAL is set to .TRUE., YIELD@ always yields control if
another task exists. The routine is called in this way from routines such as
GET_KEY_OR_YIELD@ when no key is available. YIELD@ will just return
if SPAWN@ has never been called or if all subtasks have been completed.

FTN77 Library Reference

132

133

15.

Random numbers

RANDOM
Purpose To return a pseudo-random double precision value.

Syntax 3>D1;4 ?A428B8>= 5D=2C8>= A0=3><��

Description This routine sets its seed automatically and produces the same sequence every
time the program is run.

Alternatively, you may use DATE_TIME_SEED@ or SET_SEED@ which
are described below.

Return value RANDOM returns a uniformly distributed random number x such that
0.0D0 < x ≤ 1.0D0.

Example

3>D1;4 ?A428B8>= A0=3><�A0=E42� ���

3> 8, � ��

 A0=E42�8�,A0=3><��

� � �

FTN77 Library Reference

134

DATE_TIME_SEED@
Purpose To select a new “seed” for the pseudo-random number generator function

RANDOM.

Syntax BD1A>DC8=4 30C4NC8<4NB443/

Description This routine sets the seed for the random number generator to a value based on
the current DATE/TIME. This routine is used to obtain a non repeatable
sequence of pseudo-random numbers.

SET_SEED@
Purpose To enter a new “seed” for the pseudo-random number generator function

RANDOM.

Syntax BD1A>DC8=4 B4CNB443/�B443�

A40;�' B443

Description This routine sets the seed for the random number generator to a value based on
SEED. SEED may take any value. Each value produces a repeatable sequence
of pseudo-random numbers.

135

16.

Real mode interface (DOS)

The following routines are used to interface FTN77 software with code executing in
real mode. They should be used in conjunction with chapter 26 of the FTN77 User’s
Guide.

It is not possible simply to call real mode functions from a protected mode FTN77
program. A particular real mode memory address always corresponds to the same byte
in physical memory, whereas because of the virtual memory scheme used by FTN77, a
particular virtual memory address can even refer to different addresses in physical
memory in the course of one run of a single program, as the page which it belongs to
gets paged out and paged in again (see chapter 23 of the FTN77 User’s Guide). In
addition to this, a particular virtual address may, at a given time, correspond to a
physical address in extended memory, and thus not be directly accessible from a real
mode program.

These factors mean that there is no simple way to provide a mapping for data held in
memory in protected mode to that in real mode. That is not to say it is impossible to
call real mode software - in fact, FTN77 has itself to call DOS and BIOS functions
extensively, and these are real mode functions. A number of options exist whereby a
user can invoke real mode code. These are outlined below:

The simplest method is to make the real mode code into a free-standing application,
and invoke it with the CISSUE routine. Any data that needs to be passed to and from
the real mode application can be written to a file.

If the code to be invoked is an interrupt handler, and the required data can be passed in
registers, it is simply a matter of loading up the required registers and generating the
appropriate interrupt. This can be done in a CODE/EDOC sequence, or by using the
routine REAL_MODE_INTERRUPT@. Many DOS and BIOS functions can be
invoked directly in this way.

Also, the user can write a TSR program which hooks an interrupt and is invoked from
a FTN77 program by this mechanism. If the code to be invoked is an interrupt
handler, but requires more information than can be returned in the registers, then a

FTN77 Library Reference DOS

136

mechanism exists using what is termed the DOSCOM buffer. This mechanism was
designed primarily to allow those DOS interrupts which perform some data transfer
(and therefore require a data buffer) to be invoked, but it can be used for other
applications.

If the code to be invoked is not in the form of an interrupt handler, then a number of
functions are provided to set up and perform the real mode call. This makes it possible
to write a general purpose binding to a real mode library which will make it appear as
if it had a simple call interface, and this is done in several available bindings for
popular libraries.

Much of the material which follows assumes some knowledge of Intel 32-bit and MS-
DOS architecture. For those not aquainted with these subjects several good references
are available.

A real mode address of the form SELECTOR:ADDRESS is equivalent to an
absolute address of LS(SELECTOR,4)+ADDRESS.

Programs compiled with real mode compilers and accessed from within an FTN77
program must use either large, compact, or huge models. Failure to do this leads to an
interface failure and often requires a machine reboot.

ALLOCATE_REAL_MODE_MEMORY@ oo

Purpose To allocate real mode memory.

Syntax BD1A>DC8=4 0;;>20C4NA40;N<>34N<4<>AH/�?>8=C4A�=1HC4B�82>34�

8=C464A�# ?>8=C4A�=1HC4B

8=C464A�! 82>34

Description This routine causes DOS to allocate NBYTES of real mode memory and returns
its address in POINTER. This is a real-mode (20-bit) address which is returned
by the routine. ICODE is returned as zero if the call is successful.

Notes � ALLOCATE_REAL_MODE_MEMORY@ is normally called before
copying to and from real mode memory unless copying takes place to and
from existing BIOS memory locations.

� The FTN77 program can reference any or all of the allocated real mode
memory by using POINTER as a base, to which suitable offsets may be
added in calls of COPY_FROM_REAL_MODE1@ and
COPY_TO_REAL_MODE1@

Chapter 16 Real mode interface (DOS)

137

COPY_FROM_REAL_MODE@ oo

Purpose To copy data from a real mode program.

Syntax BD1A>DC8=4 2>?HN5A><NA40;N<>34/�0=HNE0A801;4�=1HC4B�

8=C464A�# =1HC4B

Description This routine copies NBYTES bytes from the data area previously specified in
the real mode program by calling the real mode routine FTN77WT, to the data
area in the FTN77 protected mode program specified by the argument
ANY_VARIABLE. In practice, it is convenient to make ANY_VARIABLE the
first word of a common block, thus ensuring a contiguous area of data, and to
use ANY_VARIABLE as a flag to communicate actions to the real mode
program.

Notes � NBYTES must be of type INTEGER*4.

� ANY_VARIABLE can be a variable of any type.

� A call to COPY_FROM_REAL_MODE@ must not be made until
LOAD_REAL_MODE_LIBRARY@ has been called from the FTN77
program, and FTN77WT has been called to return from the real mode
program.

COPY_FROM_REAL_MODE1@ oo

Purpose To copy data from a real mode program.

Syntax BD1A>DC8=4 2>?HN5A><NA40;N<>34 /�0=HNE0A801;4�=1HC4B�

� 033A4BB�

8=C464A�# =1HC4B�033A4BB

Description Copies NBYTES of information from the absolute real mode address space at
the given address into ANY_VARIABLE. The real mode address must be less
that 1 Megabyte.

FTN77 Library Reference DOS

138

COPY_FROM_SEGMENT@ oo

Purpose To copy data from another segment.

Syntax BD1A>DC8=4 2>?HN5A><NB46<4=C/�30C0�B4;42C>A�>55B4C�=1HC4B�

8=C464A�! B4;42C>A

8=C464A�# >55B4C�=1HC4B

Description Copies data to the variable or array DATA (which may be of any type) from a
separate segment (e.g. the screen segment). OFFSET is the position within the
segment from which the data is obtained.

COPY_TO_REAL_MODE@ oo

Purpose To copy data to a real mode program.

Syntax BD1A>DC8=4 2>?HNC>NA40;N<>34/�0=HNE0A801;4�=1HC4B�

8=C464A�# =1HC4B

Description This routine copies NBYTES bytes to the data area previously specified in the
real mode program by calling the real mode routine FTN77WT, from the data
area in the FTN77 protected mode program specified by the argument
ANY_VARIABLE.

In practice, it is convenient to make ANY_VARIABLE the first word of a
common block, thus ensuring a contiguous area of data, and to use
ANY_VARIABLE as a flag to communicate actions to the real mode program.

Notes � NBYTES must be of type INTEGER*4.

� ANY_VARIABLE can be a variable of any type.

� A call to COPY_TO_REAL_MODE@ must not be made until
LOAD_REAL_MODE_LIBRARY@ has been called from the FTN77
program, and FTN77WT has been called from the real mode program.

Chapter 16 Real mode interface (DOS)

139

COPY_TO_REAL_MODE1@ oo

Purpose To copy data to a real mode program.

Syntax BD1A>DC8=4 2>?HNC>NA40;N<>34 /�0=HNE0A801;4�=1HC4B�033A4BB�

8=C464A�# =1HC4B�033A4BB

Description Copies NBYTES of information to the absolute real mode address space at the
given address from ANY_VARIABLE. The real mode address must be less that
1 Megabyte. This routine must be used with great care, as it is possible to
corrupt DOS or DBOS if an unsuitable address is specified.

COPY_TO_SEGMENT@ oo

Purpose To copy data to another segment.

Syntax BD1A>DC8=4 2>?HNC>NB46<4=C/�30C0�B4;42C>A�>55B4C�=1HC4B�

8=C464A�! B4;42C>A

8=C464A�# >55B4C�=1HC4B

Description Copies data from the variable or array DATA (which may be of any type) to a
separate segment (e.g. the screen segment). OFFSET is the position within the
segment at which the data should be put.

DEALLOCATE_REAL_MODE_MEMORY@ oo

Purpose To free real mode memory.

Syntax BD1A>DC8=4 340;;>20C4NA40;N<>34N<4<>AH/�?>8=C4A�82>34�

8=C464A�# ?>8=C4A

8=C464A�! 82>34

Description Deallocates real mode memory that was previously obtained with
ALLOCATE_REAL_MODE_MEMORY@. POINTER must be a pointer
returned by ALLOCATE_REAL_ MODE_MEMORY@.

FTN77 Library Reference DOS

140

DOSCOM@ oo

Purpose To obtain a segment selector for the DOSCOM buffer.

Description This routine returns a segment selector in FS for the 1K DOSCOM buffer
which is arranged so as to overlap the real mode space. This allows system
interrupts to be used which require a buffer to be passed (e.g. I/O transfer
operations). When an SVC/3 call is issued from a CODE/EDOC (in-line
assembler) sequence, the DS and ES registers are set up to point at the
DOSCOM buffer.

By its nature this routine is only useful from within a CODE/EDOC sequence.
See page 316 of the FTN77 User’s Guide for an example of its use.

FTN77WT etc. oo

Purpose Used within a real mode program to receive control from and return control to a
FTN77 program.

Syntax BD1A>DC8=4 5C=&&FC�0=HNE0A801;4�

Description FTN77WT is one of a number of routines that can be used within a real mode
program. Each routine is appropriate to a particular real mode compiler. These
routines are used both to indicate where execution of the real mode program
should start when REAL_MODE@ is called from the FTN77 program and to
transfer control back to the FTN77 program. The routine is called each time this
transfer is required.

It is usually convenient to use the single argument, ANY_VARIABLE, as a flag
to indicate an action to be taken by the calling FTN77 program. In this case the
argument should be declared as INTEGER*4, INTEGER*2 or INTEGER*1 in
both the real mode and protected mode programs.

Notes � The FTN77 program acts as a driver for the “slave” real mode program
which calls FTN77WT.

� The source code for these routines is located in the DBOS.DIR directory,
ready for compilation using your real mode assembler. You should select the
one that is appropriate to your particular compiler. They are also supplied
pre-assembled, ready for inclusion in a real mode object library.

� FTN77WT has been used successfully with IBM Professional Fortran. As
the method of argument passing may differ amongst real-mode compilers, it

Chapter 16 Real mode interface (DOS)

141

may not function correctly when called, for example, from a program
compiled with the Lahey F77L compiler.

LINEAR_ONE_MEG_SEG@ oo

Purpose To obtain the real mode address 0.

Syntax BD1A>DC8=4 ;8=40AN>=4N<46NB46/

Description Returns with the FS segment selector pointing to real mode address 0. The
segment is a one megabyte segment so the whole of real mode memory can be
accessed off the segment. This is really only of use for machine code
programmers.

It is advised that the routines COPY_FROM_REAL_MODE1@ and
COPY_TO_REAL_MODE1@ be used in preference.

LOAD_REAL_MODE_LIBRARY@ oo

Purpose To load and execute a real mode program.

Syntax BD1A>DC8=4 ;>03NA40;N<>34N;81A0AH/�A40;N<>34N4G4N58;4�

270A02C4A ���� A40;N<>34N4G4N58;4

Description This routine loads, and starts to execute, a previously compiled and linked real
mode program so that it can be called from a protected mode program. The
argument, REAL_MODE_EXE_FILE, is a filename or pathname of a suitable
MS-DOS .EXE file.

Notes � LOAD_REAL_MODE_LIBRARY@ must be the first routine called by the
FTN77 program which wishes to communicate with a real mode program.

� This routine both loads and starts to execute the real mode program.
Execution of the real mode program starts with the first statement. Real mode
routine FTN77WT must be called by the real mode program in order to
return to the FTN77 program.

� Programs compiled with real mode compilers and accessed from within an
FTN77 program must use either large, compact, or huge models.

FTN77 Library Reference DOS

142

MODIFY_REAL_MODE_MEMORY@ oo

Purpose To change the size of a block of real mode memory.

Syntax BD1A>DC8=4 <>385HNA40;N<>34N<4<>AH/�?>8=C4A�=1HC4B�82>34�

8=C464A�# ?>8=C4A�=1HC4B

8=C464A�! 82>34

Description This attempts to change the size of a block of real mode memory previously
allocated with ALLOCATE_REAL_ MODE_MEMORY@. POINTER must
be a pointer returned by ALLOCATE_REAL_MODE_MEMORY@.
NBYTES should be set to the size in bytes of the new block. ICODE will be
returned as zero if the new size is acceptable. It is much easier to shrink a block
than to enlarge it.

REAL_MODE@ oo

Purpose To transfer control from a FTN77 to a real mode program.

Syntax BD1A>DC8=4 A40;N<>34/

Description This routine is used to transfer control from a FTN77 program to a real mode
program which has been loaded by LOAD_REAL_MODE_LIBRARY@. Each
time REAL_MODE@ is called, control is transferred to the statement which
immediately follows the call of FTN77WT in the real mode program.

Notes � A call to REAL_MODE@ must not be made until
LOAD_REAL_MODE_LIBRARY@ has been called from the FTN77
program, and FTN77WT has been called to return the real mode program.

� Real mode routine FTN77WT must be called by the real mode program in
order to return to the FTN77 program.

REAL_MODE_ADDRESS_OF_DOSCOM@ oo

Purpose To obtain the address of the DOSCOM buffer.

Syntax BD1A>DC8=4 A40;N<>34N033A4BBN>5N3>B2></�033A4BB�B4;42C>A�

8=C464A�# 033A4BB

8=C464A�! B4;42C>A

Chapter 16 Real mode interface (DOS)

143

Description Returns the absolute address of the 1K byte DOSCOM buffer and a protected
mode segment selector. Note that this is not a real-mode selector:address pair.

A real mode address of the form SELECTOR:ADDRESS is equivalent to an
absolute address of LS(SELECTOR,4)+ADDRESS.

REAL_MODE_INTERRUPT@ oo

Purpose To cause a real mode interrupt from an FTN77 program.

Syntax BD1A>DC8=4 A40;N<>34N8=C4AAD?C/�A468BC4AB�8=C4AAD?C�

8=C464A�! A468BC4AB� ���8=C4AAD?C

Description INTERRUPT contains an interrupt number. The elements of REGISTERS
have the correspondence with the real mode registers as shown in the table below.

Notes � Element 10 of REGISTERS (FLAGS) is returned. Its value before the call
has no significance.

� This subroutine may only be called from an FTN77 program.

REGISTER
ELEMENT

REAL MODE
REGISTER

1 AX

2 BX

3 CX

4 DX

5 SI

6 DI

7 BP

8 DS

9 ES

10 FLAGS

FTN77 Library Reference DOS

144

SCREENSEG@ oo

Purpose To obtain the segment selector for the graphics area.

Syntax BD1A>DC8=4 B2A44=B46/

Description Returns with the FS segment selector pointing to real mode address Z’A0000’,
the graphics area. This is really only of use for machine code programmers.

145

17.

Serial communications

GETTERMINATECOMMCHAR@
Purpose To get the character that terminated the last call to READCOMMDEVICE@.

Syntax 270A02C4A 64CC4A<8=0C42><<270A/�?>AC=D<�

8=C464A�# ?>AC=D<

Return value GETTERMINATECOMMCHAR@ returns the character that terminated the last
READCOMMDEVICE@ call. This will be one of the characters set using
SETCOMMTERMINATECHAR@. If the port is not open the function returns -1.
If READCOMMDEVICE@ has not been called the default return is zero.

OPENCOMMDEVICE@
Purpose To open a serial port for I/O.

Syntax 8=C464A�# >?4=2><<34E824/�?>AC=D<�2><B?42�AB8I4�CB8I4�

8=C464A�# ?>AC=D<� AB8I4�CB8I4

270A02C4A���� 2><B?42

Description To initiate serial communications between the computer and external devices a
communications port must be selected and opened. On a standard PC there is a
maximum of four serial ports, although it is common for only two to be
installed. PORTNUM can therefore be either 1, 2, 3 or 4. Port 1 is commonly
used to connect the mouse and so may not be available.

COMSPEC is a string that specifies the baud rate, parity, data and stop bit
information (e.g. '9600, n, 8, 1'). Possible values are:

baud rate: 300,600,1200,2400,4800,9600,19200,38400,57600,115200
parity: n (none), o (odd), e (even)

FTN77 Library Reference

146

data bits: 7 or 8
stop bits: 0 or 1

Under Windows 3.1(1) it is necessary to specify a size for input and
output buffers. The size of the input buffer RSIZE and the size of the output
buffer TSIZE should be set at about 1024. On slower systems with high
data rates it may be advisable to specify larger values.

Return value OPENCOMMDEVICE@ returns a positive value when successful otherwise it
returns -1.

READCOMMDEVICE@
Purpose To read data from an open serial port.

Syntax 8=C464A�# A4032><<34E824/�?>AC=D<�BCA8=6�=A403�

8=C464A�# ?>AC=D<�=A403

270A02C4A���� BCA8=6

Description Use this function to read data from a serial port that has been opened by a call to
OPENCOMMDEVICE@. PORTNUM must be a valid port number in the range 1 to
4 and NREAD is set as the maximum number of characters to be read. After the
call STRING will contain the data held in the serial port up to NREAD characters.
Fewer than NREAD characters will be read if one of the termination characters
(set using SETCOMMTERMINATECHAR@) is encountered.

Return value READCOMMDEVICE@ returns the number of characters read or -1 if an error
occurred.

SETCOMMTERMINATECHAR@
Purpose To set the characters that may be used to terminate a call to

READCOMMDEVICE@ .

Syntax 8=C464A�# B4C2><<C4A<8=0C4270A/�?>AC=D<�BCA8=6�;4=�

8=C464A�# ?>AC=D<�;4=

270A02C4A���� BCA8=6

Description PORTNUM must be a valid serial port number in the range 1 to 4. STRING

contains a string of length LEN. This string is used to provide a list of characters

Chapter 17 Serial communications

147

that may be used to terminate a call to READCOMMDEVICE@. The termination
character is discarded when READCOMMDEVICE@ is called. For example
RWPa�����RWPa� !���RWPa� $� provides for the data to be terminated
by a null character, a line feed or a carriage return.

Return value SETCOMMTERMINATECHAR@ returns a positive value if successful or -1 if an
error has occurred.

SETECHOONREADCOMM@
Purpose To set the communication port to echo back to the sending device.

Syntax 8=C464A�# B4C427>>=A4032><</�?>AC=D<�BC0C4�

8=C464A�# ?>AC=D<�BC0C4

Description When communicating with a serial device such as a terminal, it is often
necessary to return the data to the sender. In the case of a terminal the data will
be transmitted from its keyboard to the host computer.
SETECHOONREADCOMM@ is used to enable (STATE = 1) or disable
(STATE = 0) the echoing of data. Data that is echoed back to a terminal will be
displayed on its VDU. PORTNUM is a valid port number in the range 1 to 4.

Return value SETECHOONREADCOMM@ returns a positive value if successful or -1 if an
error has occurred.

WRITECOMMDEVICE@
Purpose To write a string to a serial port.

Syntax 8=C464A�# FA8C42><<34E824/�?>AC=D<�BCA8=6�

8=C464A�# ?>AC=D<

270A02C4A���� BCA8=6

Description Use this function to write a string to a serial port that has been opened by a call
to OPENCOMMDEVICE@. PORTNUM must be a valid port number in the range 1
to 4.

Return value The function returns the number of characters written or -1 if an error has
occurred.

FTN77 Library Reference

148

149

18.

Sound

BEEP@ oo

Purpose To output an audible beep.

Syntax BD1A>DC8=4 144?/

SOUND@ oo

Purpose To make an audible sound at the console.

Syntax BD1A>DC8=4 B>D=3/�5A4@D4=2H�C8<4�

8=C464A�! 5A4@D4=2H�C8<4

Description Produces a tone of FREQUENCY hertz for a time measured in ticks. There are
approximately 18 ticks per second.

FTN77 Library Reference DOS

150

151

19.

Storage management

The routines described in this chapter fall into three main categories:

� Provision of a virtual storage heap.

� Control over and information about the virtual memory environment provided by
the DBOS DOS extender.

� A facility to make Fortran scratch files “memory resident”.

The virtual memory heap is located in memory above the stack, and has an initial size
of 100 Megabytes. Since these routines work with addresses, the storage acquired by
these routines must be manipulated by the ‘core’ intrinsics. As with any storage heap,
it is important to avoid excessive fragmentation. This can be achieved by a variety of
strategies, such as allocating blocks of fixed size, or deallocating all allocated storage
at once, so that no ‘holes’ are created. The first fit algorithm is used by the routines.
Block sizes are rounded up to multiples of 4 bytes in size and carry a maximum of a
16-byte overhead. This overhead is reduced when many blocks are allocated and can
be reduced to as little as 4 bytes.

It is not necessary to return allocated storage before a program terminates - this is done
automatically.

For Win32 there are two separate heaps, both 100Mb.

a) A heap used by GET_STORAGE@, RETURN_STORAGE@ and
SHRINK_STORAGE@. This is fully virtual. Pages are provided by the runtime
system in order to fill program page demands. The program may fail if it uses too
much of the address space allocated, if the physical resources n the system are not
sufficient to satisfy the program’s demands. This is the same as under DBOS.

b) A C/C++ heap used by malloc, new etc. in order to provide physical (committed)
pages. Memory allocated from this heap is guaranteed to be available.

FTN77 Library Reference

152

For both DBOS and Win32, memory allocated by GET_STORAGE@ should not be
returned using free or delete. Similarly, memory allocated using malloc or new should
not be returned using RETURN_STORAGE@.

FREE_SPACE_AVAILABLE@ oo

Purpose To obtain the amount of free memory in the system.

Syntax 8=C464A�# 5D=2C8>= 5A44NB?024N0E08;01;4/��

Return value The value returned is the number of bytes available in free memory pages.

FREE_VIRTUAL_PAGES@ oo

Purpose To free memory for reuse.

Syntax BD1A>DC8=4 5A44NE8ACD0;N?064B/�033A�=�

8=C464A�# 033A�=

Description This routine provides the capability to reuse memory that is no longer needed.
You may, for example, have a large array that is used in a calculation and is then
not needed for the rest of the program. This function allows the memory taken
by the array to be freed and used for some other purpose. The routine should be
used with care, the freed array is still accessible but it will contain random
values. ADDR is the address of the memory to free, N is the size in bytes.

It is not necessary to use this routine with memory allocated with
GET_STORAGE@, the memory taken will be passed back to the system with
the corresponding RETURN_STORAGE@ call.

Example

BD1A>DC8=4 F0BC4N<4<>AH

8=C464A�# 0� ������

B0E4 0

���

2 2>D;3 DB4 0� �� F4 0A4 02CD0;;H ?0BB8=6 0 A454A4=24

20;; 5A44NE8ACD0;N?064B/�0� ������#�

4=3

Chapter 19 Storage management

153

GET_MEMORY_INFO@ oo

Purpose To obtain information about the memory.

Syntax BD1A>DC8=4 64CN<4<>AHN8=5>/�=? �=?!�=?"�=?#�=?$�=?%�=?&�

8=C464A�# =? �=?!�=?"�=?#�=?$�=?%�=?&

Description Obtains information about the amounts of various sorts of memory in the system.
The size of a page is 4096 bytes.

NP1 = Total available pages beneath 640K (DOS memory)
NP2 = Total available pages above 1 Megabyte (extended memory)
NP3 = Remaining DOS pages
NP4 = Remaining extended pages
NP5 = Total disk swap pages
NP6 = Remaining disk swap pages
NP7 = Number of page turns since program start

A page turn is defined as the process whereby useful data is removed from
memory to make way for something else. A program will generate no page turns
if it is executed with sufficient memory.

GET_STORAGE@
Purpose To get a block of storage of size N bytes from the storage heap.

Syntax BD1A>DC8=4 64CNBC>A064/�033A�=�

8=C464A�# 033A�=

Description ADDR is returned as the address of the first byte of the block. Under DBOS a
returned value of -1 indicates that there is insufficient contiguous storage to
create the block. Under Win32 a returned value of zero indicates that there is
insufficient contiguous storage to create the block.

FTN77 Library Reference

154

Notes The heap used by 64CNBC>A064/� A4CDA=NBC>A064/ and
B7A8=:NBC>A064/ is fully virtual. Pages are provided by the runtime system
to satisfy the program’s page demands. The program may fail if it uses too much
of the address space allocated or if the physical resources on the system are not
sufficient to satisfy the program’s demands.

Memory allocated using 64CNBC>A064/ should be returned using
A4CDA=NBC>A064/� The C function free and the C++ operator delete can not
be used for this purpose.

GET_STORAGE1@ oo

Purpose To get a block of storage from the storage heap.

Syntax BD1A>DC8=4 64CNBC>A064 /�033A�=�

8=C464A�# 033A�=

Description Gets a block of storage of at least size N bytes from the storage heap. ADDR is
returned as the address of the first byte of the block or -1 (for DBOS, zero for
Win32) if there is insufficient contiguous storage to create the block. This
routine never splits a contiguous area of storage. N is returned with the actual
size of block allocated.

One use of this is to allocate a block using GET_STORAGE1@ for storing
data whose size you do not know in advance, and then using
SHRINK_STORAGE@ to set the block to the size required when all the data
has been collected.

Notes See GET_STORAGE@.

LARGEST_BLOCK_AVAILABLE@ oo

Purpose To obtain the size of the largest free block in the storage heap.

Syntax BD1A>DC8=4 ;0A64BCN1;>2:N0E08;01;4/�0<>D=C�

8=C464A�# 0<>D=C

Description AMOUNT is returned as the size required. The value does not indicate that there
is enough physical memory to allocate this amount. This block can be obtained
by calling GET_STORAGE@.

Chapter 19 Storage management

155

MEMORY_AVAILABLE@ oo

Purpose To get the total size of available heap space.

Syntax BD1A>DC8=4 <4<>AHN0E08;01;4/�0<>D=C�

8=C464A�# 0<>D=C

Description AMOUNT is returned as the size required. The value does not indicate that there
is enough physical memory to allocate this amount. Calls to
GET_STORAGE@ can be used to obtain pieces of this space.

RETURN_STORAGE@
Purpose To return a block of storage.

Syntax BD1A>DC8=4 A4CDA=NBC>A064/�033A�

8=C464A�# 033A

Description Returns a block of storage previously allocated by one of the storage
management routines. ADDR must be the address of the start of the storage
block to be returned.

SET_PAGES_RESERVE@ oo

Purpose To warn of a limited page reserve.

Syntax BD1A>DC8=4 B4CN?064BNA4B4AE4/�=�

8=C464A�# =

Description Specifies that the system should generate the fault “Down to pages reserve” (or
take a trap) when the total number of pages remaining in store or on the disk has
dropped to N.

SET_TRAP_ON_PAGE_TURN@ oo

Purpose To warn of the first page turn.

Syntax BD1A>DC8=4 B4CNCA0?N>=N?064NCDA=/

FTN77 Library Reference

156

Description Specifies that the system should generate the fault “Down to pages reserve” (or
take a trap) when the first page turn is generated. This routine uses
SET_PAGES_RESERVE@. A typical use for this routine would be in a
program package which you do not want to run slowly due to page swapping.
By using SET_TRAP@ to trap the event you could ensure that, if the package
is run on a machine with insufficient memory, a suitable diagnostic will be
generated.

SHRINK_STORAGE@
Purpose To shrink a block of storage.

Syntax BD1A>DC8=4 B7A8=:NBC>A064/�033A�=�

8=C464A�# 033A�=

Description Shrinks a block of storage previously allocated by one of the storage
management routines. ADDR must be the address of the start of the storage
block whose size is to be adjusted. N is the new size of the block. This routine
cannot be used to enlarge a storage block.

USE_STORAGE@ oo

Purpose To offer additional memory to the storage heap.

Syntax BD1A>DC8=4 DB4NBC>A064/�033A�=�

8=C464A�# 033A�=

Description ADDR is the address of the memory (e.g. the address of an array in common)
and N is the number of bytes being offered.

Notes Once memory has been given to the storage heap in this way it must not be
referenced in any other way.

Example
2 C78B ?A>6A0< F8;; 4=;0A64 C74 BC>A064 <0? C> !� <1HC4B

2 20;;B C> 64CNBC>A064/ 4C2� F8;; 5>;;>F ;0C4A

270A02C4A G� ��������

2><<>=�740?�G

20;; DB4NBC>A064/�;>2�G�� ��������

Chapter 19 Storage management

157

USE_VIRTUAL_SCRATCH_FILES@ nn

Purpose To enable or disable the virtual scratch file facility.

Syntax BD1A>DC8=4 DB4NE8ACD0;NB2A0C27N58;4B/�>?C8>=�

;>6820;�! >?C8>=

Description Enables or disables (according to whether OPTION is true or false) the virtual
scratch file facility. When enabled, any scratch file which is created by an
OPEN statement (STATUS=’SCRATCH’) will be held in virtual memory and
never explicitly written to disk. This routine provides a simple way to accelerate
programs which were written for a small address space (640K) and which
consequently write data out to temporary files. Even if some of the data ends up
being paged to disk the use of this routine will usually give substantial
performance gains. It is the user’s responsibility to ensure that there is sufficient
memory (real and/or virtual) to accommodate the files. Currently no one file may
exceed 41 Megabytes in size.

If you are writing software to run in a variety of environments it may be useful to
call GET_MEMORY_INFO@ in order to decide whether to call this routine.

Note that, once created, a virtual scratch file does not change type if the virtual
scratch file facility is turned off. Equally, existing ordinary scratch files are not
affected by a call to this routine. This means that it is possible to force some
scratch files to use virtual memory, while others are still written to disk.

FTN77 Library Reference

158

159

20.

System information

DBOS_VERSION@ oo

Purpose To get the current DBOS version number.

Syntax BD1A>DC8=4 31>BNE4AB8>=/�E4AB8>=�

270A02C4A�% E4AB8>=

Description VERSION is returned as the version number of DBOS that the current program
is running under (not necessarily the version the program was compiled with).
The result is a character string to allow version numbers of the form 1.23. This
routine was added at version 2.60, so it may be wise to test the presence of the
routine with a call to DYNT@.

DOSPARAM@
Purpose To get a DOS environment parameter value.

Syntax BD1A>DC8=4 3>B?0A0</�?0A0<�E0;D4�

270A02C4A���� ?0A0<�E0;D4

Description This routine returns the value VALUE of a DOS parameter PARAM, which
has been set using the DOS SET command. This can be very useful while
creating environments in which programs are controlled by global information set
up in batch files.

Example After the DOS command

B4C 58;4=0<4,5A43

has been executed, the following would open the file FRED:

FTN77 Library Reference

160

270A02C4A�$� 58;4

20;; 3>B?0A0</�´58;4=0<4´�58;4�

>?4=�58;4,58;4�D=8C,%�

DYNT@ oo

Purpose To test for the presence of a system routine.

Syntax BD1A>DC8=4 3H=C/�=0<4�A4BD;C�

270A02C4A���� =0<4

8=C464A�# A4BD;C

Description DYNT@ tests to see if NAME is the name of a system routine or a routine in an
active dynamic link library.

If it is, RESULT is set to the address of the routine, otherwise it is set to zero.
NAME may be in upper or lower case.

DYNT1@ oo

Purpose To test for the presence of a user routine.

Syntax BD1A>DC8=4 3H=C /�=0<4�A4BD;C�

270A02C4A���� =0<4

8=C464A�# A4BD;C

Description DYNT1@ tests to see if NAME is the name of a routine in the user’s program.
If it is, RESULT is set to the address of the routine, otherwise it is set to zero.
NAME may be in upper or lower case.

GET_COPROCESSOR_ENVIRONMENT@ oo

Purpose To obtain the types of processors available on the system.

Syntax BD1A>DC8=4 64CN2>?A>24BB>AN4=E8A>=<4=C/�:�

8=C464A�! :

Description This routine returns a bit significant result indicating the type(s) of coprocessor
available on the system thus:

Chapter 20 System information

161

bit value functionality

1 287 functionality

2 387 functionality

4 1167 Weitek functionality

8 3167 Weitek functionality

64 386 or 486 processor

128 Pentium processor

If bit 1 (bit value 2) is set then bit 0 will be also. Likewise if bit 3 is set so bit 2
will also be set.

GET_CURRENT_FORTRAN_IO@
Purpose To access the state of the current Fortran I/O unit.

Syntax BD1A>DC8=4 64CN2DAA4=CN5>ACA0=N8>/�D=8C�A42�A42;�BC0CDB�

� =1HC4B�

8=C464A�! D=8C�BC0CDB

8=C464A�# A42�A42;�=1HC4B

Description This routine supersedes GET_CURRENT_FORTRAN_UNIT@. This allows
a Fortran device driver (set up with the DEVICE= keyword - see page 113 of the
FTN77 User’s Guide) to access the state of the current unit. This is useful when
a device driver is attached to multiple units. The current unit is returned in
UNIT, the current record in REC and the current record length in RECL.
NBYTES is filled with the number of bytes to read/write.

STATUS is filled thus:

Bit-0 set for FORMATTED, unset for UNFORMATTED I/O,
Bit-1 set for DIRECT, unset for SEQUENTIAL access.

FTN77 Library Reference

162

GET_CURRENT_FORTRAN_UNIT@
Purpose To get the unit number for the current I/O operation.

Syntax BD1A>DC8=4 64CN2DAA4=CN5>ACA0=ND=8C/�D=8C�

8=C464A�! D=8C

Description This routine is useful in device drivers (using the DEVICE= I/O keyword) which
are to be attached to more than one Fortran stream.

GETENV@ rr

Purpose To get an environment variable.

Syntax 270A02C4A���� 5D=2C8>= 64C4=E/�E0A801;4�

270A02C4A���� E0A801;4

Return value Returns the value of the specified environment variable.

163

21.

Text screen/keyboard

The routines in this chapter provide facilities for screen and keyboard I/O and control.
Note that routines which control the graphics aspects of the screen are described in
chapters 7 and 8.

While the routines described here are nominally for screen and keyboard, they can
more accurately be described as for standard output and standard input. As such,
DOS I/O redirection will work for these routines.

Certain subroutines which display text on the screen require colour information for the
text. This information appears as the least significant 8 bits of an integer
(INTEGER*2) as follows:

1Xc & % $ # " ! �

U Q Q Q c c c c

U � bTc U^a U[PbWX]V cTgc

QQQ � QPRZVa^d]S R^[^da �QTcfTT] � P]S &�

cccc � cTgc R^[^da �QTcfTT] � P]S $�

For a list of the colour numbers see page 45. For example, to give flashing red text
(colour 4) on a green background (colour 2) the attribute is

1*128 + 2*16 + 4 = 161

that is (f)*128 + (bbb)*16 + (tttt) where 128 and 16 are the appropriate offsets.

FTN77 Library Reference

164

COU@
Purpose To output text to the screen with a new line.

Syntax BD1A>DC8=4 2>D/�0�

270A02C4A���� 0

Description COU@ takes the message length (which must be less than 1024 characters)
from its character argument A.

See also COUA@, COUP@, SOU@, SOUA@.

Example

20;; 2>D/�´\TbbPVT c^ bRaTT]´�

4=3

COUA@
Purpose To output text to the screen without a new line.

Syntax BD1A>DC8=4 2>D0/�0�

270A02C4A���� 0

Description COUA@ takes the message length (which must be less than 1024 characters)
from its character argument A. This is useful as a prompt or as part of a
sequence of calls which build up a line on the screen.

See also COU@, COUP@, SOU@, SOUA@.

Example

20;; 2>D0/�´T]cTa]d\QTa ^U bP_[Tb) ´�

A403 ��=

� � �

COUP@ oo

Purpose To output text to a given screen position.

Syntax BD1A>DC8=4 2>D?/�BCA8=6�0CCA81DC4�82>;�8A>F�

270A02C4A���� BCA8=6

8=C464A�! 0CCA81DC4�82>;�8A>F

Chapter 21 Text screen/keyboard

165

Description COUP@ writes STRING at position (ICOL,IROW) relative to (0,0) at the top
left of the screen, with the colour information ATTRIBUTE (see the introduction
to this chapter). COUP@ takes the message length (which must be less than
1024 characters) from its character argument STRING.

See also COU@, COUA@, SOU@, SOUA@.

Example

2 2>;>DA & 8B F78C4

20;; 2>D?/�´8= C74 <833;4´�&�"$� !�

DOS_KEY_WAITING@ oo

Purpose To test if the keyboard buffer is empty.

Syntax ;>6820;�! 5D=2C8>= 3>BN:4HNF08C8=6/��

Description This routine is identical to KEY_WAITING@ except that this routine respects
DOS redirection.

Return value DOS_KEY_WAITING@ returns .TRUE. if there is a key waiting to be read
from the keyboard buffer, .FALSE. if not.

ECHO_INPUT@ oo

Purpose To control the echoing of text from standard input.

Syntax BD1A>DC8=4 427>N8=?DC/�BC0C4�

;>6820;�! BC0C4

Description By default text is echoed to standard output. If STATE is given the value
.TRUE. then echoing is performed, if it is .FALSE. then echoing is not
performed.

ERRCOU@ rr

Purpose To output text to the standard error device.

Syntax BD1A>DC8=4 4AA2>D/�BCA8=6�

270A02C4A���� BCA8=6

FTN77 Library Reference

166

Description ERRCOU@ outputs text followed by a new line taking the message length from
its character argument STRING.

ERRCOUA@ rr

Purpose To output text to the standard error device.

Syntax BD1A>DC8=4 4AA2>D0/�BCA8=6�

270A02C4A���� BCA8=6

Description ERRCOUA@ outputs text (without a new line) taking the message length from
its character argument STRING. This is useful as a prompt or as part of a
sequence of calls which build up a line on the screen.

ERRNEWLINE@ rr

Purpose To write a newline to the standard error device.

Syntax BD1A>DC8=4 4AA=4F;8=4/

ERRSOU@ rr

Purpose To output text to the standard error device.

Syntax BD1A>DC8=4 4AAB>D/�BCA8=6�

270A02C4A���� BCA8=6

Description ERRSOU@ outputs text from the character argument STRING to standard
error omitting any trailing blanks, and outputing a new line.

ERRSOUA@ rr

Purpose To output text to the standard error device.

Syntax BD1A>DC8=4 4AAB>D0/�BCA8=6�

270A02C4A���� BCA8=6

Description ERRSOUA@ outputs text from the character argument STRING to standard

Chapter 21 Text screen/keyboard

167

error omitting any trailing blanks. Does not output a new line.

GET_CURSOR_POS@ oo

Purpose To get the co-ordinates of the text cursor.

Syntax BD1A>DC8=4 64CN2DAB>AN?>B/�87�8E�

8=C464A�! 87�8E

Description This subroutine gets the horizontal position IH and the vertical position IV of the
console screen text cursor. If the screen has 80x25 character positions then the
range of IH is 0..79 and the range of IV is 0..24 with (0,0) at the top left-hand
corner.

See also SET_CURSOR_POS@.

GET_DOS_KEY@ oo

Purpose To get the next keycode.

Syntax BD1A>DC8=4 64CN3>BN:4H/�:�

8=C464A�! :

Description This routine is similar to GET_KEY@ except that DOS redirection is
respected.

GET_DOS_KEY1@ oo

Purpose To get the waiting keycode.

Syntax BD1A>DC8=4 64CN3>BN:4H /�:�

8=C464A�! :

Description This routine is similar to GET_KEY1@ except that DOS redirection is
respected.

FTN77 Library Reference

168

GET_EXTENDED_CHAR@ oo

Purpose To get the waiting two-byte keycode.

Syntax BD1A>DC8=4 64CN4GC4=343N270A/�:�

8=C464A�! :

Description This subroutine gets a two-byte keycode from the keyboard. If the buffer is not
empty then K is read and removed from the buffer. If the buffer is empty then K
is set to zero and the function does not wait for a keyboard input. The high byte
is the scan code for the key whilst the low byte is the ASCII value. Sometimes it
is simpler to use the function GET_KEY@ which returns the keycode in a
different form.

Example

20;; 64CN4GC4=343N270A/�:�

85�:�4@�I´"1��´�C74=

?A8=C ��´5 :Th _aTbbTS´

4;B485�:�4@�I´ "2´�C74=

)

)

4=385

GET_KEY@
Purpose To get the next keycode.

Syntax BD1A>DC8=4 64CN:4H/�:�

8=C464A�! :

Description This subroutine gets a keycode from the keyboard. If the buffer is not empty
then a value is read and removed from the buffer. If the buffer is empty then the
function waits for a keyboard input. The value of K assigned such that if the
high byte is equal to 0 then the low byte is the ASCII value for the key pressed.
If the high byte is equal to 1 then the low byte is the scan code for a Function key
or an ALT key combination (the scan code is then K-256).

See also GET_KEY1@, GET_DOS_KEY@, GET_DOS_KEY1@,
KEY_WAITING@, GET_KEY_OR_YIELD@.

Example

Chapter 21 Text screen/keyboard

169

20;; 64CN:4H/�:�

85�:�4@�I´ "1´�C74=

?A8=C ��´5 :Th _aTbbTS´

4;B485�:�4@�I´ "2´�C74=

)

)

4=385

GET_KEY1@ oo

Purpose To get the waiting keycode.

Syntax BD1A>DC8=4 64CN:4H /�:�

8=C464A�! :

Description GET_KEY1@ is the same as GET_KEY@ except that it does not wait for a
key to be pressed when the buffer is empty. In this situation K is set to zero.

Example

20;; 64CN:4H /�:�

2 4]bdaT P ZTh WPb QTT] _aTbbTS

85�:�4@���6>C> ��

85�:�4@�I´ "1´�C74=

?A8=C ��´5 :Th _aTbbTS´

4;B485�:�4@�I´ "2´�C74=

)

)

4=385

GETCL@ oo

Purpose To get a line of text from the keyboard.

Syntax BD1A>DC8=4 64C2;/�2�;2�

270A02C4A���� 2

8=C464A�! ;2

Description This routine waits until the next line is typed at the keyboard, and returns it in C.
LC is set to the length of the line.

Example

FTN77 Library Reference

170

270A02C4A� � 0=B

8=C464A�! ;2

 20;; 2>D0/�´Ch_T BC>? ^a 6> ´�

20;; 64C2;/�0=B�;�

20;; D?20B4/�0=B�

85�0=B�4@�´BC>?´�6>C> �

85�0=B�4@�´6>´�6>C> !�

6>C>

� � �

HIDE_CURSOR@ oo

Purpose To hide the text cursor.

Syntax BD1A>DC8=4 7834N2DAB>A/

Description HIDE_CURSOR@ records the current shape of the cursor and removes it from
the screen. A subsequent call to RESTORE_CURSOR@ will return the
cursor. This routine is often useful while processing windows in which the
cursor is an irrelevance.

KEY_WAITING@ oo

Purpose To test if the keyboard buffer is empty.

Syntax ;>6820;�! 5D=2C8>= :4HNF08C8=6/��

Return value KEY_WAITING@ returns .TRUE. if there is a key waiting to be read from the
keyboard, .FALSE. if not.

See also DOS_KEY_WAITING@.

Example

;>6820; :4HNF08C8=6/

)

)

85�:4HNF08C8=6/���C74=

20;; 64CN:4H/�:4H�

20;; ?A>24BB�:4H�

4=385

4=3

Chapter 21 Text screen/keyboard

171

NEWLINE@
Purpose To write a carriage return/linefeed to the screen (standard output).

Syntax BD1A>DC8=4 =4F;8=4/

PRINT_BYTES@
Purpose To write a sequence of hexadecimal values.

Syntax BD1A>DC8=4 ?A8=CN1HC4B/�80AA�=�

8=C464A�! 80AA����=

Description PRINT_BYTES@ writes N bytes of datum IARR in hexadecimal to standard
output, separating each byte value by a space, with no terminating new line.

PRINT_BYTES_R@
Purpose To write a hexadecimal sequence in reverse order.

Syntax BD1A>DC8=4 ?A8=CN1HC4BNA/�80AA�=�

8=C464A�! 80AA����=

Description This routine is similar to PRINT_BYTES@, but the bytes are written in reverse
order.

PRINT_HEX1@
Purpose To print a 1 byte hexadecimal number (2 digits) without a new line.

Syntax BD1A>DC8=4 ?A8=CN74G /�;�

8=C464A� ;

FTN77 Library Reference

172

PRINT_HEX2@
Purpose To print a 2 byte hexadecimal number (4 digits) without a new line.

Syntax BD1A>DC8=4 ?A8=CN74G!/�;�

8=C464A�! ;

PRINT_HEX4@
Purpose To print a 4 byte hexadecimal number (8 digits) without a new line.

Syntax BD1A>DC8=4 ?A8=CN74G#/�;�

8=C464A�# ;

PRINT_I1@
Purpose To print an INTEGER*1 decimal number without a new line.

Syntax BD1A>DC8=4 ?A8=CN8 /�8�

8=C464A� 8

PRINT_I2@
Purpose To print an INTEGER*2 decimal number without a new line.

Syntax BD1A>DC8=4 ?A8=CN8!/�8�

8=C464A�! 8

PRINT_I4@
Purpose To print an INTEGER*4 decimal number without a new line.

Syntax BD1A>DC8=4 ?A8=CN8#/�;�

8=C464A�# ;

Chapter 21 Text screen/keyboard

173

PRINT_R4@
Purpose To print a REAL*4 value as a number without a new line.

Syntax BD1A>DC8=4 ?A8=CNA#/�A�

A40;�# A

PRINT_R8@
Purpose To print a REAL*8 value as a number without a new line.

Syntax BD1A>DC8=4 ?A8=CNA'/�A�

A40;�' A

READ_EDITED_LINE@ oo

Purpose To input text from a screen position.

Syntax BD1A>DC8=4 A403N438C43N;8=4/�;8=4�7?�E?�0CCA81DC4�82�

270A02C4A���� ;8=4

8=C464A�! 7?�E?�0CCA81DC4�82

Description READ_EDITED_LINE@ provides a user friendly text input function for the
screen.

LINE contains the default string which is initially displayed on the screen. It
may then be edited by using any of the standard line editing key strokes. If the
cursor is not repositioned before editing the string then the input string is deleted
on the screen.

(HP,VP) provide the character position of the string relative to the top left of the
screen. ATTRIBUTE provides the colour of the text and its background (see the
introduction to this chapter). Before editing, the colour of the string is reversed.

The subroutine yields a value IC = -1, if the Esc key was pressed to end the edit
rather than Enter. Otherwise IC = 0.

FTN77 Library Reference

174

RESTORE_CURSOR@ oo

Purpose To show the text cursor.

Syntax BD1A>DC8=4 A4BC>A4N2DAB>A/

Description RESTORE_CURSOR@ restores a cursor which has been hidden by a call to
HIDE_CURSOR@. It should only be used after such a call.

SET_CURSOR_POS@ oo

Purpose To set the co-ordinates of the text cursor.

Syntax BD1A>DC8=4 B4CN2DAB>AN?>B/�87�8E�

8=C464A�! 87�8E

Description This subroutine sets the horizontal position IH and the vertical position IV of the
console screen text cursor. If the screen has 80x25 character positions then the
range of IH is 0..79 and the range of IV is 0..24 with (0,0) at the top left-hand
corner.

See also GET_CURSOR_POS@.

SET_CURSOR_TYPE@ oo

Purpose To set the shape of the text cursor.

Syntax BD1A>DC8=4 B4CN2DAB>ANCH?4/�CH?4�

8=C464A�! CH?4

Description This subroutine sets the shape of the text cursor according to the value of TYPE.
The cursor is rectangular and is made up of a number of scan lines (the number
depending on the graphics adapter) numbered from the top which is line number
zero. The high byte of TYPE is set to the starting scan line and the low byte is
set to the ending scan line.

TYPE=Z’0607’ is often the default setting for a colour/ graphics adapter.

Chapter 21 Text screen/keyboard

175

SOU@
Purpose To output text with a new line, omitting any trailing blanks.

Syntax BD1A>DC8=4 B>D/�0�

270A02C4A���� 0

Description SOU@ writes to the screen from the character argument A. It is identical to
COU@ except that the cursor will not scan over any trailing blanks.

See also COU@, COUA@, COUP@, SOUA@.

SOUA@
Purpose To output text without a new line, omitting any trailing blanks.

Syntax BD1A>DC8=4 B>D0/�0�

270A02C4A���� 0

Description SOUA@ writes to the screen from the character argument A omitting any
trailing blanks. It is like SOU@ but does not output a new line.

See also COU@, COUA@, COUP@, SOU@.

Example

270A02C4A�!� 5A43

� � �

20;; 2>D0/�´dbX]V cWT UPRc cWPc 5A43,´�

20;; B>D0/�5A43�

20;; 2>D0/�´ T]cTa cWT eP[dT ^U =) ´�

A403 ��=

� � �

FTN77 Library Reference

176

177

22.

Text windows (DOS)

This chapter describes routines which implement text mode windowing. Any positional
arguments (HP, VP, HS, VS) are text screen relative (i.e. character positions), with
position (0,0) being the top left-hand corner of the screen. HANDLE is an identifier
given a value when a window is first created and used subsequently. It is analogous to
a DOS file handle. Text is written to a window (using WCOU@ or WCOUP@, not
WRITE or PRINT) with a given attribute (colour) IAT as described in the introduction
to chapter 21. IAT=-1 implies the use of a default attribute which is assigned when the
window is created.

The following routines work equally well when the screen is in graphics mode with the
exception that window shadows are not available.

The FTN77 library does not provide direct support for graphics windows, although
routines such as GET_SCREEN_BLOCK@ and RESTORE_SCREEN_BLOCK@
allow users to implement their own graphics windowing system.

CONCEALW@ oo

Purpose To move a window to the bottom of the stack.

Syntax BD1A>DC8=4 2>=240;F/�70=3;4�

8=C464A�! 70=3;4

Description This routine moves a text window to the bottom of the stack, making it the least
visible. If only one window has been created, then CONCEALW@ will hide it.

See also WCREATE@, POPW@, MOVEW@.

FTN77 Library Reference DOS

178

KILLW@ oo

Purpose To remove a text window.

Syntax BD1A>DC8=4 :8;;F/�70=3;4�

8=C464A�! 70=3;4

Description KILLW@ removes a text window created by WCREATE@ from the system
freeing the associated memory and disassociating the handle.

See also WCREATE@.

MOVEW@ oo

Purpose To change the position of a window on the screen.

Syntax BD1A>DC8=4 <>E4F/�70=3;4�7?�E?�

8=C464A�! 70=3;4�7?�E?

Description This routine moves a text window so that its top left hand corner is at the
specified position (HP,VP) relative to the top left of the screen. The routine
removes the window and redraws it at the new position.

See also WCREATE@.

POPW@ oo

Purpose To move a window to the top of the stack.

Syntax BD1A>DC8=4 ?>?F/�70=3;4�

8=C464A�! 70=3;4

Description POPW@ moves a text window to the top of the stack making it the most visible.
When a window is created, it must be popped to make it visible even if it is the
only one that has been created.

See also WCREATE@, CONCEALW@, MOVEW@.

Chapter 22 Text windows (DOS)

179

SCROLL_DOWN@ and SCROLL_UP@ oo

Purpose To scroll text in a window.

Syntax BD1A>DC8=4 B2A>;;N3>F=/�70=3;4�

BD1A>DC8=4 B2A>;;ND?/�70=3;4�

8=C464A�! 70=3;4

Description These routines scroll the text in a given window one line at a time with re-display
on each call. Text that is scrolled out of a window cannot be recovered by a call
to the other function in the pair.

SET_CURSOR_POSW@ oo

Purpose To set the cursor position for a text window.

Syntax BD1A>DC8=4 B4CN2DAB>AN?>BF/�70=3;4�7?�E?�

8=C464A�! 70=3;4�7?�E?

Description This routine sets the position of the text cursor in a window to (HP,VP) relative
to the top left of the window.

See also WCREATE@, WCOUP@, WCOU@.

WBORDER@ oo

Purpose To set the border style for a text window.

Syntax BD1A>DC8=4 F1>A34A/�70=3;4�1>A34A�

8=C464A�! 70=3;4�1>A34A

Description The WBORDER@ routine selects the border style BORDER for the window
with handle HANDLE as follows.

FTN77 Library Reference DOS

180

BORDER style

0 Empty spaces as border

1 Double horizontal and vertical lines (the default)

2 Single horizontal and vertical lines

3 Double horizontal and single vertical lines

4 Single horizontal and double vertical lines

5 Thick horizontal and vertical lines

See also WCREATE@, WDBORDER@.

WCLEAR@ oo

Purpose To clear a text window

Syntax BD1A>DC8=4 F2;40A/�70=3;4�

8=C464A�! 70=3;4

Description WCLEAR@ clears a window to the background colour and border supplied to
WCREATE@.

WCOU@ oo

Purpose To write text to a window.

Syntax BD1A>DC8=4 F2>D/�2�80C�70=3;4�

270A02C4A���� 2

8=C464A�! 80C�70=3;4

Description WCOU@ writes the string C to the given window. Each call of WCOU@
begins a new line with the first call writing to the first line of the window. IAT
provides the colour attributes of the text and its background (see the introduction
to chapter 21).

See also SET_CURSOR_POSW@, WCOUP@.

Chapter 22 Text windows (DOS)

181

WCOUP@ oo

Purpose To write text to a window position.

Syntax BD1A>DC8=4 F2>D?/�2�80C�7?�E?�70=3;4�

270A02C4A���� 2

8=C464A�! 80C�70=3;4

8=C464A�! 7?�E?

Description WCOUP@ writes a string C to the window at the position (HP,VP) relative to
the top left of the window. IAT provides the colour attributes of the text and its
background (see the introduction to chapter 21).

See also SET_CURSOR_POSW@, WCOU@.

WCREATE@ oo

Purpose To create a text window.

Syntax BD1A>DC8=4 F2A40C4/�7?�E?�7B�EB�80C�70=3;4�

8=C464A�! 70=3;4�80C

8=C464A�! 7?�E?�7B�EB

Description WCREATE@ yields a handle HANDLE for a text window with top left corner
at (HP,VP) measured in character positions with (0,0) at the top left of the
screen. HS and VS provide the width and height (in characters) of the window.
The input value for the colour attribute IAT sets the border colour (which is also
the default text colour) and the background colour for the window (see the
introduction to chapter 21). The window must be popped (see POPW@) to
make it visible.

See also KILLW@.

WDBORDER@ oo

Purpose To set the default border style for all subsequent text windows created.

Syntax BD1A>DC8=4 F31>A34A/�1>A34A�

8=C464A�! 1>A34A

FTN77 Library Reference DOS

182

Description This routine selects the default border style for all text windows that will be
created. BORDER has the same meaning as in WBORDER@.

See also WCREATE@, WBORDER@.

WDSHADOW@ oo

Purpose To set the default shadow style for all subsequent text windows created.

Syntax BD1A>DC8=4 F3B703>F/�B703>F�

8=C464A�! B703>F

Description This routine selects the default shadow style for all text window that will be
created. SHADOW has the same meaning as in WSHADOW@.

See also WCREATE@, WSHADOW@.

WMEMORY@ oo

Purpose To get the memory pointer for a text window.

Syntax BD1A>DC8=4 F<4<>AH/�70=3;4�?CA�

8=C464A�! 70=3;4

8=C464A�# ?CA

Description WMEMORY@ returns the memory pointer PTR to a window.

WREAD_EDITED_LINE@ oo

Purpose To input text from a window position.

Syntax BD1A>DC8=4 FA403N438C43N;8=4/�;8=4�7?�E?�70=3;4�80C�82�

270A02C4A���� ;8=4

8=C464A�! 7?�E?�70=3;4�80C�82

WREAD_EDITED_LINE@ provides a user friendly text input routine for use
with the text windowing system.

LINE contains the default string which is initially displayed on the screen. It
may then be edited by using any of the standard line editing key strokes. If the

Chapter 22 Text windows (DOS)

183

cursor is not repositioned before editing the string then the input string is deleted
on the screen.

(HP, VP) provide the character position of the string relative to the top left of the
window. IAT provides the colour attributes of the text and its background (see
the introduction to chapter 21). Before editing, the colour of the string is
reversed.

Description The routine yields a value IC = -1, if the Esc key was pressed to end the edit
rather than Enter. Otherwise IC = 0.

WSHADOW@ oo

Purpose To set the shadow style for a text window.

Syntax BD1A>DC8=4 FB703>F/�70=3;4�B703>F�

8=C464A�! 70=3;4�B703>F

Description The WSHADOW@ routine selects the shadow style SHADOW for the window
with handle HANDLE as follows. The shadow is a row and column,
respectively below and to the right of the window, offset one character. The style
of the shadow is formed by changing the text/background attribute of the
corresponding character. The colours 7 and 0 refer to the palette register
numbers for the default text and background colours which are usually white and
black (see SET_PALETTE@ for details).

SHADOW style

0 No shadow (the default)

1 Intense bit of background attribute turned off

2 Text colour = 7, background colour = 0

3 No text, solid colour = 0

4 No text, chequered colour 7 on colour 0

5 No text, solid colour = 7

See also WCREATE@, WDSHADOW@.

FTN77 Library Reference DOS

184

WTITLE@ oo

Purpose To assign a title to a text window.

Syntax BD1A>DC8=4 FC8C;4/�70=3;4�2�80C�

270A02C4A���� 2

8=C464A�! 80C�70=3;4

Description The WTITLE@ routine assigns a title to the window with handle HANDLE. C
is the string to be used as a title. If the string is wider than the window then it is
cut short. IAT provides the colour of the text and its background as in
WCREATE@. If IAT = -1, the default values for the text and its background
are supplied (see WCREATE@).

185

23.

Time and date

CLOCK@
Purpose To get a time in seconds.

Syntax BD1A>DC8=4 2;>2:/�A�

A40;�# A

Description This routine is usually used to time a process as shown in the example below.

Notes It should not be used to time processes under DESQview as it returns elapsed
time, which is not CPU time, if multiple windows are in use.

See also DCLOCK@, HIGH_RES_CLOCK@, SECONDS_SINCE_1980@.

Example

20;; 2;>2:/�BC0AC�

� � �

2 b^\T RP[Rd[PcX^]

� � �

20;; 2;>2:/�58=8B7�

?A8=C ��´T[P_bTS cX\T dbTS , ´�58=8B7�BC0AC

4=3

CONVDATE@ rr

Purpose To get the date in numeric form.

Syntax BD1A>DC8=4 2>=E30C4/�B42B�83F�830H�8<>=C7�8H40A�

8=C464A�# B42B

FTN77 Library Reference

186

8=C464A�! 83F�830H�8<>=C7�8H40A

Description Converts SECS into a day of the week, IDW (0 = Sunday) and the day, month
and year.

DATE@
Purpose To get the date in the form MM/DD/YY (American format).

Syntax 270A02C4A�' 5D=2C8>= 30C4/��

See also EDATE@, FDATE@.

Example

270A02C4A�' 30C4/

?A8=C ��´_a^VaP\ ad] ^] ´�30C4/��

DCLOCK@
Purpose To get a time in seconds.

Syntax BD1A>DC8=4 32;>2:/�A�

A40;�' A

Description This routine is usually used to time a process as shown in the example for
CLOCK@. This routine differs from CLOCK@ only in that its argument is
REAL*8. Its main purpose is for use in conjunction with /DREAL, when all
variables declared REAL*4 are actually compiled as REAL*8.

See also HIGH_RES_CLOCK@.

EDATE@
Purpose To get the date in the form DD/MM/YY (European format).

Syntax 270A02C4A�' 5D=2C8>= 430C4/��

See also DATE@, FDATE@.

Chapter 23 Time and date

187

Example

270A02C4A�' 430C4/

?A8=C ��´_a^VaP\ ad] ^] ´�430C4/��

FDATE@
Purpose To get the date in text form.

Syntax 270A02C4A���� 5D=2C8>= 530C4/��

Return value FDATE@ returns the date in the form:
 Thursday February 11, 1988

See also DATE@, EDATE@.

Example

270A02C4A�!� 530C4/

?A8=C ��´?a^VaP\ ad] ^] ´�530C4/��

HIGH_RES_CLOCK@
Purpose To obtain the CPU time accurate to 1 microsecond.

Syntax A40;�' 5D=2C8>= 7867NA4BN2;>2:/�0;86=�

;>6820;�! 0;86=

Description This function returns the CPU time as seconds since midnight accurate to about
1 microsecond (although the cost of the function call is approximately 100
microseconds because it must call DBOS). To achieve this precision the system
clock is reprogrammed in mode 2. This could in principle affect other software,
although we are not aware of any problems. The clock remains programmed in
mode 2 until the system is rebooted. If the ALIGN argument is set .TRUE., this
function will not return until after the next clock tick to help to obtain consistent
timings. Obviously the second of a pair of calls to HIGH_RES_CLOCK@
should have ALIGN set to .FALSE.. Although the function is defined as
REAL*8 it actually returns an 80-bit precision result.

See also DCLOCK@.

FTN77 Library Reference

188

Example

A40;�' C �C!�7867NA4BN2;>2:/

C ,7867NA4BN2;>2:/��CAD4��

20;; B><4N?A>24BB

C!,7867NA4BN2;>2:/��50;B4��

?A8=C ��´CX\T aT`dXaTS , ´�C!�C

4=3

SECONDS_SINCE_1970@
Purpose To get the number of seconds from a fixed date.

Syntax BD1A>DC8=4 B42>=3BNB8=24N (&�/�3A�

A40;�' 3A

Description Returns the value of DR as the number of seconds that have elapsed since
12.00am on 1st January 1970.

SECONDS_SINCE_1980@
Purpose To get the number of seconds from a fixed date.

Syntax BD1A>DC8=4 B42>=3BNB8=24N ('�/�3A�

A40;�' 3A

Description This routine returns the value of DR as the number of seconds that have elapsed
since 12.00am on 1st January 1980. It can be used in a similar way to
CLOCK@ (or DCLOCK@). SECONDS_SINCE_1980@ should be used
when making timings which straddle midnight.

SET_ALARM_CLOCK@ oo

Purpose To set the elapsed time before an alarm.

Syntax BD1A>DC8=4 B4CN0;0A<N2;>2:/�C8<4�

8=C464A�# C8<4

Description After calling this routine an alarm clock event will occur after TIME ticks. You
should have used SET_TRAP@ with a code of 3 to set up an interrupt routine

Chapter 23 Time and date

189

to handle the interrupt.

Example
4GC4A=0; 0;0A<

8=C464A�# @�C82:B

20;; B4CNCA0?/�0;0A<�@�"�

C82:B,$��

20;; B4CN0;0A<N2;>2:/�C82:B�

 ?A8=C ��´C4BC8=6´

6>C>

4=3

8=C4AAD?C BD1A>DC8=4 0;0A<

?A8=C ��´C8<4 D?�´

2 =^cT cWPc cWT ad[Tb ^U X]cTaad_c bdQa^dcX]Tb U^aQXS P aTcda] Ua^\ cWXb

2 _^X]c� bX]RT fT WPeT S^]T P] 8�> ^_TaPcX^] P]S fX[[X] P[[_a^QPQX[Xch

2 QT aTcda]X]V c^ P]^cWTa 8�> bcPcT\T]c� C^ R^]cX]dT fT f^d[S]TTS c^ dbT

2 bdQa^dcX]T 9D<?/

BC>?

4=3

TIME@
Purpose To get the time in the format HH:MM:SS.

Syntax 270A02C4A�' 5D=2C8>= C8<4/��

Example

270A02C4A�' C8<4/

?A8=C ��´_a^VaP\ bcPacX]V TgTRdcX^] Pc ´�C8<4/��

TODATE@ rr

Purpose To convert the time given to a date for the form MM/DD/YY (American format).

Syntax 270A02C4A���� 5D=2C8>= C>30C4/�B42B�

8=C464A�# B42B

FTN77 Library Reference

190

TOEDATE@ rr

Purpose To convert the time given to a date in the format DD/MM/YY (European
format).

Syntax 270A02C4A���� 5D=2C8>= C>430C4/�B42B�

8=C464A�# B42B

TOFDATE@ rr

Purpose To get the date in text form.

Syntax 270A02C4A���� 5D=2C8>= C>530C4/�B42B�

Return value TOFDATE@ returns the date in textual format based on time given in the form:
“Friday January 29, 1993”.

TOTIME@ rr

Purpose To return the time in the form ‘‘HH:MM:SS’’.

Syntax 270A02C4A���� 5D=2C8>= C>C8<4/�B42B�

8=C464A�# B42B

Return value Returns the time corresponding to SECS.

Index-1

Index

A
ACCESS_DETAILS@ routine, 17
ALLOCATE_REAL_MODE_MEMORY@ routine, 136
Allocating storage, 152
ALLOCSTR@ routine, 3
APPEND_STRING@ routine, 3
ATTACH@ routine, 27

B
BEEP@ routine, 149
Bit-handling routines, 1

C
CENTRE@ routine, 4
CHAR_FILL@ routine, 4
Character-handling routines, 3
CHSEEK@ routine, 5
CHSORT@ routine, 15
CISSUE routine, 127
CLEAR_BIT@ routine, 1
CLEAR_FLT_UNDERFLOW@ routine, 18
CLEAR_SCREEN@ routine, 50
CLEAR_SCREEN_AREA@ routine, 50
CLOCK@ routine, 185
CLOSE_GRAPHICS_PRINTER@ routine, 92
CLOSE_PLOTTER@ routine, 76
CLOSE_VSCREEN@ routine, 76
CLOSEF@ routine, 28
CLOSEFD@ routine, 28
CLOSEV@ routine, 28
CMNAM routine, 11
CMNAMR routine, 12
CMNARGS@ routine, 13
CMNUM@ routine, 13
CMPROGNM@ routine, 13
CNUM routine, 6
Colour graphics

16 colours, 45
256 colours, 47

COMBINE_POLYGONS@ routine, 51
COMMAND_LINE routine, 13
COMPRESS@ routine, 6
CONCEALW@ routine, 177
CONVDATE@ routine, 185
COPY_FROM_REAL_MODE@ routine, 137
COPY_FROM_REAL_MODE1@ routine, 137
COPY_FROM_SEGMENT@ routine, 138

COPY_TO_REAL_MODE@ routine, 138
COPY_TO_REAL_MODE1@ routine, 139
COPY_TO_SEGMENT@ routine, 139
COU@ routine, 164
COUA@ routine, 164
COUP@ routine, 164
CREATE_POLYGON@ routine, 52
CREATE_SCREEN_BLOCK@ routine, 76
Critical errors, 24
CURDIR@ routine, 29
CURRENT_DIR@ routine, 29
Cursor

mouse, 113, 119, 123
text, 174

D
DAC information, 46, 61, 64, 70, 77
Data sorting routines, 15
Date/time routines, 185
DATE@ routine, 186
DATE_TIME_SEED@ routine, 134
DBOS_VERSION@ routine, 159
DCLOCK@ routine, 186
DEALLOCATE_REAL_MODE_MEMORY@ routine, 139
DEFINE_HOT_KEY@ routine, 107
DELETE_POLYGON_DEFINITION@ routine, 53
DIRENT@ routine, 29
DISPLAY_MOUSE_CURSOR@ routine, 114
DOS_ERROR_MESSAGE@ routine, 18
DOS_KEY_WAITING@ routine, 165
DOSCOM@ routine, 140
DOSERR@ routine, 18
DOSPARAM@ routine, 159
DRAW_HERSHEY@ routine, 53
DRAW_LINE@ routine, 55
DRAW_TEXT@ routine, 56
DSORT@ routine, 16
DYNT@ routine, 160
DYNT1@ routine, 160

E
ECHO_INPUT@ routine, 165
EDATE@ routine, 186
EGA@ routine, 56
ELLIPSE@ routine, 56
EMPTY@ routine, 31
ERASE@ routine, 31

FTN77 Library Reference

Index-2

ERR77 routine, 19
ERRCOU@ routine, 165
ERRCOUA@ routine, 166
ERRNEWLINE@ routine, 166
ERROR@ routine, 19
ERRSOU@ routine, 166
ERRSOUA@ routine, 166
EXCEPTION_ADDRESS@ routine, 20
EXIT routine, 128
EXIT@ routine, 128

F
FDATE@ routine, 187
FEED_KEYBOARD@ routine, 108
FEXISTS@ routine, 31
FILE_EXISTS@ routine, 32
FILE_SIZE@ routine, 32
FILE_TRUNCATE@ routine, 32
FILEINFO@ routine, 33
File-manipulation routines, 36
FILES@ routine, 33
FILL@ routine, 109
FILL_ELLIPSE@ routine, 57
FILL_POLYGON@ routine, 57
FILL_RECTANGLE@ routine, 58
Fonts,additional, 48
FORTRAN_ERROR_MESSAGE@ routine, 20
FPOS@ routine, 34
FPOS_EOF@ routine, 34
FREE_SPACE_AVAILABLE@ routine, 152
FREE_VIRTUAL_PAGES@ routine, 152
FTN77WT routine, 140

G
GET_ALL_PALETTE_REGS@ routine, 58
GET_COPROCESSOR_ENVIRONMENT@ routine, 160
GET_CURRENT_FORTRAN_IO@ routine, 161
GET_CURRENT_FORTRAN_UNIT@ routine, 162
GET_CURSOR_POS@ routine, 167
GET_DACS_FROM_SCREEN_BLOCK@ routine, 77
GET_DEVICE_PIXEL@ routine, 59
GET_DOS_KEY@ routine, 167
GET_DOS_KEY1@ routine, 167
GET_EXTENDED_CHAR@ routine, 168
GET_FILE_DATE_TIME_STAMP@ routine, 34
GET_FILES@ routine, 35
GET_GRAPHICS_MODES@ routine, 59
GET_GRAPHICS_RESOLUTION@ routine, 59
GET_KEY@ routine, 168
GET_KEY_OR_YIELD@ routine, 128
GET_KEY1@ routine, 169
GET_MEMORY_INFO@ routine, 153
GET_MOUSE_BUTTON_PRESS_COUNT@ routine, 114
GET_MOUSE_EVENT_MASK@ routine, 115
GET_MOUSE_PHYSICAL_MOVEMENT@ routine, 115
GET_MOUSE_POSITION@ routine, 115
GET_MOUSE_SENSITIVITY@ routine, 116

GET_PATH@ routine, 35
GET_PATHV@ routine, 36
GET_PCL_PALETTE@ routine, 92
GET_PIXEL@ routine, 60
GET_PRINTER_STATUS@ routine, 126
GET_PROGRAM_NAME@ routine, 14
GET_SCREEN_BLOCK@ routine, 77
GET_STORAGE@ routine, 153
GET_STORAGE1@ routine, 154
GET_TEXT_MODES@ routine, 60
GET_TEXT_SCREEN_SIZE@ routine, 61
GET_VIDEO_DAC_BLOCK@ routine, 61
GET_VIRTUAL_COMMON_INFO@ routine, 20
GETCL@ routine, 169
GETENV@ routine, 162
GETSTR@ routine, 7
GETTERMINATECOMMCHAR@ routine, 145
Graphics devices

auxiliary, 73
closing, 74
coordinate systems, 49
drawing to, 74
production of output, 74

Graphics routines, 45
Graphics screen

saving and restoring, 75
screen blocks, 74
virtual screen, 74

GRAPHICS_MODE_SET@ routine, 61
GRAPHICS_WRITE_MODE@ routine, 62

H
Heap storage, 152
Hershey fonts, 48, 53
HERSHEY_PRESENT@ routine, 63
HIDE_CURSOR@ routine, 170
HIDE_MOUSE_CURSOR@ routine, 116
HIGH_RES_CLOCK@ routine, 187
HIGH_RESOLUTION_GRAPHICS_MODE@ routine, 63
HOTKEY77 utility, 105

I
IN@ routine, 109
INITIALISE_MOUSE@ routine, 116
INITIALISE_PRINTER@ routine, 125
In-line routines, 110
IS_TEXT_MODE@ routine, 63
ISORT@ routine, 16

J
JUMP@ routine, 21

Index

Index-3

K
KEY_WAITING@ routine, 170
KILLW@ routine, 178

L
LABEL@ routine, 22
LARGEST_BLOCK_AVAILABLE@ routine, 154
LCASE@ routine, 7
LINEAR_ONE_MEG_SEG@ routine, 141
LOAD_PCL_COLOURS@ routine, 93
LOAD_REAL_MODE_LIBRARY@ routine, 141
LOAD_STANDARD_COLOURS@ routine, 64

M
MATCH@ routine, 110
MEMORY_AVAILABLE@ routine, 155
MKDIR@ routine, 36
MODIFY_REAL_MODE_MEMORY@ routine, 142
MOUSE@ routine, 117
MOUSE_CONDITIONAL_OFF@ routine, 117
MOUSE_LIGHT_PEN_EMULATION@ routine, 117
MOUSE_SOFT_RESET@ routine, 118
MOVE@ routine, 110
MOVE_POLYGON@ routine, 64
MOVEW@ routine, 178

N
NEW_PAGE@ routine, 79
NEWLINE@ routine, 171
NONBLK routine, 8

O
OPEN_GPRINT_DEVICE@ routine, 93
OPEN_GPRINT_FILE@ routine, 94
OPEN_PLOT_DEVICE@ routine, 80
OPEN_PLOT_FILE@ routine, 81
OPEN_VSCREEN@ routine, 82
OPENCOMMDEVICE@ routine, 145
OPENR@ routine, 36
OPENRW@ routine, 37
OPENV@ routine, 38
OPENW@ routine, 38
OUT@ routine, 110

P
Palette information, 45, 58, 67, 68, 77
PCX file, 82, 84, 87
PCX_TO_SCREEN_BLOCK@ routine, 82
PERMIT_UNDERFLOW@ routine, 22
Plotter device, 73
PLOTTER_SET_PEN_TYPE@ routine, 83
Polygon filling, 47
POLYLINE@ routine, 65
POP@ routine, 111

POPW@ routine, 178
PRERR@ routine, 23
PRINT_BYTES@ routine, 171
PRINT_BYTES_R@ routine, 171
PRINT_CHARACTER@ routine, 125
PRINT_GRAPHICS_PAGE@ routine, 94
PRINT_HEX1@ routine, 171
PRINT_HEX2@ routine, 172
PRINT_HEX4@ routine, 172
PRINT_I1@ routine, 172
PRINT_I2@ routine, 172
PRINT_I4@ routine, 172
PRINT_R4@ routine, 173
PRINT_R8@ routine, 173
Printer device, 73
Printer routines, 125
PUSH@ routine, 111

Q
QUERY_MOUSE_SAVE_SIZE@ routine, 118
QUIT_CLEANUP@ routine, 23

R
Random numbers

non repeatable sequence, 134
repeatable sequence, 134

RANDOM routine, 133
READ_EDITED_LINE@ routine, 173
READCOMMDEVICE@ routine, 146
READF@ routine, 39
READFA@ routine, 39
REAL_MODE@ routine, 142
REAL_MODE_ADDRESS_OF_DOSCOM@ routine, 142
REAL_MODE_INTERRUPT@ routine, 143
RECTANGLE@ routine, 65
REMOVE_HOT_KEY@ routine, 108
RENAME@ routine, 40
RESTORE_CURSOR@ routine, 174
RESTORE_DEFAULT_HANDLER@ routine, 23
RESTORE_GRAPHICS_BANK@ routine, 66
RESTORE_MOUSE_DRIVER_STATE@ routine, 118
RESTORE_SCREEN_BLOCK@ routine, 83
RESTORE_TEXT_SCREEN@ routine, 66
RETURN_STORAGE@ routine, 155
RFPOS@ routine, 40
RSORT@ routine, 16
RUNERR@ routine, 24

S
SAVE_MOUSE_DRIVER_STATE@ routine, 119
SAVE_TEXT_SCREEN@ routine, 67
SAYINT routine, 8
Screen/keyboard routines, 164
SCREEN_BLOCK_TO_PCX@ routine, 84
SCREEN_BLOCK_TO_VSCREEN@ routine, 86
SCREEN_TO_VSCREEN@ routine, 87

FTN77 Library Reference

Index-4

SCREEN_TYPE@ routine, 67
SCREENSEG@ routine, 144
SCROLL_DOWN@ routine, 179
SCROLL_UP@ routine, 179
SECONDS_SINCE_1970@, 188
SECONDS_SINCE_1980@, 188
SELECT_DOT_MATRIX@ routine, 95
SELECT_FILE@ routine, 40
SELECT_PCL_PRINTER@ routine, 95
SET_ALARM_CLOCK@ routine, 188
SET_ALL_PALETTE_REGS@ routine, 67
SET_BIT@ routine, 1
SET_COMMAND_LINE@ routine, 14
SET_CURSOR_POS@ routine, 174
SET_CURSOR_POSW@ routine, 179
SET_CURSOR_TYPE@ routine, 174
SET_DEVICE_PIXEL@ routine, 68
SET_DISK_ERRORS@ routine, 24
SET_FILE_ATTRIBUTE@ routine, 41
SET_IO_PERMISSION@ routine, 111
SET_MOUSE_BOUNDS@ routine, 119
SET_MOUSE_GRAPHICS_CURSOR@ routine, 119
SET_MOUSE_INTERRUPT_MASK@ routine, 120
SET_MOUSE_MOVEMENT_RATIO@ routine, 121
SET_MOUSE_POSITION@ routine, 122
SET_MOUSE_SENSITIVITY@ routine, 122
SET_MOUSE_SPEED_THRESHOLD@routine, 122
SET_MOUSE_TEXT_CURSOR@ routine, 123
SET_PAGES_RESERVE@ routine, 155
SET_PALETTE@ routine, 68
SET_PCL_BITPLANES@ routine, 99
SET_PCL_GAMMA_CORRECTION@ routine, 100
SET_PCL_GRAPHICS_DEPLETION@ routine, 100
SET_PCL_GRAPHICS_SHINGLING@ routine, 101
SET_PCL_LANDSCAPE@ routine, 102
SET_PCL_PALETTE@ routine, 102
SET_PCL_RENDER@ routine, 103
SET_PIXEL@ routine, 68
SET_SEED@ routine, 134
SET_SUFFIX@ routine, 41
SET_SUFFIX1@ routine, 42
SET_TEXT_ATTRIBUTE@ routine, 69
SET_TRAP@ routine, 23, 24, 113, 120, 121, 156, 188
SET_TRAP_ON_PAGE_TURN@ routine, 155
SET_VIDEO_DAC@ routines, 70
SET_VIDEO_DAC_BLOCK@ routine, 70
SETCOMMTERMINATECHAR@ routine, 146
SETECHOONREADCOMM@ routine, 147
SHRINK_STORAGE@ routine, 156
SLEEP@ routine, 129
SOU@ routine, 175
SOUA@ routine, 175
SOUND@ routine, 149
SPAWN@ routine, 129
START_PROGRAM@ routine, 129
Storage management routines, 152

T
TEMP_FILE@ routine, 43
TEMP_PATH@ routine, 43
TEST_BIT@ routine, 2
Text attributes, 48
Text windows, 177
TEXT_MODE@ routine, 71
TEXT_MODE_SET@ routine, 71
Time/date routines, 185
TIME@ routine, 189
TODATE@ routine, 189
TOEDATE@ routine, 190
TOFDATE@ routine, 190
TOTIME@ routine, 190
TRAP_EXCEPTION@ routine, 25
TRIM@ routine, 9
TRIMR@ routine, 9

U
UNDERFLOW_COUNT@ routine, 26
UPCASE@ routine, 10
USE_STORAGE@ routine, 156
USE_VESA_INTERFACE@ routine, 71
USE_VIRTUAL_SCRATCH_FILES@ routine, 157

V
VGA@ routine, 72
Virtual screen, 73
VSCREEN_TO_PCX@ routine, 87
VSCREEN_TO_SCREEN@ routine, 88

W
WBORDER@ routine, 179
WCLEAR@ routine, 180
WCOU@ routine, 180
WCOUP@ routine, 181
WCREATE@ routine, 181
WDBORDER@ routine, 181
WDSHADOW@ routine, 182
WILDCHECK@ routine, 43
Window manipulation routines, 177
WMEMORY@ routine, 182
WREAD_EDITED_LINE@ routine, 182
WRITE_TO_PLOTTER@ routine, 88
WRITECOMMDEVICE@ routine, 147
WRITEF@ routine, 44
WRITEFA@ routine, 44
WSHADOW@ routine, 183
WTITLE@ routine, 184

Y
YIELD@ routine, 130

	FTN77 Library reference
	Preface
	Contents
	Bit handling
	Character handling
	Data sorting
	Error and exception handling
	File manpulation
	Graphics Drawing
	Graphics printer
	Hotkey (DOS)
	Inline
	Mouse
	Printer (DOS)
	Process control
	Random numbers
	Real mode interface (DOS)
	Serial communications
	Sound
	Storage management
	System information
	Text screen/keyboard
	Text windows (DOS)
	Time and date
	Index

