FTN77

Library Reference

Salford

The Compiler Specialists

7(’5)0 aie

IMPORTANT NOTICE

Salford Software Ltd. gives no warranty that all errors have been eliminated from

this manual or from the software or programs to which it relates and neither the
Company nor any of its employees, contractors or agents nor the authors of this
manual give any warranty or representation as to the fitness of such software or
any such program for any particular purpose or use or shall be liable for direct,
indirect or consequential losses, damages, costs, expenses, claims or fee of any
nature or kind resulting from any deficiency defect or error in this manual or such
software or programs.

Further, the user of such software and this manual is expected to satisfy
himself/herself that he/she is familiar with and has mastered each step described in
this manual before the user progresses further.

The information in this document is subject to change without notice.

May 1998

© Salford Software Ltd 1998

All copyright and rights of reproduction are reserved. No part of this document may
be reproduced or used in any form or by any means including photocopying, recording
taping or in any storage or retrieval system, nor by graphic, mechanical or electronic
means without the prior written consent of the Salford Software Ltd.

Preface

FTN77 provides a number of useful subroutines and functions in addition to those specified

in the ANSI Standard. Some of the functions that have been provided are defined as intrinsic
functions and are described in chapldr of the FTN77 User's Guide The remaining
functions, and all of the subroutines are described in this library reference, together with
examples of their use where appropriate. Most of this information is also available in the on-
line help systems. Some of these routines will be widely applicable, while others were
written primarily for use within the compiler systeFT(N77 is itself written in Fortran) but

may be of use to some users in specialised circumstances and are therefore documented here.
Note that all functions obey the implicit typing rules in effect, so it will beessary to

declare some of the functions before they can be used.

If you are using a routine which is not described in this manual, but which has been
suggested by Salford Software as a solution to some specific problem, there is no need to alter
your code. Any routine iDBOS.LIB which has been used by one of our users is guaranteed

to remain in the library in all subsequent versions of the software. If it is not documented it

is probably because a better routine has been made available. The routines are arranged in
chapters as functional groups. Within the chapters the routines are arranged in alphabetical
order.

The following symbols are used to denote the availability of each routine on the various
platforms:

no symbol Function is available on all platforms, DOS, Win16 and Win32.

1] At the time of going to press, function is only available under DOS .
2] Function is only available under DOS.
© Function is only meaningful under DOS. Under Win1l6 and Win32 the

function either has no operation or is not relevant. This category is for DOS
programs and programs that are being ported from DOS to Windows.

4] Function is available undddOS and also irClearWin+ but with slightly
different functionality. ~See this guide for tH2OS function and the
Clearwin+ documentation (the manual or an information file on the release
disk) for information on th€learWin+ variant.

5] Function is only available under Win32.

On the next page you will find a list of chapter headings in this guide. A full table of
contents appears after the acknowledgements.

FTN77 Library Reference

Chapter headings in this manual:

page
1. Bit-handlingooooiiiiiiii 1
2. Character-handlingueeeeiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeaeeees 3
3. Command liN€ ParsiNg.........cceeeeeiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee 11
O D F- - =T 1 oo TR T TTTTPPPPPPPP 15
5. Error and exception handlingccccccvvvvviiiiiiiiiiiiiiiiieenenne. 17
6. File-manipulationeeeviiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeeee s 27
7. Graphics draWingeeeeeeeeiieiiiieiiiiiiiiieeiieeieeeeeeeeeeeeeeeeeeaeeees 45
8. Graphics pIOttEI/SCreeN ... 73
9. GraphiCs PriNter.......ccoeiiiiiiiiii e 89
10. HOt KEY (DOS)...uutiiiiiiiiiiiiiiiieeee et 105
11, IN-lNE s 109
L2, MOUSE ...t 113
13. Printer (DOS) ...cooiiiiiiiiitiiiiiee ettt 125
14, ProCess CONIOloiiiiiiiiiiiiiaeeeiee e 127
15. Random numbers.........cccoo 133
16. Real mode interface (DOS)oevvevviiieiiiiiiiiiiiiiiiieeeaeeeen 135
17. Serial cOmMMUNICALIONS..........ccovviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 145
18, SOUN ..o 149
19. Storage Managementcuuuruiiieeeiiieiiiie e 151
20. System information..............euvvvieeiiiiiiiiiiiiiie e 159
21. Text screen/keyboard.............ccooiiiiiiiiiiiiiiiee 163
22, Text WINAOWS (DOS)uuuviiiiiiiiiiiiiiiiieiieeee e 177
23. TiIMe and datecoovviiiiiiiiiieii e 185

Acknowledgements

* % %

FTN77 is a registered trademarks of Salford Software Ltd.

DBOS, Salford C++,SLINK and ClearWin+ are trademarks of Salford Software
Ltd.

FTN9O is a joint trademark of Salford Software Ltd and the Numerical Algorithms
Group Ltd.

MS-DOS, Windows, Windows 95 and Windows NT are trademarks of Microsoft
Corporation.

BRIEF is a trademark of Borland International Inc.
Intel is a registered trademark of Intel Corporation.
AUTOMAKE is a trademark of Polyhedron Software Ltd.

FTN77 Library Reference

Vi

1. Bit-handlingcccccooeeeiiiiiiiiieiiiinnn, 1
CLEAR_BIT@ ..coovvvmverreeossissessisessssesssssssssesssssssssssssessssns 1
SET_BIT@...oooovvenevoreeionesiesesssessesssssssssesessssssssssssssssss 1
TEST_BIT@...voovverriireeissesisiesessesssssssssessssssssssssssssssssssnos 2
2. Character-handling..........ccccccceeeennnn. 3
ALLOCSTR@ .oovvvveveraeioseissnssssessssssssssssessssesssssssssessssansns 3
APPEND_STRING@ocvovrerernrrernisiessesesessssssssssssssenssoos 3
CENTRE@ooovovneerisiseisesssessss s 4
CHAR_FILL@ ..voovvvvvveeeeseiesessesssesssssssssssssessss s 4

CHSEEK@ ...

COMPRESS@....ocovvvmvernevosnesssssssessssesssssesssssssssssssssssssssesssoos 6
GETSTR@ oovevevereisesiesesssssssessssssssssssssss s ssssssnssssanins 7
LCASE@ ..ovvvvevevvoaevisssssssssssssessssss s 7
NONBLK.... .8
SAYINT oo 8
TRIM@ c.ooovevevireeeeessees st 9
TRIMR@ ..ocvvovveoiesssisesessesssses s 9
UPCASE@......o.ovvoevoresisesisssssssssssssssss s 10
3. Command line parsing.................. 11
CMNAM ... 11
CMNAM®@ ..o
CMNAMR ..ot
CMNARGS@ ..
CMNUMG@ ..o
CMPROGNM®@ ...ooovvvverveoneessisisesisesses s 13
COMMAND_LINE........coiveriernisiesessssssessssesssseesssessssennns 13
GET_PROGRAM_NAME@.........ccoooomrrrrrrerinrorinsessnsessnsons 14
SET_COMMAND_LINE@cooovvrrererciereniesesrisssosessoonns 14
4, Datasortingcccccvvvvvviiiiiieeeeenneennns 15
CHSORT@ ..ooovoveeviaieeeessessssssssses s 15
ISORT@ ..oovvovreviseiessesssesssesssessssssss s 16
RSORT@... .16
DSORT@ ..vooeveveieiiieesessessses s esss s 16

Table of Contents

5. Error and exception handling 17
ACCESS_DETAILS@ ..ooovvveevereierrisinesssessessssensssseseons 17
CLEAR_FLT_UNDERFLOW®coovmrvermriernresrnessnenons 18
DOS_ERROR_MESSAGEQ@............coovverrrerrrereniasinsesensennn. 18
DOSERR@......oovovmiereissrissnssssesssssnssssasssssssssesssssassssesssssos 18

PERMIT_UNDERFLOW®@........ovouvvrmrrrisrienssessesesssnins 22
PRERR@ccvvoovirarresssssessssesssssessssesssssessssesssssesssssssssssssens 23
QUIT_CLEANUP@ooomrvererirnsiosessssssesssssssssssssss s 23
RESTORE_DEFAULT_HANDLER@ccocoorvvrrrrnnnenn 23
RUNERR@ooomerorrsinssiosssssssssssesssssessssssssssassssssssssessssons
SET_DISK_ERRORS@
SET_TRAP@ ...ooovvrmrirnevessiisissesessssssssssssssssssssssss s
TRAP_EXCEPTIONG@ovvvmrvrrirsieesioes oo,
UNDERFLOW_COUNT@.........cooorrrrerrirrsisressnessssssssnsens 26
6. File-manipulation..........cccccccvnnnnn. 27
ATTACH@ ..coovvvvovireieeiesee s 27
CLOSEF@.....oovvorieverreeiiessesesissssssssssssssssssss s 28
CLOSEFD@.......ovvorriersseoessssassssessssessssssssssessssssssssesssssansns 28
CLOSEV@ ..ooovvvvrevernreeiiessnnes 28
CURDIR@29
CURRENT_DIR@ ...ooovvvmrrvraivrrnisssissesssssssssessssansssssssnnes 29
DIRENT@.....ooovvovmiereiossissessssses s 29
EMPTY@ooovoevereiesseses s 31
ERASE@oooevviriceioesisssssssssssssss s 31
FEXISTS@31
FILE_EXISTS@ ..vovevvvervreesessissesssssessssssssssssesssssssssssens 32
FILE_SIZE@oovevereevoieeeeesiesssessssessssessssessssessssessssanons 32
FILE_TRUNCATE@coovvrmrvresresssisessssssssses s 32
FILEINFO@ooovvveverereressiesssees s 33
FILES@ ...vvooeverreeosesisesssoes s sssssssssssssessssssss s sssnon 33

Contents-1

FTN77 Library Reference

FPOS@ ..ot
FPOS_EOF@
GET_FILE_DATE_TIME_STAMP@cccccvvovrvrrirennnne. 34
GET_FILES@ ...oovvveiivieeeieceeeneeeeeee e 35
GET_PATH@......cooveviieieeenrccereene e 35
GET_PATHV@ ..ot 36
MKDIR@)cvvviieciinieesecesreesie s 36
OPENR@36
OPENRW@ ..ot 37
OPENV@ ..ottt 38
OPENW@covvineiireienieenreesre e 38
READF@......ocuviririieeinriieeeeie e 39
READFA@.. .39
RENAME@).......cocovivieeeiieiinreineee e 40
RFPOS@ ...c.ocveviiieenie ettt 40
SELECT_FILE@ ...covvvvieiieieeeieeeeenreee e 40
SET_FILE_ATTRIBUTE@.......ocovivrrieeiienreeenne e 41
SET_SUFFIX@ ..ottt 41
SET_SUFFIXL@ ..o.veviveeeieeeinreeseneee e 42
TEMP_FILE@coooviieiieeinrenieesieeee e 43
TEMP_PATH®@c.oevvriiiiireeneiee e 43
WILDCHECK@oovvviviiieeeiireiesieseeeseeesne e 43
WRITEF@ ..ottt 44
WRITEFA@......coooeeeiireiiicinrieeceeie s 44
7. Graphics drawingcccccceeeeeennn. 45
INEFOAUCEION. ...t 45
Palette registers and 16 colour graphics.cccoceevernnne 45
256 colour graphiCs........ccocveviviiiiiieeee e 47
POolygon filliNg......c.ccooveiiieeee e 47
Text attributes ..o 48
Additional foNntS...........ccoiiiiiiiii 48
Coordinate SYSIEMScccevvirieerieeeseeseee e 49
CLEAR_SCREENQ@........covvrtreiirieeninreenreseee e
CLEAR_SCREEN_AREA@..
COMBINE_POLYGONS@......cccovrrimeirinreeeenreeeenreneeennes
CREATE_POLYGONQ@cevrveneieinreieicnreeeeneeeee s 52
DELETE_POLYGON_DEFINITION@.........cccoovrvrrerernnne 53
DRAW_HERSHEY@)cccoviriinieeeieniecsesreeseeesne e 53
DRAW_LINE@..........
DRAW_TEXT@
EGA@ ..ot
ELLIPSE@)ccovireiereiiieeeierieeseeenree e
FILL_ELLIPSE@ ...coveveeieeirieieeneeee e 57
FILL_POLYGONG@)cccvrriveienreenreneeienreeeie e 57
FILL_RECTANGLE@.......ccvsviverreeeierrecereneesreenre e
GET_ALL_PALETTE_REGS@ . "
GET_DEVICE_PIXEL@ccovvvervenieiiniericeeenieneeeeesie e

Contents-2

GET_GRAPHICS_MODES@cccovrvevvirerriieinienreeeiennes
GET_GRAPHICS_RESOLUTION@
GET_PIXEL@vovviveeeiericinie e
GET_TEXT_MODESQ@.......ccceovevirrererreienreenreenreneereesnens
GET_TEXT_SCREEN_SIZE@cccceovevveirrirreeeieeaeanns
GET_VIDEO_DAC_BLOCK@coervevvrreieienieenienicennens
GRAPHICS_MODE_SET@cccovevreirreieienreeeenreneeeseenens
GRAPHICS_WRITE_MODE@.... .
HERSHEY_PRESENT@......cccovrveiiriieinieieeneeeeenneeeeee
HIGH_RESOLUTION_GRAPHICS_MODE@ 63
IS_TEXT_MODE@oevvrveeeierriieiinie e 63
LOAD_STANDARD_COLOURS@cccecvvvereeerrirreennens 64
MOVE_POLYGON@ .
POLYLINE@ocvviveeeieieiinreesieseee s
RECTANGLE@ ..ot
RESTORE_GRAPHICS_BANK@cccovevrereeniinrcenne 66
RESTORE_TEXT_SCREENQ@c.eovevrveeeinicininieeenens 66
SAVE_TEXT_SCREEN@ccovvvrmeirieinienreeneeenieseeennes 67
SCREEN_TYPE@cevvveeeierreiiieneeeseeesne e 67
SET_ALL_PALETTE_REGS@ ...c.cececvvvrriieinrenreeeienes 67
SET_DEVICE_PIXEL@oeviveeeeireciieneeecese e 68
SET_PALETTE@ ..ooeoveiirieieieneeenre e 68
SET_PIXEL@ ...oovevviviieiisieinie et 68
SET_TEXT_ATTRIBUTE@.......cccerveirreerrcinreenreecieene 69
SET_VIDEO_DAC@ 70
SET_VIDEO_DAC_BLOCK@ccoeverveuvrrirriiiiinneieiennenens 70
TEXT_MODE®@covrveveieieiinieiiienieeseeesie s 71
TEXT_MODE_SET@coveoviverierieiinriisenieeeeseeeie e 71
USE_VESA_INTERFACE®@ccovvveviinreinieieenieeeienens 71
VGA@
8. Graphics plotter/screen................ 73
INFOAUCEION ... 73
Production of OUtPUL.........cceviiiieiceeeeece e 74
Virtual Screens and screen blocks............ .74
Saving and restoring the graphics screen............cccccvveeen. 75
CLOSE_PLOTTER@oovvveeiiicieie e 76
CLOSE_VSCREENQ@.......cccenveuiireirriieeneenee e 76
CREATE_SCREEN_BLOCK®@ccoevrmeerieecinrinreenenns 76
GET_DACS_FROM_SCREEN_BLOCK@.. 77
GET_SCREEN_BLOCKQ@........coviirrineiienreenienneesenneennens 77
NEW_PAGE®@ccvrveiiiiiieiieeneesee e 79
OPEN_PLOT_DEVICE@covvvrreerrineeenenreesenneeeennens 80
OPEN_PLOT_FILE@coviviveiiiienreenereesre e 81
OPEN_VSCREEN@ccoeiiriieiinieinieneeenree e 82
PCX_TO_SCREEN_BLOCK@covevvrrerreienieeeerieeeeenns 82
PLOTTER_SET_PEN_TYPEQ@...... .83
RESTORE_SCREEN_BLOCK@cccevveerrerreeeenrenreenns 83

SCREEN_BLOCK_TO_PCX@....covveeeeeeereeeeeseeeseeereess
SCREEN_BLOCK_TO_VSCREEN@
SCREEN_TO_VSCREENQ@cccccveiieeieeieenee s
VSCREEN_TO _PCX@ ... s
VSCREEN_TO_SCREEN@cccovverieenieenicneeniereeneee
WRITE_TO_PLOTTERQ@......ccceervirieeiierieieeee e 88
9. Graphics printer........ccccccecvvveeennnn. 89
INEFOAUCTHION ... 89
The default Printer.........ccooieiiii e 89
PCL printers..........90
CLOSE_GRAPHICS_PRINTER@coeovverieeririeiecniienienn 92
GET_PCL_PALETTE@ ...cccvvvveeirieniieeeesee e 92
LOAD_PCL_COLOURS@ccovereerieieeieeieeieenieeeeeen 93
OPEN_GPRINT_DEVICE@ceeoveeieeiiesieeniee s 93
OPEN_GPRINT_FILE@cccvverveeriieiieeieeieeiee e 94
PRINT_GRAPHICS_PAGE@c.cceeoveiiereenieeirienieenieee 94
SELECT_DOT_MATRIX@95
SELECT_PCL_PRINTER@ceoveririiirieiieieeieesee e 95
SET_PCL_BITPLANES@coiveiieeieeieeieenee e
SET_PCL_GAMMA_CORRECTION@ccccvviveerunenne
SET_PCL_GRAPHICS_DEPLETION@cccevveruvennne.
SET_PCL_GRAPHICS_SHINGLING@ ...
SET_PCL_LANDSCAPE@cccvvviiieeienienie e
SET_PCL_PALETTE@ ..ecccveeeeeieeieeiee e 102
SET_PCL_RENDER@cccvevivierieriieiieee e 103
10. Hot key (DOS)cccovvvvveeeeevviiiiinnnn, 105
DEFINE_HOT_KEY@oeveeriiiiiiiiiieieeiee e 107
REMOVE_HOT_KEY@coevveeieeriiiireeieeeeeesee e 108
FEED_KEYBOARD@cccvviveeeerieeniiiseesee s 108

12. MOUSE....coviiiiieiiee e 113

DISPLAY_MOUSE_CURSOR®@covveevemeeiereseereess 114
GET_MOUSE_BUTTON_PRESS_COUNT@............... 114
GET_MOUSE_EVENT_MASK@ «...ceveeeveeeeeeeere. 115

Table of Contents

GET_MOUSE_PHYSICAL_MOVEMENT@
GET_MOUSE_POSITION@ccoeevveeeeeereeeeeeeeeeeseeeee
GET_MOUSE_SENSITIVITY@ ..ovveoeeveeeereeeeeeeseeenes
HIDE_MOUSE_CURSOR@vveereemerreessereesereerneenes
INITIALISE_MOUSE@oovverereeereeeeeereeeeeeseerseeseesene
MOUSE@ ...ovveeoeveeeeeeeeeseeeeeseeeeeeeseseeseeeeeseseseesssese s
MOUSE_CONDITIONAL_OFF@veoerverrerereeren
MOUSE_LIGHT_PEN_EMULATION@
MOUSE_SOFT_RESET@......vverrevereereeeeeeeereeseresereesnee
QUERY_MOUSE_SAVE_SIZE@ «...vvooreveeeerreerererere
RESTORE_MOUSE_DRIVER_STATE@cvvervevvennn..
SAVE_MOUSE_DRIVER_STATE@ ...cvoeveverrerereereenne
SET_MOUSE_BOUNDS@covecon......
SET_MOUSE_GRAPHICS_CURSOR@ovvvvererreen.
SET_MOUSE_INTERRUPT_MASK@vvererreeerrenn.
SET_MOUSE_MOVEMENT_RATIO@oeovvrerrereene.
SET_MOUSE_POSITION@vveoereereeeerseerreseeeersenees
SET_MOUSE_SENSITIVITY@ ...cooeveeeerreeeeeeesere.
SET_MOUSE_SPEED_THRESHOLD@cvvveenn...
SET_MOUSE_TEXT_CURSOR@ovvvvermrrrrererersrnnne,

13. Printer (DOS) ...vvvvveeeieeiveeeeiieeiinnnn,

PRINT_CHARACTER@
INITIALISE_PRINTER@
GET_PRINTER_STATUS@ccceeeviiiiiiiiiiiicieies 126

14. Process control.........cccoeeeveveevnnnnns 127
CISSUE...

GET_KEY_OR_YIELD@corveeeereereneeeeeeeeeeseeeesesenn 128
SLEEP@ ...ovveoeeeeeeeeeeeseeeveeeeeeeeeseseeeeeessese s eeese e 129
SPAWN@129
START_PROGRAMG@oovvereeeeeereereseeeeeseeeesenereen 129
YIELD@ oooveeoeeeeeeeeeeeeeeeeeeeseeeee e eeeese s 130

15. Random numbers.........cccceevvunnenen. 133

RANDOMcoovvvere.
DATE_TIME_SEED@
SET_SEED@ ..eveoeeeeeeeeeeeeeeeeeeeeeeseeeees s eses e

16. Real mode interface (DOS) 135

ALLOCATE_REAL_MODE_MEMORY@c.c.. 136

COPY_FROM_REAL_MODE@ccccoovvviriiiciiiniins 137
COPY_FROM_REAL_MODEL@ccooveviiiiiiine 137
COPY_FROM_SEGMENT@cccoovvveiiiiiiiiiiciiie 138

Contents-3

FTN77 Library Reference

COPY_TO_REAL_MODE@

COPY_TO_REAL_MODE1@
COPY_TO_SEGMENT@......ovverrvrrrereerasisnnsseessensesens
DEALLOCATE_REAL_MODE_MEMORY@ 139
DOSCOM@ ..evorveerevreiieieeeeseesseesssssssss s enssnes 140
FTNTTWT BIC. wvorieriereereeeeeeseiseseseessssssssssessssssssssnens 140
LINEAR_ONE_MEG_SEG@evvvrvrnrerrrrrereriesriserinens 141
LOAD_REAL_MODE_LIBRARY@ 141
MODIFY_REAL_MODE_MEMORY@cc.csvvvrrrnne 142
REAL_MODE®eoovvvneeriereeseeseessesssssssssssssssssssssssesns 142
REAL_MODE_ADDRESS_OF_DOSCOM@ 142
REAL_MODE_INTERRUPT@ovvvrrvrirrirnirnriniennns 143
SCREENSEG@

17. Serial communications................ 145
GETTERMINATECOMMCHARG@...........ccvomrvrrirrirnninne. 145
OPENCOMMDEVICE@o.vvvvvrmerniorreesssississsssssennes 145
READCOMMDEVICE@............... ...146
SETCOMMTERMINATECHARGoovvnvrnirnrircirnenn. 146
SETECHOONREADCOMM@)cocvrrvvrirnionenneesnnesneens 147
WRITECOMMDEVICE@omvvrrriniineiesississssensennss 147
18. Sound....ocevviiiieeee e, 149
BEEP@ ...vvvoeveiereeineseeessesessss s 149
SOUND@ .oovvevvreereiseeeseisssssssssss st sssssssssnes 149
19. Storage management................... 151
FREE_SPACE_AVAILABLE@ ...oovvvvneireiieiieniienenne. 152
FREE_VIRTUAL_PAGES@vvoevrrirnienieneississionns 152
GET_MEMORY_INFO@oovvrvereereereesnesienssesssenssnes 153
GET_STORAGE@.........

GET_STORAGE1@

LARGEST_BLOCK_AVAILABLE@ccooovvrrmirnrnnne. 154
MEMORY_AVAILABLE@ovvonrereercioeisiseiennennss 155
RETURN_STORAGE@oovevireriereeseesnsissississssssones 155
SET_PAGES_RESERVE®@c.vvvvrrvrerinieneiseinsisnsenns 155
SET_TRAP_ON_PAGE_TURN@ce.vvrvrrrrnrirrrrnrerrens. 155
SHRINK_STORAGE@...

USE_STORAGE®@ovvorverevreereisssssssnsisssssssssssnsssnss
USE_VIRTUAL_SCRATCH_FILES@cooorvvvrrrrnirnns 157
20. System information 159
DBOS_VERSION@ovvomivmiereereeisiseessesssesssssssssssanes 159
DOSPARAM®@coovernevinreereesessseesssesssssssssssesssssssesssnens 159
DYNT@ .cvoovveeereeieeiseeeiesessessesssssss sttt esssnees 160
DYNTL@ .ottt 160

Contents-4

GET_COPROCESSOR_ENVIRONMENT@

GET_CURRENT_FORTRAN _[0@......ccoevvrrrrerrerre.
GET_CURRENT_FORTRAN_UNIT@....cevrvvrererenen.
GETENV@ ..o seeseessessessseenneneens

21. Text screen/keyboard.................. 163
COU@ oo ee e enseeseen 164
COUAD .ot senneeeen 164
COUP@ .o seee 164
DOS_KEY_WAITING@ ...eveveveeeeeeeeeeeeceeeeeeeeeeeseesnenes 165
ECHO_INPUT@

ERRCOU®@ ..o eeee s ev e seenneeeen
ERRCOUA® ...eovoeeeeeeeeeeeeeeeeeees s
ERRNEWLINE@ ..o eeeseesesneseeneen 166
ERRSOU@ .eoeeeeeeeeeeeeeseeeseeesessesss e eseessevesnessesnenes 166
ERRSOUA® ...eoveveveeeeeeseeeeeeee e eeeseseeesese s sseseeseeneeneen 166
GET_CURSOR_POS@ ...eovevveeveereeoeeeeeeeeeeeeeeeseeessesseseenes 167
GET_DOS_KEY@

GET_DOS_KEY1@

GET_EXTENDED_CHAR@ooovreeeeeeeeeeeeeesreeeeseeseenen 168
GET_KEY@ v eeeeeee e s st 168
GET_KEYL@ «eeeeveeeeeeeeeeeeeeeeeeeeeeeeee e sesessee e 169
GETCL@ ..ovvennn. ..169
HIDE_CURSOR®@ ...oveveveeeeeeeeeseeseeseseereseeesessssssessessens 170
KEY_WAITING@ .veoveveeeeeeeeeeeeeeeeeeseeeeeeeseeseessesreeeeeeenan 170
NEWLINE@ ... e e eee e s es s 171
PRINT BYTES@.....eeeeeeeroeeeeeseesesresssseseeessoseessseesnes 171
PRINT_BYTES _R@\..eveeeeeeeeeeeeeeeseeseessseessessseseeeneon 171
PRINT_HEXL@ «.eveveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesese s 171
PRINT_HEX2@veveeereeeeeseeeeeeeeeee e e 172
PRINT _HEXA@ «...cveveeeeeeeeeeeeeeeeeeee e eeeee e 172
PRINT _IL@ ..o seeeeeeeseeeeeeeeessesesesnenes 172
PRINT 2@ ... v eeseeseeeeeeeeeeeeeeees s seenes 172
PRINT 4@eveeeeeeeeeeeeeeeoeeeeeeeeeseeseeeeeseeeeesees e sese e 172
PRINT_R4@...
PRINT_RB@.....veveeeeeeeeeeeeeeeeeeeeeeseeeeeseeeeseses s seesnseens
READ_EDITED_LINE@ «...veveeveeeeereeeeeeeseeeeeseereseeenenes
RESTORE_CURSOR@oovreeeeeeererereeeeeeeeeeeseeenean.
SET_CURSOR_POS@cveeeeeeeeeeeeeeeeeseeseesreseeseesseseenees

SET_CURSOR_TYPE@ ..

SOUA@......oomvvrrreeesssesesiesssssessss s
22. Text windows (DOS)cccceeenee.. 177
CONCEALW@ .
KILLW@ oo
MOVEW@ ..o

Table of Contents

SCROLL_DOWN@ and SCROLL_UP@
SET_CURSOR_POSW@ccoeouviiiiiiiiiciiieeecee
WBORDER@oovviiiiiiiiiiiic s

WCREATE@ ..
WDBORDER@
WDSHADOW®@ooevviiiiiiiiiciecs e 182
WMEMORY @ooviiiiiiiiiiciiii e 182
WREAD_EDITED_LINE@ccooovviiiiiiiiiicece 182

WSHADOW®@
WTITLE@ ..o

HIGH_RES_CLOCK@ecoeveeeeeeeeeeeereserseseseeeseseeseenee

SECONDS_SINCE_1970@......cccceveiririiiiieieiieen, 188

Contents-5

FTN77 Library Reference

Contents-6

1.

Bit-handling

The routines in this chapter provide for bit packed logical arrays. The routines are
compiled in-line using the Intel bit manipulation instructions. The result executes
about as fast as a reference to a logical array, but the data is stored 8 or 16 or 32 times
more efficiently. The bit array may be held in an array (or even a simple variable) of
any type (usualyNTEGER*2). These routines do not check that their arguments are

in range, even iIMCHECK mode. Bits are numbered from 0. Bit 0 is the least
significant bit of the first word of the array.

CLEAR_BIT@

purpose 10 clear theN'th bit of an array.

Syntax SUBROUTINE CLEAR_BIT@(IA,N)
INTEGER*2 TIA(*),N

Descripion ~ Clears theN'th bit of the arraylA. N can beINTEGER*1, INTEGER*2 or
INTEGER*4 andIA can be of any datatype.

SET BIT@

purpose 10 set theN'’th bit of an array.

Syntax SUBROUTINE SET_BIT@(IA,N)
INTEGER*2 TIA(*),N

Description ~ Sets theN'th bit of the arraylA. N can beINTEGER*1, INTEGER*2 or
INTEGER*4 andIA can be of any datatype.

FTN77 Library Reference

TEST_BIT@

purpose 10 test if theN'th bit of an array is set.

Syntax INTEGER*2 FUNCTION TEST_BIT@(IA,N)
INTEGER*2 TIA(*),N

Description ~TEST_BIT@ may be declared aOGICAL or INTEGER.

Returnvalue TEST_BIT@ returns 1 or 0 TRUE. or FALSE.) according to whether the
N’th bit of IA is set or not.

Example

C routine to maintain 1ist of bad records in a
C file - bit-packing allows for 160000 records

SUBROUTINE BADREC(N)

LOGICAL*2 TEST _BIT@

INTEGER*2 INF0(10000)

SAVE INFO

DATA INFO/10000*%0/

CALL SET_BIT@(INFO,N)

RETURN

ENTRY CHECKREC(N)

IF(TEST_BIT@(INFO,N))THEN

PRINT *,’Attempt to use bad record of file!’

STOP

ENDIF

END

2.

Character-handling

The routines in this chapter provide various facilities for manipulating objects of
Fortran 77 CHARACTER type.

ALLOCSTR@ (5
purpose 10 allocate dynamic storage and copy a string.
Syntax TNTEGER*4 FUNCTION ALLOCSTR@(STRING)
CHARACTER*(*) STRING
Descripion ALLOCSTR@ copiesSTRING with trailing spaces removed and terminated by
a null (i.e. a C-format string), into a dynamic storage space which it allocates.
The string can be retrieved using the rouGETSTR@.
Returnvalue The return value of the function is the address of the storage used.
Exampe SeeGETSTR@.

APPEND_STRING@

Purpose

Syntax

Description

To add a string to the end of a line.

SUBROUTINE APPEND_STRING@(LINE,ADDITION)
CHARACTER*(*) LINE,ADDITION

This routine adds the stridgDDITION to the end of string INE after removing
trailing spaces fromwINE. This can be used to build up complex strings without
the need to do many substring calculations.

FTN77 Library Reference

Example

CHARACTER*80 LINE
CHARACTER*20 SAYINT
INTEGER*4 NO_GREEN_BOTTLES
LINE="THERE ARE’
READ *,NO_GREEN_BOTTLES
IF(NO_GREEN_BOTTLES.EQ.O)THEN
CALL APPEND_STRING@(LINE,” NO*)
ELSE
CALL APPEND_STRING@(LINE,” ’//SAYINT(NO_GREEN_BOTTLES))
ENDIF
CALL APPEND_STRING@(LINE,” STANDING ON A WALL’)
CALL SOU@(LINE)
END

CENTRE@
Purpose 10 position a string in the centre of a field.
Syntax CHARACTER*(*) FUNCTION CENTRE@(STRING,IW)

CHARACTER*(*) STRING
INTEGER*2 IW

Returnvalue CENTRE@ returnsSTRING after padding with blanks on the left so that the
non-blank part is centred in a field BV characters. This is very useful for

titles.
Example
CHARACTER*80 CENTRE@
PRINT *,CENTRE@(’FINAL RESULTS’,80)
CHAR FILL@ (5

purpose 10 fill a string with a particular character.

Syntax SUBROUTINE CHAR_FILL@(STRING,FILL)
CHARACTER*(*) STRING
CHARACTER*1 FILL

Descripion This routine fills the string iBSTRING with the characteFILL up to the full

Chapter 2 Character-handling

length of STRING.

CHSEEK@

purpose 10 look for a given string in an ordered array.

Syntax SUBROUTINE CHSEEK@(ITEM,LIST,N,IRES)
CHARACTER*(*) ITEM,LIST(N)
INTEGER*4 N,IRES

Description ~ Seeks the stringfEM in the sorted arralIST using a binary chop. Returns the
position inIRES or 0 if not found. Note that tHAST array must be sorted in
ascending dictionary order.

Example

OPTIONSCINTL)
CHARACTER*10 FOODS(5)
CHARACTER*12 MEAL
DATA FOODS/’BUTTER’,’EGGS”, FISH*, MUTTON", *SUGAR’/
1 READ (*,” (A)’)MEAL
CALL CHSEEK@(MEAL,FO0DS,5,K)
G0TO0(10,20,30,40,50,60),K+1
10 PRINT *,”this is not a food I know about’
GOTO 1
20 PRINT *,’spread it’
GOTO 1
30 PRINT *,’boil it~
GOTO 1
40 PRINT *, fry it’
GOTO 1
50 PRINT *,’stew it~
GOTO 1
60 PRINT *,’put it in coffee’
GOTO 1
END

FTN77 Library Reference

CNUM

Purpose 10 convert an integer to character form.

Syntax CHARACTER*(*) FUNCTION CNUM(J)
INTEGER*4 J

Descripion ~ Converts thelNTEGER*4 numberJ to characters, left-justified with sign if
negative.

Example

C routine to open a file of name FREDnnnn
C where nnnn is a 4-digit integer
SUBROUTINE FREDOPEN(K)
INTEGER*4 K
CHARACTER*8 FRED,CNUM
C note trick to get leading zeros
FRED(4:8) = CNUM(K+10000)
FRED(1:4) = ’"FRED’
OPEN (FILE=FRED,UNIT=1)
END

COMPRESS@

Purpose 10 compress a string by using tabs.

Syntax SUBROUTINE COMPRESS@(LINE,L)
CHARACTER*(*) LINE
INTEGER*2 L

Descripion COMPRESS@ replaces multiple blanks where possible in a line with tabs to
column positions which are multiples of eight. The new length of the line is
returned inL. The tabbing scheme is that useddfyS, so the resulting line can
be written to &0OS file.

Chapter 2

Character-handling

GETSTR@ (5]

Purpose

Syntax

Description

Return value

To get a string which was stored usikigt OCSTR@.

CHARACTER*(*) FUNCTION GETSTR@(PTR)
INTEGER*4 PTR

This function can be used for strings allocated withAhEOCSTR@ routine.
ALLOCSTR@ andGETSTR@ provide a simple way of storing and retrieving
large amounts of character information for which a maximum possible length of
each element is known, but where if all trailing spaces were stored the amount of
memory required would be excessive. For example, lines of text destined for
screen display could be stored in this way (usually a maximum of 80 characters,
but often with much trailing space).

Another application of this routine is for C string entities passed to Fortran
routines (see chapter 16).

GETSTR@ returns the null-terminated string at addr&ER as a Fortran
CHARACTER entity, truncating or blank-padding as necessary.

Example
INTEGER*4 ALLOCSTR@,PTR
CHARACTER*80 GETSTR@
PTR=ALLOCSTR@(LINE)
OUTLIN=GETSTR@(PTR)
PRINT *(A)", OUTLIN

LCASE@

purpose 10 alter a character argument so that all letters become lower case.
Synax SUBROUTINE LCASE@(A)
CHARACTER*(*) A
Example

CHARACTER*10 FRED

FRED = ’ABC123’

CALL LCASE@(FRED)

IF(FRED.NE.”abc123”)PRINT *,’LCASE@ routine has failed’
END

FTN77 Library Reference

NONBLK

purpose 10 obtain the position of the first non-blank character.

Syntax INTEGER*2 FUNCTION NONBLK(A)
CHARACTER* (*) A

rReturnvalue NONBLK@ returns the position of the first non-blank character in the character
argumentA. If the argument is wholly blank, 0 is returned.

Example

C routine to read 1ine of text and return first word
SUBROUTINE READER(ITEM)
CHARACTER*20 ITEM
CHARACTER*80 LINE
READ (*,”(A)’)LINE
ITEM = LINEC1:NONBLK(LINE))
END

SAYINT

Purpose TO return an integer argument as text.

Syntax CHARACTER*(*) FUNCTION SAYINT(I)
INTEGER*4 I

Description ~AS an example, the value 1=-270 would return the character value 'MINUS
TWO HUNDRED AND SEVENTY".

Example

CHARACTER*80 SAYINT
INTEGER*4 I
DO 1 I=10,0,-1

1 PRINT *,SAYINT(I)
PRINT *,’we have 1ift off!’
END

Chapter 2 Character-handling

TRIM@

Purpose 10 remove leading blanks.

Syntax SUBROUTINE TRIM@(X)
CHARACTER*(*) X

Description TRIM@ is used to remove leading blank characters from the character argument
X.

Example

C read names from a file and print them left justified

CHARACTER*10 NAME
OPEN (FILE="NAMES’,UNIT=10)

1 READ (10, (A)’,END=2)NAME
CALL TRIM@(NAME)
PRINT *, NAME
GOTO 1

2 END

TRIMR@

Purpose 10 rotate a character string right until there are no trailing blanks.

Syntax SUBROUTINE TRIMR@(X)
CHARACTER*(*) X

Notes If the string is blank, it is left unchanged.

Example

C read names from a file and print them right justified

CHARACTER*10 NAME
OPEN (FILE="NAMES’,UNIT=10)

1 READ (10,’(A)’,END=2)NAME
CALL TRIMR@(NAME)
PRINT *, NAME
GOTO 1

2 END

FTN77 Library Reference

UPCASE@

purpose 10 alter a character argument so that all letters become upper case.

Syntax SUBROUTINE UPCASE@(A)
CHARACTER*(*) A

Example

CHARACTER*10 FRED

FRED = ’ABcd’

CALL UPCASE@(FRED)

IF(FRED.NE.”ABCD’)PRINT *,’UPCASE@ routine has failed’
END

10

4.

Data sorting

The routines in this chapter provide facilities for sorting arrays of various types. The
routines described use a quicksort algorithm, and perform well for data which is
originally randomly ordered. Note, however, that these routines are not stable in the

strict sense. That is, equal keys do not necessarily maintain their order relative to each
other.

CHSORT@

Purpose 10 sort an array of characters.

Syntax SUBROUTINE CHSORT@(A,CHS,N)

CHARACTER*(*) CHS(N)
INTEGER*4 A(N),N

Descripion CHSORT@ sorts the character arr@HS by setting pointers from 1 tN in

Example

the arrayA. After sorting,A(1) contains a pointer to the “first” element of
CHS, A(2) to the “second”, and so on.

OPTIONS(INTL)
CHARACTER*20 PUPILS(100)
INTEGER*4 IP(100)
DO 1 I=1,100
1 READ (5, (A)’)PUPILS(I)
CALL CHSORT@(IP,PUPILS,100)
PRINT *,’sorted 1ist of pupils:-’

DO 2 I=1,100
2 PRINT *,PUPILS(CIP(I))
END

15

FTN77 Library Reference

ISORT@

Purpose

Syntax

Description

To sort an integer array.

SUBROUTINE ISORT@(A,IA,N)
INTEGER*4 TA(N)
INTEGER*4 A(N),N

ISORT@ sorts the integer arrdyA by setting pointers from 1 td in the array
A in the same manner 84HSORT@.

RSORT@

Purpose

Syntax

Description

To sort aREAL*4 array.

SUBROUTINE RSORT@(A,R,N)
REAL*4 R(N)
INTEGER*4 A(N),N

RSORT@ sorts theREAL*4 arrayR by setting pointers from 1 tNl in the
arrayA in the same manner BHSORT@.

DSORT@

Purpose

Syntax

Description

16

To sort aREAL*8 array.

SUBROUTINE DSORT@(A,D,N)
REAL*8 D(N)
INTEGER*4 A(N),N

DSORT@ sorts theREAL*8 array D by setting pointers from 1 tNl in the
arrayA in the same manner BHSORT@.

5.

Error and exception
handling

The routines described in this chapter fall into two main categories:

O

Those which allow interpretation of error codes returned by other routines.
Routines which fall into this category includeERR77 and
DOS ERROR_MESSAGE@. Where a routine returns an error code it is of
course always good practice to check it for an acceptable value (usually zero).

Those which allow control over the action taken in the event of a software-
generated exception (such as an underflow, ddbGS critical error). Some
“events”, such as mouse movements and button presses, can be treated as
exceptions in this context, and can be dealt with by the mechanisms described in
this chapter.

See also chapter 28 in tR&@N77 User’'s Guide

ACCESS_DETAILS@ (5]

Purpose

Syntax

Description

Get the details of the access violation.

SUBROUTINE ACCESS_DETAILS@(ADDRESS, MODE, IC)
INTEGER*4 ADDRESS

LOGICAL*4 MODE

INTEGER*2 IC

This subroutine is used after an access violation has accured to ascertain the
address that was being accessed when the exception occured. If this function is
successfuladdresscontains the address that was being accessedieis set to

TRUE if the instruction was attempting to read from the address, FALSE if the
instruction was attempting to write to the address.

17

FTN77 Library Reference

ic is set to 0 on success, 1 on failure.

CLEAR_FLT_UNDERFLOW@ (5]

purpose Clear a floating point underflow exception.

Syntax SUBROUTINE CLEAR_FLT_UNDERFLOW@

Description ~ Decode the instruction that caused the floating point underflow and clear the
floating point underflow from the machine state.

DOS_ERROR_MESSAGE@

purpose 10 get aDOS error message.

Syntax SUBROUTINE DOS_ERROR_MESSAGE@(ERROR_CODE,MESSAGE)
INTEGER*2 ERROR_CODE
CHARACTER*(*) MESSAGE

Description ~ Returns the DOS error string corresponding to the error number
ERROR_CODE. The error numbers are augmented in the same way as for
DOSERR@.

Example

CHARACTER*80 MESSAGE

CALL OPENR@(’DATA’,IH,ERROR_CODE)

CALL DOS_ERROR_MESSAGE@(ERROR_CODE,MESSAGE)
PRINT *,MESSAGE

DOSERR@

purpose 10 print aDOS error message and exit when an error occurs.

Syntax SUBROUTINE DOSERR@(ERROR_CODE)
INTEGER*2 ERROR_CODE

Description ~ This routine does nothing ERROR_CODE is zero, otherwise it prints the
DOS error message corresponding ERROR_CODE and exits from the
program. It is typically used after system calls that®& and are normally

18

Chapter 5 Error and exception handling

expected to succeed.

Example:

CALL OPENR@(’DATA’,IH,ERROR_CODE)
CALL DOSERR@(ERROR_CODE)

ERR77

purpose 10 print aDOS error message and terminate a program when an error occurs.

Syntax SUBROUTINE ERR77(MESSAGE,ERROR_CODE)
CHARACTER*(*) MESSAGE
INTEGER*2 ERROR_CODE

Descripion This routine has a null effect ERROR_CODE is zero. Otherwise the string
MESSAGE is printed, followed by the text of thBOS error indicated by
ERROR_CODE. The program then terminates abnormally. This routine is
normally used to test fobOS error following another system call, as in the

example.
Example
CHARACTER*40 FILE
READ(*,” (A)*)FILE
CALL OPENR@(FILE,HANDLE,ERROR_CODE)
CALL ERR77(FILE,ERROR_CODE)
ERROR@

Purpose 10 print a user defined error message and terminate a program.
Syntax SUBROUTINE ERROR@(ERROR_MESSAGE)
CHARACTER*(*) ERROR_MESSAGE

Description ~ This routine generates a user defined error condition. If the program is running
under the debugger, then the message will be displayed in the error window.
Otherwise, the error is printed out and BT routine is called with a code of 1
(exit toDOS).

Example

CALL ERROR@(’Too many data points for PLOT program’)

19

FTN77 Library Reference

EXCEPTION_ADDRESS@ (5]

Purpose

Syntax

Description

Return value

To find the address of the intruction which generated the exception

INTEGER*4 EXCEPTION_ADDRESS@

EXCEPTION_ADDRESS@ returns the address of the instruction that
generated the exception event.

Address of the instruction that generated the exception.

FORTRAN_ERROR_MESSAGE@

Purpose

Syntax

Description

Example

To get aFortran error message.

SUBROUTINE FORTRAN_ERROR_MESSAGE@(ERROR_CODE,MESSAGE)
INTEGER*2 ERROR_CODE
CHARACTER*(*) MESSAGE

Returns the error message corresponding td-tmgran run time error number
ERROR_CODE. Some error messages are rather vague (e.g. Inconsistent call
to routine) but when these errors occur the system produces a more informative
error message.

CHARACTER*80 MESSAGE

INTEGER*2 ERROR_CODE
OPEN(FILE="FRED’,UNIT=6,I0STAT=ERROR_CODE)
CALL FORTRAN_ERROR_MESSAGE@(ERROR_CODE,MESSAGE)
PRINT *,MESSAGE

GET_VIRTUAL_COMMON_INFO@ (5]

Purpose

Syntax

Description

20

Get virtual common block details.

SUBROUTINE GET_VIRTUAL_COMMON_INFO@(NAME,BASE,
+ SIZE,COMMIT,AMOUT_COMMITTED)

CHARACTER*(*) NAME

INTEGER*4 BASE,SIZE,COMMIT,AMOUT_COMMITTED

When a program is linked using the virtual common (VC) option, all uninitialised

Chapter 5

Example

Error and exception handling

data (i.e. the BSS section) is removed from the executable and placed into virtual
paged memory with default base address 0x20000000. Pages of memory are
committed when necessaryGET_VIRTUAL_COMMON_INFO@ allows a

user to determine how much memory is used and also provides other information.

The subroutine returrBASE, SIZE, COMMIT (amount of memory the system
automatically commits) andAMOUNT_COMITTED (amount of memory
already committed) for the allocated virtual common block.

PROGRAM TVC1

INTEGER*4 BASE, SIZE, COMMIT, AMT_COMMIT

CALL GET_VIRTUAL_COMMON_INFO@(TVC1.EXE’,BASE, SIZE, COMMIT,AMT_COMMIT)
PRINT*,” BASE = *, BASE

PRINT*,” SIZE = *, SIZE

PRINT*,” COMMIT = *, COMMIT

PRINT*,’ AMT_COMMIT = °, AMT_COMMIT

END

JUMP@

Purpose

Syntax

Description

Example

To execute a non-local jump.

SUBROUTINE JUMP@(LABEL)
COMPLEX*16 LABEL

This routine is described here since its most frequent use is in conjuction with
SET_TRAP@. It takes a label generated \BEL@ and jumps to the label.

The label must exist in a still active routine, but this can be any distance down
the call stack.

Consider a program designed to process several sets of data and to carry on even
after errors had been diagnosed in earlier data sets:

COMPLEX*16 RECOVER

COMMON/ERR/RECOVER

CALL LABEL@(RECOVER,*10)
10 CALL READ_DATA

CALL PROCESS

GOTO 10

END

SUBROUTINE ERROR(MESSAGE)

COMPLEX*16 RECOVER

COMMON/ERR/RECOVER

21

FTN77 Library Reference

CHARACTER* (*) MESSAGE
CALL COU@(MESSAGE)
CALL JUMP@(RECOVER)
END

SubroutineERROR could be called from anywhere insi®B&ROCESS (even

many layers down inside subroutine calls) to return to label 10 ready to process
the next data set. The useJMP@ obviates the need to provide an explicit
error exit path back to the main program. It is the user’s responsibility to ensure
that theLABEL is still accessible whedUMP@ is called, i.e. that the routine
which is calledlABEL@ has not yet exited.

LABEL@

Purpose

Syntax

Description

Example

To set a label for a non-local jump.
SUBROUTINE LABEL@(LABEL,*)
COMPLEX*16 LABEL

This routine makes a label for use WitHMP@.
SeeJUMP@.

PERMIT_UNDERFLOW@

22

Purpose

Syntax

Description

To switch off floating point underflow checking.

SUBROUTINE PERMIT_UNDERFLOW@(PERMISSION)
LOGICAL*2 PERMISSION

If PERMISSION is .TRUE. then this routine forces subsequent floating point
underflows to return zero. IPERMISSION is FALSE. then subsequent
underflows will force a program fault.

Chapter 5 Error and exception handling

PRERR@

Purpose 10 print the error message associated with a given error code.

Syntax SUBROUTINE PRERR@(ERROR_CODE,STRING)
INTEGER*2 ERROR_CODE
CHARACTER*(*) STRING

Description ~ This routine does nothing ERROR_CODE is zero, otherwise it prints the
user-supplied stringSTRING followed by the system error message
corresponding t&eRROR_CODE. The routine returns normally and program
execution continuesERROR_CODE will normally be a value returned by an
earlier call to a routine that could generate a system error condition.

QUIT_CLEANUP@
Purpose 10 print a message and exit from a program with Control-break
Syntax SUBROUTINE QUIT_CLEANUP@(MESSAGE)
CHARACTER*(*) MESSAGE

Description This routine useSET_TRAP@ to trap Control-break. The system responds to
Control-break by printing the given message and returnibBfxs. This routine
provides a simple way to enable programs to be terminated early in a graceful

fashion.
Example
CALL QUIT_CLEANUP@(’Quit pressed - program abandoned’)
RESTORE_DEFAULT HANDLER@ (5

purpose Remove a user defined exception handler.

Syntax SUBROUTINE RESTORE_DEFAULT_HANDLER@(EXCEPTION)
INTEGER*4 EXCEPTION

Descripion ~Remove the default exception handler for the exception event given by
EXCEPTION and re-install the default handler.

23

FTN77 Library Reference

RUNERR@
Purpose 10 print the run-time error corresponding to a gil®BTAT value.
Syniax SUBROUTINE RUNERR@(ISTAT)
INTEGER*2 ISTAT
Descripion RUNERR@ prints an error message on the screen corresponding to a given

IOSTAT value ISTAT. These are the error messages listed in chapter 27.

SET_DISK_ERRORS@

Purpose 10 control the critical event handler.
Syntax SUBROUTINE SET_DISK_ERRORS@(L)
LOGICAL*2 L
Description If L is .TRUE. critical errors will return an error code amot put up the “Abort,
Retry, Ignore” message. Ufis FALSE. the message will appear.
SET_TRAP@ 1
Purpose 10 trap a given event.
Syntax SUBROUTINE SET_TRAP@(TRAP,OLDADDR,TYPE)
INTEGER*4 OLDADDR
INTEGER*2 TYPE
EXTERNAL TRAP
Description ~ This routine assigns an addr@&RAP to an event numbefYPE. This is the

24

address of a routine that is to be called when the given event occurs. The formel
address for the event is returneddbhDADDR (for nested traps). TYPE can
currently take one of the numbers in the table below.

Chapter 5

Error and exception handling

TYPE | Event

TrapCONTROL BREAK
Trap Floating Point faults

Trap on every key press or release
Trap on alarm clock interrupt

Trap on mouse event

Trap on reaching page reserve
Trap on user-defined event

Trap on general protection exceptign

o N o o0~ W N - O

Trap on invalid opcode

The routine which handles the trap must save the register set, and so requires
some assembler programming, see page 206 FTN&7 User's Guide

TRAP_EXCEPTION@

Purpose

Syntax

Description

Return value

Example

Install a user defined exception handler

INTEGER*4 FUNCTION TRAP_EXCEPTION@(EXCEPTION,ROUTINE)
INTEGER*4 EXCEPTION, ROUTINE

The subroutineROUTINE is installed as the default method of handling the
event specified biEXCEPTION.

If EXCEPTION is a valid exception event, the location of the previous handler
is returned. 0 is returnedBEXCEPTION is an invalid exception code

SUBROUTINE UNDERFLOW_HANDLER
END

OLD = TRAP_EXCEPTION@(UNDERFLOW, UNDERFLOW_HANDLER)

25

FTN77 Library Reference

UNDERFLOW_COUNT@

purpose 10 get the number of floating point underflows.

Syntax SUBROUTINE UNDERFLOW_COUNT@(COUNT)
INTEGER*4 COUNT

Descripion ~ COUNT is returned as the number of underflows that have occurred since the
start of the program.

26

6.

File-manipulation

FTN77 offers a wide variety of file manipulation routines. If at all possible these
should be used in preference to attempting explicit systaiis with SVC/3 for
example. Routines which take operating system file handles as arguments must only
be used with file handles obtained with one of the file opening routines detailed in
this chapter The reading and writing routines use a buffer to eliminate unnecessarily
frequent switches between real and protected mode, and to improve the performance in
general. These buffers are cleared when a file is closed or when a program terminates
and returns to the operating system. As a result of this, a file which has been open for
writing may give an error (e.g. full disk) as it is closed VBIlOSEF@. In all cases

where a routine returns an error code, this may be interpreted by calling a routine such
asDOSERR@.

ATTACH@

purpose 10 Set the current directory.

Syntax SUBROUTINE ATTACH@(PATH, ERROR_CODE)

CHARACTER*(*) PATH
INTEGER*2 ERROR_CODE

Descripon ~ PATH should be the pathname of a directory (6. g\PROJECT). ATTACH@

Example

makes this the current directory, switching disks if necessaRROR_CODE
is returned with a non-zero system error code if it fails.

CHARACTER*50 PATH

CALL COUA@(’Where do you want to be? *)
READ(*,’ (A)*)PATH

CALL ATTACH@(PATH,ERROR _CODE)

CALL DOSERR@(ERROR_CODE)

27

FTN77 Library Reference

CALL COU@(’OK - that is where you are! *)

CLOSEF@
Purpose To close a file.
Syntax SUBROUTINE CLOSEF@(HANDLE,ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE
Descripion CLOSEF@ closes a file opened WPENR@, OPENW@ or OPENRW@.
ERROR_CODE is returned with a non-zero system error code if it fails.
Exampe SeeOPRNRW@
CLOSEFD@
purpose 10 close and delete a file.
Syntax SUBROUTINE CLOSEFD@(HANDLE,ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE
Descripon CLOSEFD@ is the same a€LOSEF@ but CLOSEFD@ also deletes the
file from the disc. This is useful for temporary files.
CLOSEV@ (2
purpose Closes a file opened WithPENV@
Syntax SUBROUTINE CLOSEV@(SELECTOR,ERROR_CODE)
INTEGER*2 ERROR_CODE,SELECTOR
Descripion CLOSEV@ closes a file and removes the corresponding memory segment. It is

28

important to ensure that no segment register still holds the selector before calling
this routine. ERROR_CODE is returned as zero if the operation has succeeded,
otherwise it is returned with the relevant systmmor code.

Chapter 6 File-manipulation

CURDIR@

Purpose 10 get the current directory.

Syntax CHARACTER*(*) FUNCTION CURDIR@()

rReturnvalue CURDIR@ returns the fully qualified pathname of the current directory.

Example
CHARACTER*50 CURDIR@
PRINT *,’You are currently in ’,CURDIR@()
CURRENT_DIR@ L5)

Purpose 10 get the current directory.

Syntax SUBROUTINE CURRENT_DIR@(DIR,ERROR_CODE)
CHARACTER*(*) DIR
INTEGER*2 ERROR_CODE

Description This routine is obsolete. USBJRDIR@ instead.

Retunvalue Returns the name of the current working directoriR, or a non-zero error
codeERROR_CODE if failed. ERROR_CODE is returned a&ERANGE if
the variableDIR is not of sufficient length. HRANGE is defined in the include
file errno.ins)

DIRENT@

Purpose 10 obtain directory information.

Syntax SUBROUTINE DIRENT@(PAT,ATTRIBUTE,RESULT,RESULT_ATTRIBUTE,
+ RESULT_DATE,RESULT_TIME,FILE SIZE,ERROR_CODE)
CHARACTER*(*) PAT,RESULT
INTEGER*2 ATTRIBUTE,RESULT_ATTRIBUTE,RESULT_DATE,
+ RESULT_TIME,ERROR_CODE
INTEGER*4 FILE_SIZE

Descripion DIRENT@ returns directory information for files selected BAT (e.g.
A:*_FOR). That is, each call of the routine searches for a single file in the
directory and with the extension implied BAT. The attribute of the first file

29

FTN77 Library Reference

Example

30

Notes

100
101

returned is selected by settiBd TRIBUTE to one of the following values:

Return a normal file
Return a hidden file
Return a system file

o A~ N O

Return a volume name
16 Return a subdirectory

The name of the file that has been found is returnddESULT. Other file
information is returned in RESULT ATTRIBUTE, RESULT_DATE,
RESULT_TIME andFILE_SIZE. The file attributes are returned DOS

coded form using bits 0 to 5 of the result. The date and time are returned in
DOS compressed format.

After the first call of the routine ATTRIBUTE should be set to -1 in order to
continue the search for another file with the same attribute as before. When no
more files can be foundERROR_CODE is returned with the corresponding
systemerror code.

A sequence of calls OIRENT@ with a givenPAT must not be interrupted by
a call toDIRENT@ with a differentPAT.

The FILES@ routine has a simpler interface and is usually preferred to this
routine.

CHARACTER*20 PAT,FILE

INTEGER*2 ATTR,DATE,TIME,EC

INTEGER*4 SIZE

CALL COUA@(’Input directory pattern:’)

READ 100,PAT

EC=0

WHILE (EC.EQ.0) DO
CALL DIRENT@(PAT,0,FILE,ATTR,DATE,TIME,SIZE,EC)
IF (EC.EQ.0) PRINT 101,FILE,ATTR,DATE,TIME,SIZE
Do not call DIRENT@(PAT2,...) from here

ENDWHILE

FORMAT (A)

FORMAT(A,16,16,16,16)

END

Chapter 6 File-manipulation

EMPTY@
purpose 10 clear a file for writing.
Syntax: SUBROUTINE EMPTY@(HANDLE, ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE

Descripon EMPTY@ clears the file open with file handlifANDLE (which must not be
open for reading only)ERROR_CODE is returned as zero for success or with
a systenerror code if it fails.

ERASE@

purpose 10 delete a file.

Syntax SUBROUTINE ERASE@(FILE,ERROR_CODE)
CHARACTER*(*) FILE
INTEGER*2 ERROR_CODE

Descripion ERASE@ deletes a file. The file name may be a local name, for example:

FOO.TXT, or a fully qualified pathname, for example,\PROJECT\JUNK.TXT.
ERROR_CODE is returned as zero for success or with the systeor code.

Example

CALL ERASE@(’USELESS.DAT’,ERROR_CODE)
CALL DOSERR@(ERROR_CODE)

FEXISTS@ (5]

purpose 10 search for a file with a given path name or wildcard.

Syntax | 0GICAL*4 FUNCTION FEXISTS@(PATH, ERROR_CODE)
CHARACTER*(*) PATH
INTEGER*4 ERROR_CODE

Returnvalue FEXISTS@ returns a logical value which is .TRUE. if the name supplied in
PATH is that of a file which does exist, or is a wildcard which matches one file
only. It returns .FALSE. if such a file does not exist, or if an error occurs in
which caseERROR_CODE returns a non-zero system error code.

31

FTN77 Library Reference

FILE_EXISTS@ (5]

purpose 10 search for a file with a given path name or wildcard.

Syntax | 0GICAL*4 FUNCTION FILE_EXISTS@(PATH)
CHARACTER*(*) PATH

Description This function is obsolete. US&EXISTS@ instead.

FILE_EXISTS@ returns a logical value which is .TRUE. if the name supplied
in PATH is that of a file which does exist, or is a wildcard which matches one

file only. It returns .FALSE. if such a file does not exist, or if any kind of error
occurs.

FILE_SIZE@
Purpose 10 get the size dFILE in bytes.

Syntax SUBROUTINE FILE_SIZE@(FILE,SIZE,ERROR_CODE)
CHARACTER*(*) FILE
INTEGER*4 SIZE
INTEGER*2 ERROR_CODE

FILE_ TRUNCATE@
Purpose 10 truncate an open file at its current position.
Syntax SUBROUTINE FILE_TRUNCATE@(HANDLE,ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE

Description ~ This routine uses the handle of a file that has already been opened by
OPENW@ or OPENRW@ and truncates the file at the current writing
position. ERROR_CODE is returned as zero if the process is carried out
successfully, otherwigERROR_CODE returns a system error code.

32

Chapter 6

File-manipulation

FILEINFO@ 5]
purpose 10 get information about a specified file.
Syntax SUBROUTINE FILEINFO@(PATH,MODE,DEV,RDEV,
+ NLINK,SIZE,ATIME,MTIME,CTIME,ERROR_CODE)
CHARACTER*(*) PATH
INTEGER*2 MODE,DEV,RDEV,NLINK,ERROR_CODE
INTEGER*4 SIZE,ATIME,MTIME,CTIME
Description ~ Returns information about the file specified®&TH. This routine can be used
to return the size of a file iBIZE and the date and time that the file was last
accessed IATIME. The returned value cATIME can then be supplied to
TOTIME@, TOEDATE@ etc.. ERROR_CODE is returned as zero if the
process is carried out successfully, othenERROR_CODE returns a system
error code.
Note Arguments that do not appear in the above description are redundant in this
operating system environment.
FILES@
purpose 10 obtain directory information.
Syntax SUBROUTINE FILES@(PAT,N,NMAX,FILES,ATTR,DATE,TIME,
+ FILE_SIZE)
CHARACTER*(*) PAT,FILES(NMAX)
INTEGER*2 N,NMAX
INTEGER*2 ATTR(NMAX),DATE(NMAX),TIME(NMAX)
INTEGER*4 FILE_SIZE(NMAX)
Description Returns directory information for files selected T (e.g.A:*.FOR). N is
returned as the number of file names returnedN if equal toNMAX there may
be more matches which could not be returned. The remainder of the arrays
return information about the files. Hidden files and directories are returned by
this routine together with ordinary files. Such files may be distinguished by
using theDOS file attribute returned in thATTR array. The date and time are
returned in th®OS compressed format.
Example SeeSET_FILE_ATTRIBUTE@.

33

FTN77 Library Reference

FPOS@

Purpose 10 reposition a file.

Syntax SUUBROUTINE FPOS@(HANDLE,POSITION,NEW_POSITION,ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE
INTEGER*4 POSITION,NEW_POSITION

Descripion FPOS@ attempts to reposition an open file with the givéANDLE to the
given POSITION. NEW_POSITION is returned as either the requested
POSITION or as the position of end-of-file, whichever is less.
ERROR_CODE is returned as zero or with a systemor code if it fails.

Notes If the input value oPOSITION is supplied as a constant, it is usually necessary
to force its length to 4 bytes (e@- for the beginning of the file).

FPOS EOF@ (5]
purpose 10 move the file pointer to end-of-file
Syntax SUBROUTINE FPOS_EOF@(DESC,NEW_POSITION, ERROR_CODE)

INTEGER*2 DESC,ERROR_CODE
INTEGER*4 NEW_POSITION

Description ~ Move the file pointer associated with the file open RBESC to end-of-file.
NEW_POSITION is the new value of the file pointer.

GET_FILE_DATE_TIME_STAMP@ 2)

purpose 10 get theDOS date and time stamp for a particular file.

Syntax SUBROUTINE GET_FILE_DATE_TIME_STAMP@(FILE,DATE,TIME)
CHARACTER*(*) FILE
INTEGER*2 DATE,TIME

Descripon This routine gets the date and time stampHivE. DATE and TIME will be
returned with the value -1 if the file does not exist.

34

Chapter 6

File-manipulation

GET_FILES@ (5]

Purpose

Syntax

Description

To get a list of files in the current working directory.

SUBROUTINE GET_FILES@(WILDCARD,FILES,
+ MAXFILES,NFILES,ERROR_CODE)

CHARACTER*(*) WILDCARD,FILES(MAXFILES)

INTEGER*2 MAXFILES,NFILES,ERROR_CODE

Returns a list of all the files in the current working directory which can be
matched byVILDCARD.

Returns error codERROR_CODE asERANGE if FILES is not big enough,
but the entries which are storedAHLES will be valid.

GET_PATH@

Purpose

Syntax

Description

Example

To get the fully qualified pathname.

SUBROUTINE GET_PATH@(HANDLE,RESULT,ERROR_CODE)
CHARACTER*(*) RESULT
INTEGER*2 HANDLE,ERROR_CODE

GET_PATH@ returns the pathname of the file open on file hahtAd&IDLE.

This works regardless of whether a local or global name was used when the file
was originally openedERROR_CODE is returned as zero for success or it is
returned as a systeemror code.

CHARACTER*100 FULL_PATH

CALL OPENR@(’MYDATA’ ,HANDLE,ERROR_CODE)
CALL DOSERR@(ERROR_CODE)

CALL GET_PATH@(HANDLE,FULL_PATH, ERROR_CODE)
CALL DOSERR@(ERROR_CODE)

PRINT *,FULL_PATH

35

FTN77 Library Reference

GET_PATHV@ 2]

purpose 10 get the fully qualified pathname.

Syntax SUBROUTINE GET_PATHV@(SEGMENT,RESULT,ERROR_CODE)
CHARACTER*(*) RESULT
INTEGER*2 SEGMENT,ERROR_CODE

Descripion GET_PATHV@ returns the pathname of a file opened WVARENV@ to
memory segmenSEGMENT. This works regardless of whether a local or
global name was used when the file was originally opefRROR_CODE is
returned as zero or contains a syseror code.

MKDIR@

Purpose TO create a new systedirectory.

Syntax SUBROUTINE MKDIR@(DIR,ERROR_CODE)
CHARACTER*(*) DIR
INTEGER*2 ERROR_CODE

Description ~ The argumenDIR can be either the local name of a directory, or the full path
name. In either case, if the directory cannot be created for any reason, a non
zero systenerror code will be returned.

Example

CALL MKDIR@(’C:\ACCOUNTS’,IC)
CALL DOSERR@(IC)

OPENR@
purpose 10 open a file for reading.
Syntax SUBROUTINE OPENR@(FILE,HANDLE,ERROR_CODE)

CHARACTER*(*) FILE
INTEGER*2 HANDLE,ERROR_CODE

Description ~ This routine opens the given filElLE for reading and returns the file handle
HANDLE for use with other file handling routines in this chapter.
ERROR_CODE is returned as zero if the operation has succeeded, otherwise it

36

Chapter 6 File-manipulation

is returned with the relevant systemor code.

Notes HANDLE can also be obtained by using the standard Fortran rdDfieN
followed byINQUIRE together wittFUNIT=<filehandle> (see thdser’s Guide
for further details).

Exampe SeeOPENRW@

OPENRW@

purpose 10 open a file for reading or writing.

Syntax SUBROUTINE OPENRW@(FILE,HANDLE,ERROR CODE)
CHARACTER*(*) FILE
INTEGER*2 HANDLE,ERROR_CODE

Description ~ This routine opens a filEILE for reading or writing and returns the file handle
HANDLE for use with other file handling routines. If the file does not exist it is
created, however an existing fileriet emptied and may be over-written at the
current position. If the intended action depends on whether or not a given file
exists, then a prior call t©OPENR@ can be used to test if it does exist.
ERROR_CODE is returned as zero if the operation has succeeded, otherwise it
is returned with the relevant syst@mor code.

Notes HANDLE can also be obtained by using the standard Fortran rdDfeN
followed byINQUIRE together wittFUNIT=<filehandle> (see thdser’s Guide
for further details).

Example

C Run the program and 1ist TEST.DAT after each run.
INTEGER*2 HANDLE,ERROR_CODE
INTEGER*4 BYTES
CHARACTER*80 LINE
CALL OPENR@(’TEST.DAT’,HANDLE,ERROR_CODE)
IF(ERROR _CODE.NE.O) THEN
CALL OPENW@("TEST.DAT’,HANDLE,ERROR_CODE)
CALL WRITEFA@(’Test data..... * ,HANDLE, ERROR_CODE)
ELSE
CALL CLOSEF@(HANDLE,ERROR _CODE)
CALL OPENRW@("TEST.DAT’,HANDLE, ERROR_CODE)
LINE=" ~
CALL READFA@(LINE,HANDLE,BYTES,ERROR _CODE)
CALL DOSERR@(ERROR_CODE)

37

FTN77 Library Reference

WRITE(*,*) LINE

CALL WRITEFA@(’More info..... * ,HANDLE, ERROR_CODE)
ENDIF
END

OPENV@ 2]

purpose 10 open a file for reading.

Syntax SUBROUTINE OPENV@(FILE,SELECTOR,NB,ERROR_CODE)
CHARACTER*(*) FILE
INTEGER*2 ERROR_CODE,SELECTOR
INTEGER*4 NB

Description ~ This routine opens a filEILE for reading only to form a separate memory
segment. The selector of that segment is return&GEIrECTOR, andNB is
returned as the size of the file in bytes. The file is read (as needed) using the
paging mechanism.ERROR_CODE is returned as zero if the operation has
succeeded, otherwise it is returned with the relevant systemcode.

OPENW@

Purpose 10 open a file for writing.

Syntax SUBROUTINE OPENW@(FILE,HANDLE,ERROR CODE)
CHARACTER*(*) FILE
INTEGER*2 HANDLE,ERROR_CODE

Description This routine opens a filEILE for writing, by creating a file or emptying the file
if it already exists. It returns the file hand#®&ANDLE for use with other file
handling routines. ERROR_CODE is returned as zero if the operation has
succeeded, otherwise it is returned with the relevant systemcode.

Notes HANDLE can also be obtained by using the standard Fortran rdDfieN
followed byINQUIRE together wittFUNIT=<filehandle> (see thdser’s Guide
for further details).

Description SeeOPENRW@

38

Chapter 6 File-manipulation

READF@

purpose 10 read binary data from a file.

Syntax SUBROUTINE READF@(DATA,HANDLE,NBYTES,NBYTES_READ,
+ ERROR_CODE)
CHARACTER*(*) DATA
INTEGER*2 HANDLE,ERROR_CODE
INTEGER*4 NBYTES,NBYTES_READ

Descripon This routine readdIBYTES of data from an open file with a givétANDLE.
ERROR_CODE is returned as zero for success or a sysenr code. If end
of file is reachedNBYTES _READ is returned as -1, with #88BRROR_CODE
of zero. AlsoNBYTES_READ may be returned as less tHdBYTES. This
routine should be used on binary data.

Notes I the input value oNBYTES is supplied as a constant, it is usually necessary
to force its length to 4 bytes (appdntb the decimal value).

READFA@

purpose 10 readASCII text from a file.

Syntax SUBROUTINE READFA@(DATA,HANDLE,NBYTES_READ,ERROR_CODE)
CHARACTER*(*) DATA
INTEGER*2 HANDLE,ERROR_CODE
INTEGER*4 NBYTES_READ

Descripion READFA@ reads a line of text from an open file with a givdANDLE. Tabs
are expanded as necessaBRROR_CODE is returned as zero for success or
with a systenerror code. If end of file is reachddBYTES_READ is returned
as -1, with aleRROR_CODE of zero.

Exampe SeeOPENRW@

39

FTN77 Library Reference

RENAME@
Purpose To rename a file.
Syntax: SUBROUTINE RENAME@(FILE1,FILE2,ERROR_CODE)
CHARACTER*(*) FILE1,FILE2
INTEGER*2 ERROR_CODE
Descripion RENAME@ renamesFILE1 as FILE2 in exactly the same way as the
DOS RENAME command.
RFPOS@
Purpose 10 get the position of a file.
Syntax SUBROUTINE RFPOS@(HANDLE,POSITION,ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE
INTEGER*4 POSITION
Descripon This routine returns thROSITION of the file open on the giveRANDLE.
ERROR_CODE is returned as zero or with a systemor code if it fails.
SELECT FILE@ (2]
purpose 10 select from a displayed list of files.
Syntax SUBROUTINE SELECT_FILE@(PATTERN,RESULT,*)
CHARACTER*(*) PATTERN,RESULT
Descripion SELECT_FILE@ takes a file pattern and displays all files that correspond to
that pattern in a window. A file may be selected using the up and down cursor
keys (or the mouse) and presskrgter or a mouse button on the right one. If no
files are found or the user pres&st to indicate that he does not choose any of
the files on display, theRESULT is set to spaces and the alternate return is
taken. This routine makes it easy to provide an interactive startup interface to a
program as illustrated in the example.
Example

40

CHARACTER*80 FILE
CALL SELECT_FILE@(’C:\TESTS*.DAT’,FILE,*10)
OPEN(FILE=FILE,UNIT=5,STATUS="READONLY")

Chapter 6

10

File-manipulation

PRINT *,’NO FILE SELECTED’
END

SET_FILE_ATTRIBUTE@

purpose 10 Set a file attribute.
Syntax SUBROUTINE SET_FILE_ATTRIBUTE@(FILE,IAT,ERROR_CODE)
CHARACTER*(*) FILE
INTEGER*2 IAT,ERROR_CODE
Descripon This routine sets the attributes of the #HtLE to IAT. ERROR_CODE is
returned as zero for success or it is the systeon code. This routine is useful
for performing such tasks as changing the read-only status of a file, hiding or
revealing a file, reseting the backup bit etc..
The following program will read a file name (possibly including wild cards) from
the terminal and make the files read-only.
Example
CHARACTER*120 FILE,FILES(1000),CMNAM
INTEGER*2 ATTR(1000),DATE(1000),TIME(1000)
INTEGER*4 FILE SIZE(1000)
CALL FILES@(CMNAM(),N,1000,FILES,ATTR,DATE, TIME,FILE_SIZE)
DO 1 I=1,N
CALL SET_FILE_ATTRIBUTE@(FILES(I),OR(ATTR(I),1),IC)
CALL DOSERR@(IC)
1 CONTINUE
END
SET_SUFFIX@
purpose 10 change the extension of a given file name.
Syntax SUBROUTINE SET_SUFFIX@(FILENAME,SUFFIX,L)
CHARACTER*(*) FILENAME
CHARACTER*3 SUFFIX
LOGICAL*2 L
Description SET_SUFFIX@ changes the file extension of a given file with name

41

FTN77 Library Reference

FILENAME. SUFFIX is the new extension required, given without the period
(“.™). The valueL will be set to TRUE. if the file had an extension that was not
SUFFIX. L will be given the valueFALSE. if the file had the same or no
extension.

Example

A="c:\ftn77.dir\file.dat’

CALL SET_SUFFIX@(A,’ASC’,L)
C At this point A contains ‘c:\ftn77.dir\file.ASC’
C and L contains .TRUE.

SET_SUFFIX1@

purpose 10 add an extension to a given file name.

Syntax SUBROUTINE SET_SUFFIX1@(FILENAME,SUFFIX,L)
CHARACTER*(*) FILENAME
CHARACTER*3 SUFFIX
LOGICAL*2 L

Description SET_SUFFIX1@ will add a file-extensiotsUFFIX to the stringFILENAME
containing a filename if none is present. The filename will be left as it is if the
flename already contains an extension. The extension should be given without
the period (“.”). The valué will be set to TRUE. if the file had an extension
that was noSUFFIX. L will be given the valueFALSE. if the filename had the
same or no extension.

Example

A="c:\ftn77.dir\file.dat’

CALL SET_SUFFIX1@(A,’ASC’,L)
C At this point A contains ’‘c:\ftn77.dir\file.dat”
C and L contains .TRUE.

42

Chapter 6 File-manipulation

TEMP_FILE@

Purpose 10 provide a unique name for a file.

Syntax: SUBROUTINE TEMP_FILE@(FILEX,ERROR_CODE)
CHARACTER*(*) FILEX
INTEGER*2 ERROR_CODE

Descripon TEMP_FILE@ provides a name which may be used for the creation of a
temporary file. This name (of the form F$dddddd. TMP where d is a digit) is
different from all the file names within the current directory. It is important to
note that this routine does not create or open a file.

TEMP_PATH@

purpose 10 get a suitable name for a temporary file.

Syntax SUBROUTINE TEMP_PATH@(PATH)
CHARACTER*(*) PATH
INTEGER*2 ERROR_CODE

Description This routine is obsolete. USEMP_FILE@ instead.

TEMP_PATH@ makes up a path name for a temporary file. The file name
component is created in the same way asTfeWP_FILE@. The directory is
that given by th MPDIR environment variable (or “\TMP” if this is not set).
Note that this routine does not actually open the file.

WILDCHECK@ (5]

purpose 10 check for the matching of a file name with a wild card.

Syntax | 0GICAL*2 FUNCTION WILDCHECK@(WILDCARD,NAME)
CHARACTER*(*) WILDCARD,NAME

Description ~ Returns .TRUE. ifNAME can be matched wittWILDCARD, .FALSE.
otherwise (including when the syntaxXWfLDCARD or NAME is invalid).

43

FTN77 Library Reference

WRITEF@
purpose 10 Write binary data to a file.
Syntax SUBROUTINE WRITEF@(DATA,HANDLE,NBYTES, ERROR_CODE)
CHARACTER*(*) DATA
INTEGER*2 HANDLE,ERROR_CODE
INTEGER*4 NBYTES
Description ~ Writes NBYTES of binary dataDATA to the file with the given handle.
ERROR_CODE is returned as zero for success or a systerar code on
failure. No data compression on insertion of control characters is performed.
Notes I the input value oNBYTES is supplied as a constant, it is usually necessary
to force its length to 4 bytes (appdndb the decimal value).
WRITEFA@
purpose 10 write a line of data to ahSCl| file.
Syntax SUBROUTINE WRITEFA@(DATA,HANDLE, ERROR_CODE)
CHARACTER*(*) DATA
INTEGER*2 HANDLE,ERROR_CODE
Descripion ~ WRITEFA@ writes DATA to an open file with a giveHANDLE. A carriage
return/linefeed is added to the end of the ddE#&RROR_CODE is returned as
zero for success, otherwise it returns the sysieor code.
Example

44

INTEGER*2 HANDLE,ERROR_CODE
CALL OPENW@(’TEST.DAT’,HANDLE, ERROR_CODE)
CALL DOSERR@(ERROR_CODE)

CALL WRITEFA@(’Test data..... * ,HANDLE, ERROR_CODE)
CALL WRITEFA@(’More info..... * ,HANDLE, ERROR_CODE)
END

1.

Graphics drawing

Introduction

FTN77 supports screen, printer amdP-GL (plotter) compatible graphics. The
printer, plotter and “virtual screen” are auxiliary devices (for convenience these are
described separately in the next two chapters). You can only open one auxiliary device
at a time. If you open another whilst one is open then the old device will be closed. All
the graphics output produced by the routines described in this chapter will be directed
to the auxiliary device if one is open, otherwise the output will be directed to the
screen. Even when an auxiliary device is open, however, it is still possible to use the
routines in this chapter which only relate to the screen (EGA@,
TEXT_MODE@, CLEAR_SCREEN@).

Palette registers and 16 colour graphics.

The colour number which is used for 16 colour graphics is a Palette Register Number
(PRN) in the range 0..16. Each register takes a Palette Register P&V (n the
range 0..63 which defines the colour.

In EGA mode thePRV specifies the colour directly, with the 6 least significant bits
having the following symbolic meaning

bit 5 4 3 2 1 0
red green blue Red Green Blug
one third intensity two thirds intensity

45

FTN77 Library Reference

46

The defaulPRVs are given by:

PRN | Colour PRV
0 Black 0
1 Blue 1
2 Green 2
3 Cyan 3
4 Red 4
5 Magenta 5
6 Brown 20
7 White 7
8 Dark Grey 56
9 Light Blue 57

10 Light Green 58
11 Light Cyan 59
12 Light Red 60
13 Light Magenta 61
14 Yellow 62

15 Intense White 63
16 Black 0

PRNs 1..15 represent available colours for pixels, lines, etc.

PRN O provides the default background colour.
PRN 16 specifies the screen border (overscan) colour.
PRN 7 provides the default text colour attribute.

The PRVs can be changed using SET_PALETTE@ and
SET_ALL_PALETTE_REGISTERS@.

In 16 colourVGA mode thePRV specifies the colour indirectly by providing a pointer

in the range 0..255 to certdDAC (digital-to-analogue converter) registers. TheC
registers provide a means of defining 256 colours (although only 16 different colours
can appear on the screen at any one time). Bach register contains three values
representing the red, green and blue intensities in the range 0..63.

The default palette register values are the same aBGd& mode and the default
values for thdDAC registers 0..63 emulateGA mode. For example, palette register

7 has value 20 (brown) corresponding to two thirds intensity red with one third
intensity green. The default valuesDAC register 20 areR=42; G=21; B=0).

Chapter 7 Graphics drawing

256 colour graphics.

The colour number which is used for 256 colour graphicdOa@ register number in
the range 0..255 with the same construction as for 16 colour modes. In this case all
256 colours can appear simultaneously on the screen.

The DAC values can be changed usingET_VIDEO DAC@ and
SET_VIDEO_DAC_BLOCK@.

Polygon filling

A polygon is a closed polygonal line, i.e. a line joining an ordered set of vertices. The
edges of the polygon may intersect and polygons may be combined. There is no limit
to either the complexity of a polygon (many thousands of intersecting edges are
possible), or to the number of polygon definitions that you have currently defined,
beyond the memory space available on your machine.

A polygon is filled by colouring all points in its interior. A point is on the interior of a
polygon if an odd number of boundaries have to be crossed to reach the exterior of the
polygon. Specifying the vertices of the polygon in a different order may, therefore,
produce a different fill result.

A polygon definition is created in memory by making a call to
CREATE_POLYGON@. This call will return a polygon “handle”. Use this handle

in all subsequent calls that affect the polygon. The position of the polygon is part of
the polygon definition. However, the polygon definition may be altered by making a
call toMOVE_POLYGON@ to shift the position relatively.

Some polygons contain sub-polygons. For example, an area may have several holes in
it, or its boundary may be intersected by other polygons. Every sub-polygon in the
polygon should be created and the definitions combined to make a new polygon with
COMBINE_POLYGON@. The original definitions will remain and be available.
Subsequent operations on these polygons will have no effect whatever on the combined
polygon, which is now an entirely separate and distinct entity. You will be given a new
polygon handle for the combined polygon.

The polygon may be filled by making a callfbLL_POLYGON@. The polygon
definition will remain and still be available for later use. When the useful life of a
polygon definition has expired it may be deleted by calling
DELETE_POLYGON_DEFINITION@. This releases memory for future use.

47

FTN77 Library Reference

48

Text attributes

Text written to a graphics device usibiRAW_TEXT@ has attributes which can be
selected by usin§ET_TEXT_ATTRIBUTE@. These are:

FONT: the shape of the characters.
SIZE: the replication factor from the original definition of the characters.

ROTATION: this is the direction of the character string; the string is rotated about
the bottom left corner of the first character in the string.

ITALIC: this is a shear transformation applied to the character.

Both of the raster devices (i.e. screen and graphics printer) use the same fonts. TI
plotter has its own built-in fonts which are different from those used by the raster
devices. The text attributes are available globally (i.e. when you have selected a fon
size, rotation and italic, these do not have to be re-selected) and are used in eve
subsequent call DRAW_TEXT@.

These attributes should be used with some caution on the raster devices when using |
mapped fonts. Whilst increasing the size merely increases the chunkiness of the tex
pixel rounding effects may make the text untidy for certain rotations and italicisations.
The situation might be improved in these cases by altering the size of the text.

Here are a few pertinent hints:

For rotations in multiples of 90 degrees:
Keep the size of the characters an integer.

For rotations in multiples of 45 degrees:

Multiply an integer size by2 and use this. i.e. instead of using size
5.0 use sizeB/2=7. For best effects the size should be divisible by
1.4.

For other rotations:

A certain amount of thought and experimentation is necessary. Avoid
character sizes below 2.0.

Additional fonts

In addition to the fonts provided with the display adapters and the plotter, a set of
proportionally spaced fonts has been made available. These fonts have characters
varying widths, unlike the fixed (or monospaced) fonts provided with the display
adapters. You should also be aware that they are stroke fonts and more suitable
plotter output than to screen or printer output.

Chapter 7

Graphics drawing

A list of these fonts is given below:

Font No. | Description Style Weight
101 Simplex Roman sans serl|f
102 Duplex Roman sans serif bold
103 Simplex Greek sans serif
104 Complex Roman seriffed
105 Complex ltalic seriffed
106 Triplex Roman seriffed bold
107 Triplex Italic seriffed bold
108 Simplex Script
109 Complex Script bold
110 Complex Greek seriffed
111 Complex Cyrillic seriffed
112 Gothic English
113 Gothic German
114 Gothic Italian

Coordinate systems

Every device has its own sense and range of coordinates. All devices have x=0 on the
left of the screen or page but in the case of the screen and printer y=0 is on the top
whereas for the plotter it is on the bottom. Due to differences between the horizontal
and vertical sizes of the pixels on the raster devices, a circle in coordinate space will
not appear as a true circle on the screen or page. You should take this into account
when designing your software. The following table illustrates the situation for the
raster devices:

Device Position Range Resolution [Pixel Size Ratio

of (0,0) Hor:Ver
EGA top left (0,0)-(639,349) 640x350 1.37:1.0
VGA top left (0,0)-(639,479) 640x480 1.0:1.0
printer top left (0,0)-(959,575) 960x576 5.0:3.0
virtual-screen top left (0,0)-(xx,yy) | xx+1,yy+1

Note that the printer referred to above is an Epson 9 pin dot matrix (or compatible)
printer. This is the default type.

The following figure illustrates the situation for plotters:

49

FTN77 Library Reference

HP7550A:
Paper Size Position of (0,0) Range Resolution
A4 bottom left (0,0)-(10870,7600) 0.025mm
A3 bottom left (0,0)-(15970,10870 0.025mm
A bottom left (0,0)-(10170,7840) 0.025mm
B bottom left (0,0)-(16450,10170 0.025mm
HP7475A:
Paper Size Position of (0,0) Range Resolution
A4 bottom left (0,0)-(11040,7721) 0.025mm
A3 bottom left (0,0)-(16158,11040 0.025mm
A bottom left (0,0)-(10365,7962) 0.025mm
B bottom left (0,0)-(16640,10365 0.025mm

CLEAR_SCREEN@

Purpose

To clear the screen.

Syntax

Description

See also

SUBROUTINE CLEAR_SCREEN@

CLEAR_SCREEN@ clears the screen to the default background colour in
either text or graphics mode and sets the text cursor position to (0,0).

CLEAR_SCREEN_AREA@, FILL_RECTANGLE®@.

CLEAR_SCREEN_AREA@

Purpose

Syntax

Description

50

To clear a rectangular area of the screen.

SUBROUTINE CLEAR_SCREEN_AREA@(IX1,IY1,IX2,IY2,ICOL)
INTEGER*2 IX1,IX2,IY1,IY2,ICOL

This routine clears an area of the graphics screen to colour nu@oér.
(IX1,1Y1) are the coordinates of the top left corner of the rectangle whilst
(IX2,1Y2) are the coordinates of the bottom right. If any portion of the area is

Chapter 7 Graphics drawing

off screen or the screen is not in graphics mode then no action will be taken.
seealso CLEAR_SCREEN@, FILL_RECTANGLE®@.

COMBINE_POLYGONS@

purpose 10 get the handle for a combination of polygons.

Syntax SUBROUTINE COMBINE_POLYGONS@(HANDLE_ARRAY,N,HANDLE,
+ ERROR_CODE)
INTEGER*2 HANDLE_ARRAY(N),N,HANDLE, ERROR_CODE

Descripon ~ This routine combinedN polygons with handleHANDLE_ARRAY(1) to
HANDLE_ARRAY(N), to make one complex polygon and returns the handle
HANDLE for it. All of the polygons must be valid otherwise no action will be
taken and the valuERROR_CODE=2 is returned. Other error codes are the
same as those faCREATE_POLYGON@. All of the original polygons
remain defined and available for use.

Seealso FILL_POLYGON@, MOVE_POLYGON@, DELETE_POLYGON_DEFINITION@.

Example

To see what the effect of combining polygons is,
take a Targe rectangle and combine it with a smaller
rectangle. A hole will be created in the Tlarger rectangle.
It is important to realise that the result does not depend
on the order in which the polygons are combined.
PROGRAM BOX7
INTEGER*2 X1(5),Y1(5),X2(5),Y2(5),K,HANDLE(3),
+ ERROR_CODE

C Data for the large rectangle

DATA X1/50,300,300, 50,50/

DATA Y1/50, 50,300,300,50/
C Data for the small rectangle

DATA X2/100,200,200,100,100/

DATA Y2/100,100,200,200,100/
C Create the boxes as polygon definitions
C There is no need to actually be in graphics mode
C or have a graphics device open
CALL CREATE_POLYGON@(X1,Y1,5,HANDLE(1),ERROR _CODE)
IF(ERROR_CODE.NE.0)GOTO 20
CALL CREATE_POLYGON@(X2,Y2,5,HANDLE(2),ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 20

OO OO0

51

FTN77 Library Reference

C Produce a new polygon by combining the large and small boxes
CALL COMBINE_POLYGONS@(HANDLE,2,HANDLE(3),ERROR _CODE)
IF(ERROR_CODE.NE.0)GOTO 20

C Enter graphics mode
CALL EGA@

C Fi1l the new polygon with colour 4
CALL FILL_POLYGON@(HANDLE(3),4,ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 10

C Wait for a key press
CALL GET_KEY@(K)

C Return to text mode
CALL TEXT_MODE@

STOP ’H****% QK’
C Error handling
10 CALL TEXT_MODE@
20 IF(ERROR _CODE.EQ.1)THEN
STOP ****** ERROR: Out of memory’
ELSEIF(ERROR_CODE.EQ.2)THEN
STOP **%*** ERROR: Invalid polygon handle’
ENDIF
END

CREATE_POLYGON@

purpose 10 get a handle for a specified polygon.
Syntax SUBROUTINE CREATE_POLYGON@(X,Y,N,HANDLE,ERROR_CODE)
INTEGER*2 X(N),Y(N),N,HANDLE,ERROR_CODE

Description ~ This routine creates a polygon with ordered set of edges
(IX(Q),1Y(1))..X(N),(IY(N)) in memory and returns the valANDLE for use
in other polygon functions (see page 47).

If the polygon is not closed then the function will close it automatically.
However, it is good practice to provide a closed polygon. It is also recommended
that a polygon that is filled on a plotter should also be edged.

The creation of a polygon is independent of the graphics screen mode or device
for which it is intended.

The polygon error codes in this and other polygon functions are:

52

Chapter 7 Graphics drawing

ERROR_CODE | Description
0 operation successful

1 out of memory; the polygon is too complex to be created or filled with the
available memory

2 invalid polygon handle; the polygon specified is not present

It is advisable to check the error code on every call of a polygon function.

seeaso COMBINE_POLYGONS@, MOVE_POLYGON@, FILL_POLYGON@,
DELETE_POLYGON_DEFINITION@.

Example SeeFILL_POLYGON@

DELETE_POLYGON_DEFINITION@
purpose 10 delete a polygon definition.
Syntax SUBROUTINE DELETE_POLYGON_DEFINITION@(HANDLE,ERROR_CODE)
INTEGER*2 HANDLE,ERROR_CODE

Descripion ~ This routine frees the memory associated with a polygon formed by using
CREATE_POLYGON@ and disassociates the handle. The error codes are the
same as those fREATE_POLYGON@.

DRAW_HERSHEY@

purpose 10 draw an Hershey character.

Syntax SUBROUTINE DRAW_HERSHEY@(IHERSH,IH,IV,ICOL,IH_END,IV_END)
INTEGER*2 IHERSH,IH,IV,ICOL,IH_END,IV_END

Descripion This function draws the Hershey character nunib#RSH at the position
(IH, 1V) in the colourlCOL. The position which could be used for a following
character is returned aBH(END, IV_END). In the Hershey set of occidental
character digitisations, every character graphic was assigned a number in the
range 1..3926, though not every value in this range was used. Here the
convention of using 0 as the space character is adopted. The character is drawn
using the current attributes of size, rotation and italicisation (the default values
can be changed by callii@ET_TEXT_ATTRIBUTE@); the font number is not
relevant in this context).

53

FTN77 Library Reference

Example

54

OO OO

1

This program uses DRAW HERSHEY@ and HERSHEY PRESENT@ to
draw Hershey characters. The character base Tine and
boundaries are indicated by corner sections drawn in red.
The program requires ANSI.SYS to be Toaded.
PROGRAM HERSH1
LOGICAL*2 YESNO
INTEGER*2 I,ID,IH,IV
CHARACTER POSN*26,ESC
Use ANSI control strings to position text cursor
ESC=CHAR(27)
POSN=ESC//’[10;2fHershey character °’
Select character size 5, the FONT parameter will
not be used for this program
CALL SET_TEXT_ATTRIBUTE@(1,5.0,0.0,0.0)
Change to VGA graphics mode
CALL VGA@
Length of 1line segment used in drawing corners
ID=10
Begin search of database at Hershey character 1, concluding
at character 3926
DO 1 I=1,3926
See if the character is present
CALL HERSHEY_PRESENT@(I,YESNO)
If present, draw the character
IF(YESNO)THEN
Print text string using ANSI cursor controls
PRINT *(A,I5)’,POSN,I
Draw red left corner angle
CALL DRAW_LINE@(50-1D,300,50,300,4)
CALL DRAW_LINE@(50,300,50,300+ID,4)
Draw the character itself,
the right hand boundary will be returned in IH and IV
CALL DRAW_HERSHEY@(I,50,300,7,IH,IV)
Draw red right corner angle
CALL DRAW_LINE@(IH,IV,IH+ID,IV,4)
CALL DRAW_LINE@(IH,IV,IH,IV+ID,4)
Wait on key press
CALL GET_KEY@(K)
If escape was pressed exit from program
IF(K.EQ.27)GOTO 2
Otherwise clear the screen ready for the next character
CALL NEW_PAGE@
ENDIF
CONTINUE

Chapter 7 Graphics drawing

C Return to text mode
2 CALL TEXT_MODE@
END

DRAW_LINE@

purpose 10 draw a straight line in graphics mode.

Syntax SUBROUTINE DRAW_LINE@(IX1,IY1,IX2,1Y2,ICOL)
INTEGER*2 IX1,IY1,IX2,IY2,ICOL

Descripon DRAW_LINE@ draws a line with colour numb@€OL from (X1, IY1) to
(IX2, 1Y2). The screen must be in graphics mode and the coordinates are pixel
numbers so the result depends on the graphics mode in use.

seealso POLYLINE@.

Example

Draw a box (50,50), (200,200) of colour 2 in EGA graphics
mode. Note that it would be simpler to use the routine
RECTANGLE@ in this case, but this example serves the purpose
of illustration.
PROGRAM BOX1
INTEGER*2 X1,Y1,X2,Y2,K
DATA X1,Y1,X2,Y2/50,50,200,200/
C ENTER EGA GRAPHICS MODE
CALL EGA@
C DRAW THE 4 SIDES OF THE BOX
CALL DRAW_LINE@(X1,Y1,X2,Y1,2)
CALL DRAW_LINE@(X2,Y1,X2,Y2,2)
CALL DRAW_LINE@(X2,Y2,X1,Y2,2)
CALL DRAW_LINE@(X1,Y2,X1,Y1,2)
C WAIT FOR A KEY PRESS AND RETURN TO TEXT MODE
CALL GET_KEY@(K)
CALL TEXT_MODE@
END

OO OO

55

FTN77 Library Reference

DRAW _TEXT@
Purpose 10 draw text in graphics mode.
Syntax SUBROUTINE DRAW_TEXT@(STR,IH,IV,ICOL)
CHARACTER*(*) STR
INTEGER*2 IH,IV,ICOL
Descripon DRAW_TEXT@ draws text on aEGA or VGA screen at the pointH, V).
STR contains the character string to be drawn. The text is positioned to the
nearest pixel (unlike the correspondiBPS routine). The screen must be in
graphics modelCOL provides the colour number for the text which appears on
the existing background. The text attributes of font, size, rotation and
italicisation can be assigned usiBBT_TEXT_ATTRIBUTE@.
See also DRAW_H ERSHEY@
EGA@ (4
purpose 10 switch toEGA graphics mode.
Syntax SUBROUTINE EGA@
Descripion EGA@ switches a console with @&GA or VGA card to graphics mode with
EGA resolution (640x350,16 colours) and clears the screen.
seealso VGA@, GRAPHICS _MODE_SET@, TEXT_MODE@.
ELLIPSE@
purpose 10 draw an ellipse.
Syntax SUBROUTINE ELLIPSE@(IXC,IYC,IA,IB,ICOL)
INTEGER*2 IXC,IYC,IA,IB,ICOL
Descripion ~ELLIPSE@ draws an ellipse with centre dXC, IYC), with horizontal semi-
axis IA, vertical semi-axidB and colour numbelCOL. This routine can be
used to produce a circle on the current graphics device if the axes are scalec
appropriately by the values given on page 49.
See also FlLL_ELLlPSE@

56

Chapter 7

Graphics drawing

FILL ELLIPSE@

Purpose

Syntax

Description

See also

To fill an ellipse.

SUBROUTINE FILL_ELLIPSE@(IXC,IYC,IA,IB,ICOL)

INTEGER*2 IXC,IYC,IA,IB,ICOL

FILL_ELLIPSE@ fills an ellipse with centre aitXC, IYC), with horizontal
semi-axislA, vertical semi-axi$B and colour numbelCOL. This routine can

be used to fill a circle on the current graphics device if the axes are scaled
appropriately by the values given on page 49.

ELLIPSE@.

FILL_POLYGON @

Purpose

Syntax

Description

See also

Example

To fill a polygon.

SUBROUTINE FILL_POLYGON@(HANDLE,ICOL,ERROR_CODE)
INTEGER*2 HANDLE,ICOL,ERROR_CODE

This routine fills the polygon which has hantH&NDLE with colour number
ICOL. If the target device is a plotter then it is recommended that the polygon
should be edged usif@OLYLINE@ (assuming that the polygon has not been
moved or combined). The error codes are the same as those for
CREATE_POLYGON@.

CREATE_POLYGON@, COMBINE_POLYGONS@,
MOVE_PLOYGON@.

PROGRAM BOX3

INTEGER*2 X(5),Y(5),K,HANDLE, ERROR_CODE
DATA X/50,200,200, 50,50/
DATA Y/50, 50,200,200,50/

C Create the box as a polygon definition
C There is no need to actually be in graphics mode
C or have a graphics device open

CALL CREATE_POLYGON@(X,Y,5,HANDLE,ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 20

C Enter ega graphics mode

CALL EGA@

C Fill the box with colour 4, it is only now that the box

57

FTN77 Library Reference

C will appear at all on the screen
CALL FILL POLYGON@(HANDLE,4,ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 10
C Edge the box, but use a different colour
C Note the return to (50,50) to close the box
CALL POLYLINE@(X,Y,5,7)
C Wait for a key press return to text mode
CALL GET_KEY@(K)
CALL TEXT_MODE@
STOP ’#**** QK’
C Error handling
10 CALL TEXT_MODE@
20 IF(ERROR _CODE.EQ.1)THEN
STOP ****** ERROR: Out of memory’
ELSEIF(ERROR_CODE.EQ.2)THEN
STOP **%*** ERROR: Invalid polygon handle’
ENDIF
END

FILL RECTANGLE@
purpose 10 fill a rectangle.
Syntax SUBROUTINE FILL_RECTANGLE@(IX1,IY1,IX2,IY2,ICOL)
INTEGER*2 IX1,IY1,IX2,IY2,ICOL

Descripon FILL_RECTANGLE@ fills a rectangle in colour numbetCOL where
(IX1, 1Y1) and (X2,1Y2) are opposite corners. This routine is similar to
CLEAR_SCREEN_AREA@.

seeaso RECTANGLE@, CLEAR_SCREEN_AREA@.

GET_ALL _PALETTE_REGS@ (4]

purpose 10 get all palette registers for colour graphics.

Syntax SUBROUTINE GET_ALL_PALETTE_REGS@(CREGS)
CHARACTER*17 CREGS

Description This routine gets the contents of all of the 17 palette regis@REGS is an
array of 17 bytes containing the palette register values (see page 45).

58

Chapter 7 Graphics drawing

seealso GET_VIDEO_DAC_BLOCK@.

GET_DEVICE_PIXEL@ 4

purpose 10 get the pixel colour for a virtual screen or printer.

Syntax SUBROUTINE GET_DEVICE_PIXEL@(IX,IY,ICOL)
INTEGER*2 IX,IY,ICOL

Description ~ Returns the colour of the pixel aX(1Y) for the current graphics device in
ICOL. This routine differs fromGET_PIXEL@ in that GET_PIXEL@
always relates to the screen, wher&ST_DEVICE_PIXEL@ relates to a
currently open virtual screen or printer (not a plotter).

seealso SET_DEVICE_PIXEL@, GET_PIXEL@

GET_GRAPHICS_MODES@ ©

Purpose 10 get details of all the graphics modes.

Syntax SUBROUTINE GET_GRAPHICS_MODES@(XRES,YRES,COLOURS,MODE,
+ BANKED)
INTEGER*2 XRES(*),YRES(*),MODE(*)
INTEGER*4 COLOURS(*)
LOGICAL*2 BANKED(*)

Description ~ This routine returns arrays containing the horizontal and vertical resolutions, the
number of colours, the corresponding mode and a logical array (0 or 1) indicating
if the mode uses “banked” memory. An array size of 20 should be sufficient for
all the modes. This function has the side effect of configuring the library to your
graphics board.

seeaso GRAPHICS_MODE_SET@, SCREEN_TYPE@.

GET_GRAPHICS_RESOLUTION@ ©

Purpose 10 get details of the high resolution graphics mode.

Syntax SUBROUTINE GET_GRAPHICS_RESOLUTION@(HSIZE,VSIZE,NCOLOURS)

59

FTN77 Library Reference

INTEGER*2 HSIZE,VSIZE,NCOLOURS

This routine gets details of a predefined high resolution graphics mode that has

Description
been assigned using tB®©NFIGDB utility (or has a default value, see page 309
of theFTN77 User’'s Guide
The function yields the horizontal and vertical resolutiBf®ZE and VSIZE
and the number of colouMCOLOURS.
Notes In most situations it is better to UBET GRAPHICS MODES@ instead.
GET_PIXEL@ (4
Purpose 10 get a pixel colour.
Syntax SUBROUTINE GET_PIXEL@(IH,IV,ICOL)
INTEGER*2 IH,IV,ICOL
Descripion ~GET_PIXEL@ gets the colour numbéCOL of the pixel at iH, 1V) on the
screen. Higher order bits d€OL may contain unwanted bit planes. For
example, with 16 coloursnd with Z'F’ to mask off higher order bits.
seealso SET_PIXEL@, GET_DEVICE_PIXEL@, SET_DEVICE_PIXEL@.
GET_TEXT_MODES@ (2]
purpose 10 get information about the available text modes.
Syntax SUBROUTINE GET_TEXT_MODES@(COLUMNS,ROWS,MODE,CELL_HEIGHT,
+ CELL_WIDTH)
INTEGER*2 COLUMNS(*),ROWS(*),MODE(*),CELL_HEIGHT(*),
+ CELL_WIDTH(*)
Description ~ This routine returns the text modes supported by your video card in a set of

60

arrays. The arrays are filled with the number of columns and rows, the mode
number and the size of the character cell for each supported mode. Please ensu
that your arrays are large enough to hold all the returned data. An array size of
30 will suffice for all graphics cards currentlymported. On return the last
MODE array element will be followed by the value -1.

This routine has the side-effect of configurbBOS to your graphics board.

Chapter 7

See also

Graphics drawing

TEXT_MODE_SET@

GET_TEXT_SCREEN_SIZE@ 2)

Purpose

Syntax

Description

See also

To get the resolution of the current text mode.

SUBROUTINE GET_TEXT_SCREEN_SIZE@(HSIZE,VSIZE)
INTEGER*2 HSIZE,VSIZE

Reads the text screen size fromBi©S data area (this data may be incorrect if
your graphics board does not set this area up correctly). Returns the number of
character columns IHSIZE and the number of character rowd/f8IZE.

TEXT_MODE_SET@, GET_TEXT_MODES@

GET_VIDEO _DAC_BLOCK@ (4]

Purpose

Syntax

Description

See also

To get a block o GA DAC registers.

SUBROUTINE GET_VIDEO_DAC_BLOCK@(IFIRST,NREGS,IRGB)
INTEGER*2 IFIRST,NREGS
INTEGER*1 IRGB(3,NREGS)

This routine gets a block of vidddAC registers. It passes information in the
same manner &ET_VIDEO_DAC_BLOCK@.

GET_DACS_FROM_SCREEN_BLOCK@.

GRAPHICS_MODE_SET@ (4]

Purpose

Syntax

To set the graphics mode to a given resolution.

SUBROUTINE GRAPHICS_MODE_SET@(IXRES,IYRES,NCOLOURS,
+ ERROR_CODE)

INTEGER*2 IXRES,IYRES,ERROR_CODE

INTEGER*4 NCOLOURS

61

FTN77 Library Reference

Description

See also

This routine finds a graphics mode WHKRES horizontal resolution]YRES
vertical resolution and the number of coloMG@OLOURS. If no suitable mode
exists on your graphics board or the specified mode could not be entered ther
ERROR_CODE is returned as a non-zero value. It is important to always
check the value o0ERROR_CODE after calling this routine. Reasons for
failure to enter a mode might be:

O insufficient memory on the board for the mode; some modes require 1Mb of
graphics memory

O you have an early version of the board that does not support the mode,

O you have an incorrect monitor type; some boards detect the monitor type and
will not enter a mode that needs a monitor different from the one which is
attached.

O the compiler does not support the mode; only modes returned by
GET_GRAPHICS_MODES@ are supported.

WARNING:
Entering a mode for which the monitor is unsuitable is likely to damage
the monitor and graphics board. It is THE USER'S responsibility to
check the board and monitor for suitability.

EGA@, TEXT_MODE@, VGA@, HIGH_RESOLUTION_GRAPHICS_MODE@,
USE_VESA_INTERFACE®@.

GRAPHICS_WRITE_MODE@

62

Purpose

Syntax

Description

To select repla¢cOR mode before writing to the screen, virtual screen or
printer.

SUBROUTINE GRAPHICS_WRITE_MODE@(MODE)
INTEGER*2 MODE

This routine sets the graphics write mode for the screen depending on the value o
MODE. It also sets the mode for a virtual screen or printer if one of these is
open. Values of 0, 1 or 2 will force all subsequent graphics output to replace
existing pixels. A value of 3 will cause the output toXdigRed with previous
pixels.

Chapter 7

Graphics drawing

HERSHEY_PRESENT@

purpose 10 test if a character number has a Hershey representation.
Syntax SUBROUTINE HERSHEY_PRESENT@(IHERSH,YES)
INTEGER*2 IHERSH
LOGICAL*2 YES

Description ~ This routine tests if the character numibdERSH is present as a digitised
character in the databas¥ES is returned asTRUE. if the Hershey character
IHERSH is present in the database, otherwigs&s=.FALSE.

Example SeeDRAW_HERSHEY@
HIGH _RESOLUTION_GRAPHICS MODE@ (4
Purpose 10 Switch to high resolution graphics mode.
Syntax SUBROUTINE HIGH_RESOLUTION_GRAPHICS_MODE@

Description T his routine switches to a predefined high resolution graphics mode that has been
assigned using theCONFIGDB utility (or has a default value). The
CONFIGDB utility edits a file called DBOS.CFG which automatically
configuresDBOS when it is loaded. The routine also clears the screen.

Notes In most situations it is better to UBRAPHICS_MODE_SET@ instead
IS_TEXT_MODE@ (2]
purpose 10 test if the screen is in text or graphics mode.
Syntax SUBROUTINE IS_TEXT_MODE@(STATE)
LOGICAL*2 STATE
Description STATE is returned asTRUE. if the screen is in text mode and is returned as

.FALSE. if the screen is in graphics mode. In the case \6GaA board, this
routine interrogates thERTC (cathode ray tube controller). Otherwise the
information is obtained from the vid&OS data area.

63

FTN77 Library Reference

LOAD_STANDARD_COLOURS@

Purpose

Syntax

Description

To load the standard colours for 256 colour mode.

SUBROUTINE LOAD_STANDARD_COLOURS@

This routine loads the videDACs with the standard colour values of the
320x200x256V/GA mode. It should only be used in 256 colour modes since the
videoDAC values for the 16 colour modes are different (see page 47).

Video DAC registers 0..15 give the standde@GA colours 0..15. Registers

16..31 are a grey scale of increasing intensity. There follow three 72 colour
structures of decreasing intensity. Each 72 structure itself is three 24 colour
structures of decreasing saturation. The 24 colour structures can be regarded a
a colour wheel going from blue to red to green and back to blue again with all the

intermediate hues.
The effect is like this:

high medium low
saturation: saturation: saturation:
high intensity: 32-55 56-79 80-103
medium intensity: 104-127 128-151 152-175
low intensity: 176-199 200-223 224-247

Registers 248..255 give black.

MOVE_POLYGON@

64

Purpose

Syntax

Description

See also

To move the position of a polygon.

SUBROUTINE MOVE_POLYGON@(HANDLE,IDX,IDY,ERROR_CODE)
INTEGER*2 HANDLE,IDX,IDY,ERROR_CODE

This routine redefines the polygon with handIBNDLE by shifting the former
polygon an amourDX horizontally andDY vertically. The error codes are the
same as those f&REATE_POLYGON@.

CREATE_POLYGON@, FILL_POLYGON@,

COMBINE_POLYGONS@.

Chapter 7 Graphics drawing

POLYLINE@

purpose 10 draw a number of connected straight lines.

Syntax SUBROUTINE POLYLINE@(IX,IY,N,ICOL)
INTEGER*2 IX(N),IY(N),N,ICOL

Descripion POLYLINE@ draws a straight line fromX(1), 1Y(1)) to (X(2), 1Y(2)), and
continues until IX(N), IY(N)). That is, it joinsN points with straight lines.
ICOL specifies the colour number.

For a plotter,POLYLINE@ can be used to draw a continuous line without
lifting the pen from the paper.

For a closed polygon, simply set the last pair of coordinates equal to the first
pair. For a plotter it is recommended that a filled polygon should be edged using
POLYLINE@.

seealso DRAW_LINE@

Example

PROGRAM BOX2
INTEGER*2 X(5),Y(5),K
DATA X/50,200,200, 50,50/
DATA Y/50, 50,200,200,50/
C Enter EGA graphics mode
CALL EGA@
C Draw the 4 sides of the box,
C note the return to (50,50) to close the box
CALL POLYLINE@(X,Y,5,2)
C Wait for a key press
CALL GET_KEY@(K)
C Return to text mode
CALL TEXT_MODE@
END

RECTANGLE@

Purpose 10 draw a rectangle.

Syntax SUBROUTINE RECTANGLE@(IX1,IY1,IX2,1Y2,ICOL)
INTEGER*2 IX1,IY1,IX2,IY2,ICOL

Descripion RECTANGLE@ draws a rectangle in colodCOL where (X1, Y1) and

65

FTN77 Library Reference

(X2, 1Y2) are opposite corners.

RESTORE_GRAPHICS_BANK@ ©

Purpose 10 restore the graphics bank afté81®S call.

Syntax SUBROUTINE RESTORE_GRAPHICS_BANK@

Description If any action has been taken which directly or indirectly B€XS to calculate a
screen address whilst in graphics mode then the current graphics 64k bank
number maintained b®BOS may be invalidated. This may result in graphics
drawing occurring at the wrong place on the screen.

To remedy this effect, CARESTORE_GRAPHICS_BANK@ after any such
action. This routine is not needed if the current graphics mode is any of the
standardvGA graphics modes ie 640x350x16 colours, 640x480x16 colours or
320x200x256 colours.

RESTORE_TEXT_SCREEN@ (2]
Purpose 10 restore a text screen saved VB*WVE_TEXT_SCREEN@.
Syntax SUBROUTINE RESTORE_TEXT_SCREEN@(IP,IERR)

INTEGER*4 IP
INTEGER*2 IERR

Description ~ Restores the entire text screen savellPinIP must be a pointer to a valid text
screen block previously obtained from a calb®®VE_TEXT_SCREEN@.

A non-zero returned value folERR denotes one of the following error
conditions:

IERR=1, IP is not a valid text screen block(= 0 orlP = -1),

IERR=2, text screen block is corrupt - invalid header.

66

Chapter 7 Graphics drawing

SAVE_TEXT_SCREEN@ 2]

purpose 10 save the whole of the text screen.

Syntax SUBROUTINE SAVE_TEXT_SCREEN@(IP)
INTEGER*4 IP

Description ~ This routine allocates its own memory usiBg&T_STORAGE@ and returns
its address in IP. You can free this memory by calling
RETURN_STORAGE@. A returned value ofP = -1 indicates that there is
insufficient heap space.

seeaso RESTORE_TEXT_SCREEN@.

SCREEN_TYPE@ 2]

Purpose 10 get the graphics screen type.

Syntax SUBROUTINE SCREEN_TYPE@(TYPE)
INTEGER*2 TYPE

Descripion SCREEN_TYPE@ gets the type of the screen as follows:

TYPE | description
0 No graphics available
1 CGA screen
2 EGA screen
3 VGA screen

seeaso GET_GRAPHICS_MODES@.

SET_ALL_PALETTE_REGS@ (4]

purpose 10 set all palette registers for colour graphics.

Syntax SUBROUTINE SET_ALL_PALETTE_REGS@(CREGS)
CHARACTER*17 CREGS

Descripion ~ This routine is likeSET_PALETTE@ but sets the contents of all of the 17
palette registersCREGS is an array of 17 bytes containing the palette register

67

FTN77 Library Reference

See also

values, all of which must be supplie@REGS(17) is for the overscan (border)
colour (see page 45).

SET_PALETTE@, SET_VIDEO_DAC_BLOCK@.

SET_DEVICE_PIXEL@

Purpose 10 Set a pixel colour for a virtual screen or printer.
Syntax SUBROUTINE SET_DEVICE_PIXEL@(IX,IY,ICOL)
INTEGER*2 IX,IY,ICOL
Description ~ Sets a single pixel atX,lY) for the current graphics device to the coltDOL.
This routine differs fronSET_PIXEL@ in thatSET_PIXEL@ always relates
to the screen, wheres€®ET_DEVICE_PIXEL@ relates to a currently open
virtual screen or printer (not a plotter).
seealso GET_DEVICE_PIXEL@, SET_PIXEL@
SET_PALETTE@ (4
Purpose 10 Set a palette register for colour graphics.
Syntax SUBROUTINE SET_PALETTE@(IREG,IVAL)
INTEGER*2 IREG,IVAL
Descripion SET_PALETTE@ is used to change the palette register nutiReG (0..15 in
this function) to the valuB/AL (0..63) for 16 colouEGA andVGA modes (see
page 45).
seealso SET_ALL PALETTE_REGS@, SET_VIDEO_DAC_BLOCK@.
SET _PIXEL@ (4
Purpose 10 Set a pixel to a colour.
Syntax SUBROUTINE SET_PIXEL@(IH,IV,ICOL)
INTEGER*2 IH,IV,ICOL
Description SET_PIXEL@ sets the pixel atkl,IV) on the screen to colour numb&OL.

68

Chapter 7

See also

Graphics drawing

GET_PIXEL@, GET_DEVICE_PIXEL@, SET_DEVICE_PIXEL@.

SET_TEXT_ATTRIBUTE@

Purpose

Syntax

Description

Notes

See also

To set the current graphics text attributes.

SUBROUTINE SET_TEXT_ATTRIBUTE@(FONT,SIZE,ROTATION,ITALIC)
INTEGER*2 FONT
REAL*4 SIZE,ITALIC,ROTATION

This routine selectEONT to be the current font for use WibRAW_TEXT@
and sets the text attributes as follows:

o For display adapter and printers, fonts 1..3 are the 8x14 (default), the 8x8 and
the 8x16 fonts respectively.

For the plotter, refer to the manual supplied by the manufacturer. For all
devices, fonts 101..114 are the Hershey proportionally spaced stroke fonts
listed on page 48.

O SIZE is the replication factor from the original which corresponds to
SIZE=1.

O Text strings will be written rotated througtOTATION degrees in an anti-
clockwise direction about the bottom left corner of the first character in the
string (see page 48).

O Text will be shearetiTALIC degrees clockwise from the vertical.

The use of 0 for any parameter will select a default value for that parameter. In
general, the screen and printer use different fonts from the plotter. The only
exceptions to this are the Hershey fonts which may be used for all graphics
output devices.

The colour attributes are not selected with this function.
DRAW_TEXT@, DRAW_HERSHEY@.

69

FTN77 Library Reference

SET_VIDEO_DAC@ (4]
purpose 10 set &GA DAC register.
Syntax SUBROUTINE SET_VIDEO_DAC@(IREG,IR,IG,IB)
INTEGER*2 IREG,IR,IG,IB
Description ~ This routine sets the values of H&A DAC register numbetREG (it is not

See also

relevant tcEGA mode). IR, IG, andIB are the red, green and blue intensities in
the range 0..63.

In 16 colourVGA mode, the colour is given by the palette register number
(0..16) each with a value in the range 0..63, whichDA& register number. In

this case onfDAC registers 0..63 can be changed using this routine (see page
45).

In 256 colourVGA mode theDAC register number is used to specify the colour
in graphics functions and any of the registers 0..255 can be changed using this
function (see page 47).

RESTORE_GRAPHICS_BANK@, SET_VIDEO_DAC_BLOCK®@.

SET_VIDEO DAC_BLOCK@ (4]

70

Purpose

Syntax

Description

See also

To set a block ofGA DAC registers.

SUBROUTINE SET_VIDEO_DAC_BLOCK@(IFIRST,NREGS,IRGB)
INTEGER*2 IFIRST,NREGS
INTEGER*1 IRGB(3,NREGS)

This routine sets a block of videDAC registers (see pages 45 and 47).
NREGS is the number of registers to be set startin=ERST. The registers

are numbered 0..255 and each consists of a red/green/blue triple with component
in the range 0..63.IRGB is a two dimensional array containing the number
NREGS of triples to be set.

IRGB(1,M) is the red gun level fdbAC register
IFIRST + M - 1 etc..
RESTORE_GRAPHICS_BANK@, SET_VIDEO_DAC@.

Chapter 7 Graphics drawing

TEXT_MODE@ ©

Purpose 10 return to text mode.

Syntax SUBROUTINE TEXT_MODE@

Descripion TEXT_MODE@ clears the screen and switches to text mode, setting the text
cursor position to (0,0) (i.e.the top left-hand corner).

seeaso EGA@, VGA@, GRAPHICS_MODE_SET@,
HIGH_RESOLUTION_GRAPHICS_MODE®@.

TEXT_MODE_SET@ (4]

purpose 10 select the current text mode.

Syntax SUBROUTINE TEXT_MODE_SET@(COLUMNS,ROWS,CELL_HEIGHT,
+ CELL_WIDTH,ICODE)
INTEGER*2 COLUMNS,ROWS,CELL_HEIGHT,CELL_WIDTH,ICODE

Description This routine looks for and selects a suitable text mode, with the given resolution
COLUMNS by ROWS and the given cell size of at ledSELL_HEIGHT by
CELL_WIDTH (in pixels). Supplying a zero value f&@ELL_HEIGHT and/or
CELL_WIDTH will result in a sensible default being used for the corresponding
parameter(s) (in most cases it is sufficient to set both of these to zero). If a mode
which satisfies these conditions is not available, tb€DDE will be returned as
a non-zero value.

seealso GET_TEXT _MODES@

USE_VESA _ INTERFACE@ ©

purpose 10 force the/ESA interface to be used.

Syntax SUBROUTINE USE_VESA_INTERFACE@

Descripion ~ This routine forces use of théESA interface for graphics mode changing and
display memory banking. Most graphics boards now contain a video bios
extension in the form of &SR program on the utility disks. The bios extension
TSR must be loaded before this routine is used and preferably h2BDS is
invoked.

71

FTN77 Library Reference

See also

GET_GRAPHICS_MODES@, GRAPHICS_MODE_SET@.

VGA@

Purpose

Syntax

Description

See also

72

To switch toVGA graphics mode.

SUBROUTINE VGA@

VGA@ switches a console with ¥GA card to graphics mode witiGA
resolution (640x480,16 colours) and clears the screen.

EGA@, GRAPHICS_MODE_SET@

9.

Graphics printer

Introduction

The routines described in this chapter provide support for printer graphics. For
convenience the graphics routines are divided between this chapter and chapters 7 and
8. (Note also that chapter 13, includes the routifB®NT CHARACTER@,
INITIALISE_PRINTER@, andGET_PRINTER_STATUS@. These routines are

not usually needed but may be used to drive the printer via lonwBé&®E calls.)

The graphics printer is one of three so-called “auxiliary” graphics devices. The other
two are the screen and the plotter (see the introduction to chapter 7 for general
information on auxiliary devices).

The default printer

The default printer type is an Epson 9 pin dot matrix or compatible printer with a map
size of 960x576 pixels. When using the default printer, a device is firstly opened
(using OPEN_GPRINT DEVICE@ to output to a printer, or
OPEN_GPRINT_FILE@ to output to a file), then drawn to (using drawing routines
described in chapter 7) and finally closed (usth@SE_GRAPHICS_PRINTER@).

In the case of the screen and plotter, output is produced simultaneously with the
drawing command. However, in the case of the graphics printer, a high resolution bit
map is maintained and is updated when a call to one of the graphics output routines is
made. When the printer is closed, the bit map is written to the device or to the file.
Printer output may also be produced by making a calNEBN_PAGE@ or
PRINT_GRAPHICS PAGE@. NEW_PAGE@ clears the graphics bit map whilst
PRINT_GRAPHICS_PAGE@ does not.

89

FTN77 Library Reference

If the default printer is not appropriate then the printer type should be selected by ¢
single call toSELECT_DOT_MATRIX@ (for a dot matrix printer which is different
from the default) or t6ELECT_PCL_PRINTER@ (for a PCL type printer). The
printer type should be selected before the printer device is opened.

PCL printers

90

SELECT_PCL_PRINTER@ provides access to all of the major Hewlett Packard
PCL printer families. It is expected that many other PCL compatible printers will also
function correctly, however, it should be noted that 100% coniligtikvith the
relevant Hewlett Packard printer has been assumed. A number of routines are als
available for configuring the PCL printer driver. These routines must be used at the
appropriate point in the output process and may only be used after a call tc
SELECT_PCL_PRINTER@. For this reason it is convenient to arrange the
configuring routines into three groups as follows:

1) Routines that may only be called before the printer is opened:

SET_PCL_BITPLANES@
SET_PCL_LANDSCAPE@.

2) Routines that may only be called after the printer is opened:

LOAD_PCL_COLOURS@
GET_PCL_PALETTE@
SET_PCL_PALETTE@.

3) Routines that may be called before or after the printer is opened:

SET_PCL_GAMMA_CORRECTION@
SET_PCL_GRAPHICS_DEPLETION@
SET_PCL_GRAPHICS_SHINGLING@
SET_PCL_RENDER@.

The general process for outputting to a PCL printer may then be summarised a
follows.

a) select the printer type usifgELECT_PCL_PRINTER@.
b) configure the driver (optional first stage) using routines in groups (1) and (3).
¢) open the printer usingPEN_GPRINT_DEVICE@ or OPEN_GPRINT_FILE@.

d) send the image to the printer buffer using one or more of the drawing routines ir
chapter 7.

Chapter 9

Graphics printer

e) configure the driver (optional second stage) using routines in groups (2) and (3).
f) print the image usinlEW_PAGE@ or PRINT_GRAPHICS_PAGE@.

g) close the printer usilfLOSE_GRAPHICS_PRINTER@.

Steps (d) and (e) are interchangable.

A printer driver is configured by using of one or more of the subroutines in groups (1),
(2) and (3) above. A particular routine may not apply to all printers. For example, the
LaserJet series do not print in colour so using a routine to set the number of bit planes
is not appropriate.

Note that the whole of the configuration process is carried out after the printer has been
selected (step a) and before the image is printed (step f). Certain aspects of the
configuration, such as selecting the number of bit planes and the landscape or portrait
orientation, must be carried out before the printer is opened (step ¢). Other aspects like
setting the colour palette must be carried out after the printer is opened. Some aspects,
like setting the gamma correction, may be carried out either before or after the printer
is opened.

Where printers support colour, by default the background colour is set to white using
the standard colour mapping. The default colour mappings are RGB based, even
though the DeskJet 500C and 550C use CMY and CMYK planes. ohlersion is
carried out for you.

For 8 colour configurations, the definitions are:

Colour index Colour drawn

Black
Blue
Green
Cyan
Red
Magenta

Yellow

~N~ o o~ w N P, O

White

For 16 and 256 colour configurations, the default colour mapping is approximately the
same as for VGA 16 and 256 colour display modes.

91

FTN77 Library Reference

CLOSE_GRAPHICS_PRINTER@

purpose 10 close the graphics printer device or file.
Syntax SUBROUTINE CLOSE_GRAPHICS_PRINTER@

Description ~ This routine callSNEW_PAGE@ (if the printer buffer has been changed),
closes the printer and, if the screen is in graphics mode, graphics output is
reverted to the screen.

Example SeeOPEN_GPRINT_DEVICE®@.
GET _PCL_PALETTE@ (4
purpose 10 get the colour definitions for a given number of colours.
Syntax SUBROUTINE GET_PCL_PALETTE@(IPAL,IFIRST,NREGS,IERR)
INTEGER*1 IPAL(3,*)
INTEGER*2 IFIRST,NREGS,IERR
Descripon GET_PCL_PALETTE@ returns the colour definitions for a given number of

92

colours.

NREGS is the number of registers to be returned startingBST. This
routine is applicable only to the PaintJet XL and XL300 printers. Each colour is
specified as a set of RGB values. Each component of the RGB value taking
values from 0 (zero intensity) to 255 (full intensity).

Input arguments:

IFIRST first colour in the range
NREGS the number of colours in the range

Output arguments:
IPAL an array containing the colour definitions for
each of the colours in the specified range.
IERR =0, success
=1, printer not open
= 2, printer not capable of palette loading
= 3, IFIRST out of range

Chapter 9

Graphics printer

LOAD_PCL_COLOURS@ (43
purpose 10 load the standard colour definitions.
Syntax SUBROUTINE LOAD_PCL_COLOURS@

Descripion This routine loads the standard 16 and 256 colour definitions into the current
printer bit map. This is carried out by default when the printer bit map is
created.

OPEN_GPRINT_DEVICE@ (4
Purpose 10 Open a graphics printer.
Syntax SUBROUTINE OPEN_GPRINT_DEVICE@(IDEV,IERR)
INTEGER*2 IDEV,IERR
Description ~ Opens the graphics printer for uselBiEV where:
IDEV =1 isLPT1
IDEV =2 isLPT2
IDEV =3 isLPT3
IDEV =4 isLPT4
Opening the printer will close any other auxiliary device (i.e. the plotter or the
virtual screen). When the printer is open, graphics output is directed to the
printer and not to the screelfERR = 2 denotes an invallDEV value otherwise
a non-zero value fdERR denotes thesystem extended error code.
Example

PROGRAM BOX4

INTEGER*2 X(5),Y(5),K,HANDLE, ERROR_CODE
DATA X/50,200,200, 50,50/

DATA Y/50, 50,200,200,50/

C Create the box as a polygon definition
C There is no need to actually be in graphics mode
C or have a graphics device open

CALL CREATE_POLYGON@(X,Y,5,HANDLE,ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 20

C Open the printer on LPT1

CALL OPEN_GPRINT_DEVICE@(1,ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 30

93

FTN77 Library Reference

C Fill the box with colour 4, the box will be filled into
C the internal bit map, no output will appear yet
CALL FILL POLYGON@(HANDLE,4,ERROR_CODE)
IF(ERROR_CODE.NE.0)GOTO 10
C There is no point in edging the box, as only 2 colours
C are available and no effect will be seen
C Wait for a key press
CALL GET_KEY@(K)
C Closing the printer will produce the output
CALL CLOSE_GRAPHICS PRINTER@
STOP ’H****% QK’
C Error handling
10 CALL CLOSE_GRAPHICS PRINTER@
20 IF(ERROR _CODE.EQ.1)THEN
STOP ****** ERROR: Out of memory’
ELSEIF(ERROR_CODE.EQ.2)THEN
STOP **%*** ERROR: Invalid polygon handle’

ENDIF
30 CALL DOSERR@(ERROR_CODE)
END
OPEN_GPRINT_FILE@ (4

purpose 10 direct graphics printer output to a file.

Syntax SUBROUTINE OPEN_GPRINT_FILE@(FILE,IERR)
INTEGER*2 IERR
CHARACTER*(*) FILE

Descripion OPEN_GPRINT_FILE@ is an alternative t€©PEN_GPRINT_DEVICE@
and directs graphics printer output to the given file. A non-zero valuERR
denotes theystem extended error code.

Example SEeSELECT_PCL_PRINTER@.

PRINT_GRAPHICS_PAGE@

Purpose 10 print a graphics page.

Syntax SUBROUTINE PRINT_GRAPHICS_PAGE@

Description ~ The graphics page is printed to the graphics printer destination (device or file).

94

Chapter 9 Graphics printer

Unlike the NEW_PAGE@ routine, the page is not cleared and can still be
drawn to.

Notes Graphics operations are drawn to an internal high resolution bit map and do not
produce their own output. The result of the drawing can only be seen by calling
this routine NEW_PAGE@ or CLOSE_GRAPHICS PRINTER@.

Example SEeSELECT_PCL_PRINTER@.

SELECT _DOT_MATRIX@ (2]
purpose 10 Select an Epson compatible dot matrix printer
Syntax SUBROUTINE SELECT_DOT_MATRIX@(ITYPE,NHORZ,NVERT)
INTEGER*2 ITYPE,NHORZ,NVERT

Description ~ This routine should be called before opening a printer device (using
OPEN_GPRINT_DEVICE@ Of OPEN_GPRINT_FILE@) in order to select an Epson
compatible dot matrix printer (other than the default) and to provide a printer
map with a given resolution. If neither this routine 8BLECT_PCL_PRINTER@
is called then the default printer type (i.e. Epson compatible 9 pin dot matrix
printer with a printer map size of 960x576) is used. The routine specifies the
resolution of a printer map, where:

ITYPE is the printer type (set this to zero).
NHORZ is the number of pixels horizontally in the printer map.
NVERT is the number of pixels vertically in the printer map.

Note that all arguments are input arguments.

SELECT_PCL_PRINTER@ (4]

purpose 10 specify attributes of a PCL printer.

Syntax SUBROUTINE SELECT_PCL_PRINTER@(ITYPE,PAPER_SIZE, IDPI,
+ NHORZ,NVERT)
INTEGER*2 ITYPE,IDPI,NHORZ,NVERT
CHARACTER*(*) PAPER_SIZE

Description ~ This routine should be called before opening a printer device (using

95

FTN77 Library Reference

96

OPEN_GPRINT_DEVICE@ or OPEN_GPRINT_FILE@) in order to select

a PCL type printer and to specify its attributes. If neither this routine nor
SELECT_DOT_MATRIX@ is called then the default printer type (i.e. Epson

compatible 9 pin dot matrix printer with a printer map size of 960x576) is used.

ITYPE represents a family of printers, and is referred to below as the driver
number. Current values are:

LaserJet series 200

LaserJet 2 202

LaserJet 3 203

LaserJet 4 204
PaintJet series 300

PaintJet 302

PaintJet XL 303

PaintJet XL300 304
DeskJet series 400

DeskJet 500, 500+ 402

DeskJet 500C 403

DeskJet 550C 404

In addition to these, the values of 0 and 2 are also supported for compatibilty
with the old version of the LaserJet 2 driver.

Although, within the families, the lowest level of printer is usually compatible
with the higher specification models, there is not necessarily any advantage in
(say) specifying a LaserJet 2 when a LaserJet 3 is attached.

As far as possible, the user should try to match the driver number with the printer
that is attached. In this way, full advantage will be taken of any driver specific
features such as better image compression or better colour choice or
representation. Better image compression means better transmission times whicl
in turn means faster drawing.

The improvement in speed can be substantial. For example, if the file is saved tc
disc, the file size can be as small as 7% of the size of the uncompressed image.

The exception to this is the PaintJet XL300. This has a different dot pitch from
previous printers in this range.

Although images generated for the PaintJet and PaintJet XL will still draw on
this printer, the image will be the wrong size and may even be clipped in order to
fit on the page. Images generated for one family of printers may not produce
anything meaningful on the other families. One of the reasons for this is differing

Chapter 9

palette representations.

For example, images produced for the DeskJet 500C or 550C may simply
produce a solid black page on one of the PaintJet range and vice versa.

The tables below give a brief outline of the advantages of using a particular

Graphics printer

driver against using drivers for the lower specification models in the range.

LaserJet LaserJet 3 LaserJet 4
better image compression 600 dpi resolution
Paintjet Paintjet XL
more colours
higher resolution colour
better image compression
DeskJet 500 DeskJet 500C DeskJet 550C
colour true black rather than
composite black
better image compressig

PAPER_SIZE specifies the name of the paper size éil” or *LETTER’.

Values differ for each of the printer families.
PAPER_SIZE will default to’A4’. The table below gives the allowable values

for each paper size.

LaserJet PaintJet DeskJet
2 3 4 - XL | XL300| 500 | 500Q 550(
EXECUTIVE]| v v v x x x v v v
LETTER v v v v v v v v v
LEGAL v v v v v v v v v
LEDGER x x x v v v x x
A4 v v v v v v v v v
B4 x x x v v v x x
A3 x x x x x v x x

An incorrectly specifed

97

FTN77 Library Reference

Example

98

IDPI specifies the number of pixels per inch that you want to use.

LaserJet 2,3, PaintJet XL300 and all DeskJet models:
IDPI is one of 300, 150, 100, 75
LaserJet 4.
IDPI is one of 600, 300, 200, 150, 100, 75
PaintJet and PaintJet XL:
IDPI is one of 180, 90

If IDPI is incorrectly specified, the resolution used is the next device resolution

higher than that specified, if one is available, or the highest if one higher is not
available. For example, suppose 150 dpi were specified with a PaintJet XL. The
printer map would use 180 dpi. If 75 dpi were specified, then 90 dpi would be

used. However, if 300 dpi were specified then 180 dpi would be used as this is
the highest resolution available.

NHORZ and NVERT are returned values and provide the total number of
horizontal and vertical pixels in the image.

Do not assume that these values will remain fixed as they may vary for
compatibility with new devices.

PROGRAM PRINTER

INTEGER*2 NHORZ,NVERT,IERR

CALL SELECT_PCL_PRINTER@(404,’A4”,150,NHORZ,NVERT)
CALL SET_PCL_BITPLANES@(3,IERR)

IFCIERR.NE.O) GOTO 10

CALL SET_PCL_LANDSCAPE@(1,NHORZ,NVERT,IERR)
IFCIERR.NE.O) GOTO 10

CALL OPEN_GPRINT_DEVICE@(1,IERR)

IFCIERR.NE.O) GOTO 10

LOAD_PCL_COLOURS@, GET _PCL_PALETTE@ & SET PCL_PALETTE@ may
be used here. The next two routines may also be called
before the printer is opened.

CALL SET_PCL_GRAPHICS DEPLETION@(3,IERR)
IFCIERR.NE.O) GOTO 10

CALL SET_PCL_GRAPHICS SHINGLING@(1,IERR)
IFCIERR.NE.O) GOTO 10

CALL ELLIPSE@(NHORZ/2,NVERT/2,NHORZ/4,NVERT/4,1)

CALL PRINT_GRAPHICS PAGE@()

CALL FILL ELLIPSE@Q(NHORZ/2,NVERT/2,NHORZ/4 ,NVERT/4,1)
CALL CLOSE_GRAPHICS PRINTER@()

STOP

Chapter 9

C

Graphics printer

Process errors

SET_PCL_BITPLANES@ ©

Purpose

Syntax

Description

To set the number of colours in the image.

SUBROUTINE SET_PCL_BITPLANES@(NBIT,IERR)
INTEGER*2 NBIT,IERR

The defaults are:
LaserJet series =1
PaintJet series =4 (16 colours)
DeskJet series =3

At present only the PaintJet series drivers can alter the number of colours. This
routine may only be used aft&ELECT_PCL_PRINTER@ and before the
printer is opened.

Input arguments:
NBIT allowable values are:

LaserJet series =1
PaintJet =1,3
Paintjet XL & XL300 =1, 3,4,8
DeskJet 500 =1
DeskJet 500C & 550C =1, 3
Number of bit Number of
planes colours
1 2
3 8
4 16
8 256

99

FTN77 Library Reference

Output arguments:
IERR =0 success
= 1 printer already open
= 2 invalid value foNBIT

Example SEeSELECT_PCL_PRINTER@.
SET_PCL_GAMMA CORRECTION@ ©
Purpose 10 alter the “gamma correction” for colours.

Syntax

Description

SUBROUTINE SET_PCL_GAMMA_CORRECTION@(GAMMA,IERR)
INTEGER*2 IERR
REAL*8 GAMMA

This routine is applicable only to the PaintJet XL and XL300 series. Gamma
correction adjusts colour intensities on the printer to match those of the human
eye and is rather similar to altering the contrast of the image.

Unless there is a real need to depart from the default gamma correction, you are
advised to avoid this routine. The defaulGBAMMA = 1.0.
Input argument:

0.0 <GAMMA < 2.0

Output argument:
IERR =0, success
= 2, printer not capable of gamma correction
= 3, GAMMA out of range

SET_PCL_GRAPHICS_DEPLETION@ ©

Purpose

Syntax

Description

100

To improve the image quality.

SUBROUTINE SET_PCL_GRAPHICS_DEPLETION@(IDEP,IERR)
INTEGER*2 IDEP,IERR

Reduces the amount of ink laid down, so improving the image quality and the ink
saturation of the media. This routine is applicable only to the DeskJet series of
printers operating in colour mode. Unless there is a real need to depart from the

Chapter 9 Graphics printer

default depletion, you are advised to avoid this routine.

Input argument:
IDEP =1, no depletion - monochrome graphics default
=2, 25% - colour graphics default
=3, 50%
Output argument:
IERR =0, success
= 2, printer not capable of gamma correction
= 3,IDEP out of range

Example SEeSELECT_PCL_PRINTER@.

SET_PCL_GRAPHICS_SHINGLING@ ©

purpose 10 make a number of print passes.

Syntax SUBROUTINE SET_PCL_GRAPHICS_SHINGLING@(ISHING,IERR)
INTEGER*2 ISHING,IERR

Description ~ This routine makes a setable number of print passes, each pass filling vacant
pixels from previous passes. This routine is applicable only to the DeskJet series
of printers. This is used to prevent liquid inks of different types from coming
into contact with each other by giving them a moment to dry. This is
particularly useful with the DeskJet 550C printer where the black ink is
chemically different from the colour inks. Use this routine when printing on
glossy paper or transparencies.

Input argument:
ISHING = 0, no shingling
=1, two pass printing
= 2, four pass printing - default
Output argument:
IERR = (0, success
= 2, printer not capable of shingling
= 3,ISHING out of range

Exampe SeeSELECT_PCL_PRINTER@.

101

FTN77 Library Reference

SET_PCL_LANDSCAPE@ ©
purpose 10 Set LANDSCAPE or PORTRAIT orientation.

Syntax: SUBROUTINE SET_PCL_LANDSCAPE@(IVAL,NHORZ,NVERT,IERR)
INTEGER*2 IVAL,NHORZ,NVERT,IERR

Description ~ PCL printers do not usually rotate graphics images so the rotation is carried out
internally by the driver.

This routine may only be used afteSELECT_PCL_PRINTER@ and before
the printer is opened.

Input argument:
IVAL =0 sets PORTRAIT orientation
= 1 sets LANDSCAPE orientation

Output arguments

NHORZ returns the number of pixels horizontally
NVERT returns the number of pixels vertically
IERR returns 1 if the printer is open.

Example SEeSELECT_PCL_PRINTER@.

SET_PCL_PALETTE@ (3]
purpose 10 load the colour definitions.
Syntax SUBROUTINE SET_PCL_PALETTE@(IPAL,IFIRST,NREGS,IERR)

INTEGER*1 IPAL(3,*)
INTEGER*2 IFIRST,NREGS,IERR

Descripion SET_PCL_PALETTE@ loads the colour definitions for a given number of
colours. NREGS is the number of registers to be set startinFERST. This
routine is applicable only to the PaintJet XL and XL300 printers.

Each colour is specified as a set of RGB values. Each component of the RGB
value taking values from 0 (zero intensity) to 255 (full intensity).

Input arguments:

IPAL an array containing the colour definitions for each of the
colours in the specified range
IFIRST first colour in the range

102

Chapter 9 Graphics printer

NREGS the number of colours in the range

Output argument:
IERR = 0, success
=1, printer not open
= 2, printer not capable of palette loading
= 3,IFIRST out of range

SET_PCL_RENDER@ ©

purpose 10 set the “rendering algorithm”.

Syntax SUBROUTINE SET_PCL_RENDER@(IREND,IERR)
INTEGER*2 IREND,IERR

Descripion ~ Sets the “rendering algorithm” for the way that colours are rendered by the
printer.

This routine is applicable only to the PaintJet series. Unless there is a real need
to depart from the default rendering, the user is advised to avoid this routine.
Input argument:
IREND = 0 no algorithm

=1 shap to primaries

= 2 snap black to white, all other colours black

= 3 ordered dither (default)

= 4 error diffusion

= 5 monochrome ordered dither

= 6 monochrome error diffusion

= 7 clustered ordered dither

= 8 monochrome clustered ordered dither.

Output argument:
IERR =0, success
= 2, printer not capable of rendering
= 3,IREND out of range

103

FTN77 Library Reference

104

10.

Hot key (DOS)

One of the attractive features MfS-DOS is the way in which programs can be made

to stay resident and become active on pressing a “hot key”. However, most such
programs are written in assembler and are hard to code. Furthermore, because such
programs stay resident over the top®S they use up valuable memory space.
FTN77 offers a mechanism to write “hot key” programs which do not consume
memory when not in use, and which in any case utilise the memory @ie which

is usually plentiful. All the complexities of hot-key software are catered for by a small
(5K bytes) TSR program calledHOTKEY77. This program should be run after
DBOS has been loaded, and may be incorporated inAOOIOEXEC.BAT file.

Once theHOTKEY77 program has been executed it is possible to use one hot key
immediately by executingdELP77. This program (which you may also usefully
include in AUTOEXEC.BAT) defines the key sequenceontrol-Alt-H, which is
normally inactive, to cause the display BTN77 help information (starting at the
index). Here is the source dELP77:

EXTERNAL FTN77_HELP@

CALL DEFINE_HOT_KEY@(’CONTROL-ALT-H’,FTN77_HELP@, IC)

CALL DOSERR@(IC)

CALL cou@(’Control-ATt-H will now give FTN77 help screens’)
END

The routine FTN77_HELP@ is present in the system library, and
DEFINE_HOT _KEY@ is defined below. HELP77 uses up no extra memory, it
simply sets up information insiddOTKEY77. Since the hot key program is not
limited in size by memory considerations, there would be no problem defining a hot key
to simulate an oail refinery (say) if this were thought useful! Usersl@TKEY77
should note the following:

O An additional benefit oHOTKEY77 is that the standard keyboard buffer of 16
keystrokes is increased to 512. This has bleae to facilitate hot key applications
which feed data back to the interrupted program (e.g. a spelling checker which

105

FTN77 Library Reference DOs

106

corrects what it finds on an editor screen), but it also means that you can type muc
further ahead while the PC is performing a task.

Hot key applications should be written as dynamic link libraries (and included in the
LIBRARIES.DIR file like any other such library).

The ‘main program’ of such an application should be written adN&aERRUPT
SUBROUTINE. For example the system routif@N77_HELP@ is written as
an interrupt subroutine.

If you define a hot key whose handler is not in a dynamic link liboaifyou alter
the library after the hot key has been defiged will almost certainly crashOS.

After a hot key has been pressed, it will take effect as soon as the program attemp
to read the keyboard. Normally a program will be awaiting keyboard input when
you press a hot key, so the effect will be immediate.

Hot keys may be used from withfTN77 programs (or utilities likelINK77). In

this case they act like trap routines (&€T_TRAP@) and are subject to the
same restrictions. In particular, if a hot key program is likely to be invoked while
an FTN77 program is performing &&EAD statement, then it must not itself
perform Fortran 1/O.

Usually a hot key application would operate within a window which it would create
as it starts and remove before it exits. In this way the underlying screen is not
disturbed.

Hot keys must not be invoked from within tR€N77 debugger.

If you use other hot key programs not involviHQ TKEY 77 they should be loaded
afterDBOS andHOTKEY77.

Hot key programs should be written so that they always finish cleanly by returning
from the top leveINTERRUPT SUBROUTINE.

Termination as a result of an error, or as a result of execsTiQP etc. will leave
DOS in an ill-defined state.

Chapter 10 Hot key (DOS)
DEFINE_HOT_KEY@ (2]
Purpose 10 associate a hotkey routine with a given key.
Syntax SUBROUTINE DEFINE_HOT_KEY@(KEY,ROUTINE,ERROR_CODE)
INTEGER*2 ERROR_CODE
CHARACTER*(*) KEY
EXTERNAL ROUTINE
Descripon DEFINE_HOT_KEY@ associates routin®OUTINE with the key named

KEY. The names of keys are case insensitive and are best illustrated by
example:

CONTROL-ALT-DEL
the key which normally reboots the machine;

ctrl-alt-del
this is the same key under a different name;

Shift-Alt-Delete
this refers to thd®elete key as opposed to the key on the numeric
keypad;

alt-9
this is not the numeric keypad;

FOUR
this is the numeric keypad left arrow.

Hot keys are unaffected by the state of the shift lock, numlock or scroll lock
toggles.

Thus it is possible to define hot keys using key combinations which have no
normal effect - for exampl€trl-Alt-L. It would even be possible to redefine
Ctrl-Alt-Del so that it did not reboot the machine. The hot key will work whether
or not anFTN77 program is active at the time it is pressed. If you already have
20 active hot keys, or if you have not loadddOTKEY77, then
ERROR_CODE will come back with a non-zero error code which can be
interpreted byDOSERR@.

107

FTN77 Library Reference DOs

REMOVE_HOT_KEY@ ©

purpose 10 disassociate a hotkey routine from a given key.

Syntax SUBROUTINE REMOVE_HOT_KEY@(KEY)
CHARACTER*(*) KEY

Description This routine removes the ké&§EY from the hot key table. A key with special
meaning such aGtrl-Alt-Del recovers that meaning. This routine never returns
an error - if theHOTKEY77 program has not been loaded, or if the key in
guestion has never been defined, then no action is taken.

FEED_KEYBOARD@ 2]

purpose 10 push a keycode into the keyboard buffer.

Syntax SUBROUTINE FEED_KEYBOARD@(DATA,ERROR_CODE)
INTEGER*2 DATA,ERROR_CODE

Description ~ This routine takes the scan codBCII pair in DATA (scan code in high byte)
and pushes it into the keyboard buffer. Although this routine may be used
without HOTKEY77, it is then limited by the 16 keystroke buffer. With
HOTKEY77 the buffer is increased to 512 keystrokes. This routine is usually
used to “return a result” from a hot key program.

Example

EXTERNAL GIVE_DATE
C DEFINE Control-A1t-D TO RETURN THE DATE
CALL DEFINE_HOT_KEY@(’CONTROL-ALT-D",6,GIVE_DATE,IC)
CALL DOSERR@(IC)
END
C THIS CODE MUST RESIDE IN A DYNAMIC LINK LIBRARY
INTERRUPT SUBROUTINE GIVE_DATE
CHARACTER*28 FDATE@, DATE
DATE=FDATE@()
DO 1 I=1,LENG(DATE)
C NOTE THAT THE SCAN-CODE PORTION OF THE KEY IS NOT USED
C BY MOST PROGRAMS FOR ASCII KEYS AND HAS BEEN LEFT ZERO
1 CALL FEED_KEYBOARD@(ICHAR(DATE(I:I)))
END

108

11.

In-line

The routines in this chapter (except 8ET _I0_PERMISSION@) are converted to

in-line code, rather than procedure calls, and are therefore extremely efficient. They
can often be used as a convenient alternative to resorting to assembler. Those routines
described here which are functions should be explicitly declared to be of the right type.

FILL@
Purpose 10 Set an array dfl bytes to a particular value.
Syntax SUBROUTINE FILL@(A,N,B)
INTEGER*4 A,B,N
Descripion This routine fillsA (which may be of any type and is usually an array) With
bytes of valueB. Thus ifA is of typeINTEGER*4 and N=4, each of the 4
bytes ofA will be assigned to the value Bf B may be of any type but only the
lowest byte is used.
IN@ (2]
Purpose 10 input one byte from an I/O port.
Syntax TNTEGER*2 FUNCTION IN@(PORT)
INTEGER*2 PORT
Description 10 read and write 1/O ports you must have set the 1/0O permission ll&¥L) to

3 (seeSET_IO_PERMISSION@).

109

FTN77 Library Reference

MATCH@

Purpose 10 compare two arrays &f bytes.
Syntax | 0GICAL*2 FUNCTION MATCH@(A,B,N)
INTEGER*2 A,B,N

Description ~ This function comparebl bytes of data for equality. The first two arguments
can be of any type and are usually arrayd\ can be INTEGER*1,
INTEGER*2 or INTEGER*4.

Returnvalue MATCHQ@ returns TRUE. if the two arrays are identical, otherwideALSE..

MOVE@

Purpose 10 copy an array dfl bytes.

Syntax SUBROUTINE MOVE@(FROM,TO,N)

Description This routine copie® bytes of data fronfROM to TO. No data conversion is
performed andho checks are made to ensure that the source and destination are
large enough (even MCHECK mode). Argument&ROM and TO may be of
any type N must b NTEGER*1, INTEGER*2 or INTEGER*4.

ouUT@ 2]

Purpose 10 output one byte of data to an I/O port.

Syntax SUBROUTINE OUT@(PORT,VALUE)
INTEGER*2 PORT,VALUE

Description 10 read and write 1/O ports you must have set the 1/0O permission ll&¥L) to
3 (seeSET_IO_PERMISSION@).

110

Chapter 11

In-line

POP@
Purpose 10 pop a value off the system stack.
Syntax SUBROUTINE POP@(A)
INTEGER*4 A
Description ~ This routine is the opposite BUSH@.
PUSH@
Purpose 10 push a value on the system stack.
Syntax SUBROUTINE PUSH@(A)
INTEGER*4 A
Description ~ The argumenA is pushed on to the system stack. Two bytes will be pushed for
INTEGER*2, four for INTEGER*4 etc. Values saved in this way can be
restored again witlPOP@. The correspondingOP@ call must have an
argument of the same type (otherwise the wrong number of bytes would be
popped). A routine may return with data still pushed on the stack - such data is
then lost.
SET _10_PERMISSION@ (2]
purpose 10 set the 1/O permission level to 3 or 0.
Syntax SUBROUTINE SET_IO_PERMISSION@(OPTION)
LOGICAL*2 OPTION
Descripon This routine sets the 1/0 permission lew&RL) to 3 if OPTION is .TRUE..

Typically this routine is called before one or more calld\i@ or OUT@.

Each call toSET_IO_PERMISSION@ with OPTION=.TRUE. pushes the
value 3 on to a stack. The top level of the stack gives the current permission
level. The bottom level gives the initial default level (zero). Each call with
OPTION =.FALSE. pops a value off the stack. It is good practice to return
IOPL to zero when it is no longer needed, as this helps to protect the program
from corrupting the system.

111

FTN77 Library Reference

112

12.

Mouse

A number of routines are provided B§TN77 to support Microsoft-compatible mouse
drivers. These routines are simply bindings to built-in functions of the mouse driver.
The exact way in which some of these work may vary from supplier to supplier: some
may not work at all with your mouse. You are advised to check the functionality of
your mouse with these routines before using them with confidence.

A mouse can be used in either graphics mode (UsB4@ for example) or text

mode. Programs must initialise the mouse before use, and if a mouse interrupt mask is
set then this must be cleared before exiting from the program. Some care is needed
when using these routines. In particular, the mouse should be turned off during any

screen operations which may alter the screen data underneath the mouse cursor,
otherwise the area will not be properly repaired when the mouse is moved.

Some of these routines take screen units (pixels) as arguments whilst others take
physical mouse movements (mickeys). A mickey is approximately 0.5 mm. It is
possible to alter the ratio of mickeys to pixels so that the display cursor may be made
more or less sensitive to mouse movements.

There are routines to reposition the mouse cursor and to constrain the cursor movement
to a box. These may be used to position the cursor on the first item of a menu, for
example, and to prevent mouse movements outside of a selected range so that only
certain menu items may be chosen. Similarly the mouse cursor may be moved to a safe
area of the screen whilst another area is being updated. The most usual use, however,
will be to make the whole screen area available to the mouse and this should be done as
soon as the appropriate screen mode is entered and the mouse initialised.

In order to use a mouse together with (say) the keyboard, it is usual to construct an
“event handler” of some kind. One possible approach is to use the
GET_MOUSE_BUTTON_PRESS_COUNT@ routine (WithGET_KEY1@ say).
Mouse movements and button presses may be trapped SBiigTRAP@ and
SET_MOUSE_INTERRUPT_MASK@. However, since you are effectively
providing an interrupt handler for these events there are strict rules governing your

113

FTN77 Library Reference

allowed actions. In particular, no system routines may be called, the register set mu
be saved, and interrupts must not be re-enabled.

It should be noted that mouse drivers usually do not recognise non-staf@ard
screen modes. In other words, the mouse driver cannot tell that you are in a particul
graphics mode if that mode is not standard. This means that you should not attempt |
use a mouse driver routine to display the mouse cursor in 800x600 graphics mode fc
example. If the mouse driver returns the mouse coordinates in 8 pixel (rather thal
single pixel) increments then this indicates that it has not recognised the curren
graphics mode.

DISPLAY _MOUSE_CURSOR®@ ©

Purpose

Syntax

Description

To show the mouse cursor on the screen.

SUBROUTINE DISPLAY_MOUSE_CURSOR@

This routine causes the mouse cursor to appear on the screen. A change of moc
between text and graphics will hide the cursor. Similarly moving into a region
defined byMOUSE_CONDITIONAL_OFF@ Wwill also hide the cursor.

If HIDE_MOUSE_CURSOR@ is called twice therDISPLAY MOUSE_CURSOR@
must also be called twice before the cursor reappears and so on.

GET_MOUSE_BUTTON_PRESS_COUNT@

Purpose

Syntax

Description

114

To get the number of times a button has been pressed.

SUBROUTINE GET_MOUSE_BUTTON_PRESS_COUNT@(IB,IC)

INTEGER*2 IB,IC

This routine gets the count of the number of times a button has been pi&sed.
is set to O for the left button and 1 for the right button. After each call to this
routine, the couniC for the specified button is reset to zero.

Chapter 12

Mouse

GET_MOUSE_EVENT_MASK@

Purpose 10 get the mask for the most recent mouse interrupt.
Syntax SUBROUTINE GET_MOUSE_EVENT_MASK@(MASK)
INTEGER*2 MASK
Descripton T his routine returns the mask for the most recent mouse interrupt. The bits in the
mask are used as 8ET_MOUSE_INTERRUPT_MASK@ and are set if that
event has occurred. This routine should only be called after a mouse interrupt
has occurred and is normally called from within the interrupt routine that handles
the interrupt.
GET_MOUSE_PHYSICAL MOVEMENT@ ©
purpose 10 get the mouse pad distance from the last call.
Syntax SUBROUTINE GET_MOUSE_PHYSICAL_MOVEMENT@(DX,DY)
INTEGER*2 DX,DY
Description ~ This routine gets the relative position of the mouse on the mouse pad since the

last call. The displacement is measured in mickeys (see
SET_MOUSE_SENSITIVITY@ and GET_MOUSE_SENSITIVITY@).

The mouse cursor on the screen is confined to a rectangle (the full screen
perhaps), so the values given will not represent the screen displacement.

GET_MOUSE_POSITION@

Purpose

Syntax

Description

To get the present state of the mouse cursor.

SUBROUTINE GET_MOUSE_POSITION@(IH,IV,BUTTON_STATUS)
INTEGER*2 IH,IV,BUTTON_STATUS

This routine returns the position of the mouse in pixel coordindted\() from

the top-left of the screen. It also returns the state of the mouse buttons as either
depressed or not. The least significant bBOfTTON_STATUS, (bit 0) = 1 if

the left-hand button is depressed. Bit 1 = 1 if the right-hand button is depressed.
Bit 2 = 1 if a middle button is depressed. Any combination of values is possible.

115

FTN77 Library Reference

Example SeeSET_MOUSE_INTERRUPT_MASK@
GET_MOUSE_SENSITIVITY@ ©
purpose 10 get the values of the physical movement ratios and the double speed threshold
Syntax SUBROUTINE GET_MOUSE_SENSITIVITY@(DX,DY,SPEED)
INTEGER*2 DX,DY,SPEED

Descripon This routine gets the values describeEr_MOUSE_MOVEMENT_RATIO@
andSET_MOUSE_SPEED_THRESHOLD@.

HIDE_MOUSE_CURSOR@ ©
purpose 10 hide the mouse cursor on the screen.
Syntax SUBROUTINE HIDE_MOUSE_CURSOR@

Description ~ This routine causes the mouse cursor to disappear from the screen. Unlike the
DISPLAY_MOUSE_CURSOR@ routine, it need only be called once no
matter how many times the other routine has been called.

INITIALISE_ MOUSE@ ©
Purpose 10 initialise the mouse driver.
Syntax SUBROUTINE INITIALISE_MOUSE@
Description T his routine initialises the mouse driver and resets the mouse. It should be callec

116

before the first use of the mouse in order to obtain a reproducible state and sc
that both DISPLAY _MOUSE_CURSOR@ and HIDE_MOUSE_CURSOR@
work reliably. It does not cause the mouse cursor to appear on the screen.

Chapter 12 Mouse
MOUSE@ ©
Purpose 10 perform a mouse interrupt.
Syntax SUBROUTINE MOUSE@(IA,IB,IC,ID)
INTEGER*2 IA,IB,IC,ID
Description This routine performs a mouse interrupt with the registers loadedAyitB, IC
andID. The results are also returned in these variables. This routine should
rarely be needed. Usually the services provided by the built-in mouse routines
will suffice.
This routine should not be used with other routines which cause interrupt activity
such asGET_MOUSE_PHYSICAL_MOVEMENT@.
The SET_MOUSE_INTERRUPT_MASK@ and SET_TRAP@ routines
should be used to cause mouse interrupt activity.
MOUSE_CONDITIONAL OFF@ ©
purpose 10 switch off the cursor when it enters a specified rectangle.
Syntax SUBROUTINE MOUSE_CONDITIONAL_OFF@(LX,LY,HX,HY)
INTEGER*2 LX,LY,HX,HY
Descripon T his routine switches off the mouse cursor when it enters the region defined with
(LX, LY) and @X, HY) at opposite corners. (0,0) is the top left and values are
in pixels.
The routine is a conditional form dfiiDE_ MOUSE_CURSOR@, so the
cursor is restored by a call RISPLAY_MOUSE_CURSOR@. The cursor
is switched off when any part of its 16x16 pixel form enters the rectangle.
MOUSE _LIGHT_PEN_EMULATION@ ©
Purpose 10 use the mouse as a light-pen.
Syntax SUBROUTINE MOUSE_LIGHT_PEN_EMULATION@(SET)
LOGICAL*2 SET
Description ~ This routine enables/disables the use of the mouse in place of a light pen.

SET=1 enables the emulatioQET=0 disables it. When a mouse button is

117

FTN77 Library Reference

depressed, thROM-BIOS video service 4 reports that the light-pen has been
triggered and returns the coordinates of the mouse.

MOUSE_SOFT _RESET@
Purpose 10 initialise the mouse software.
Syntax SUBROUTINE MOUSE_SOFT_RESET@(INSTALL)
LOGICAL*2 INSTALL

Description ~ This routine resets the mouse software, but not the mouse. It is identical to
INITIALISE_MOUSE@ except that the mouse is not resetNSTALL is
returned asTRUE. if the mouse driver is installed, arfALSE. if it is not.

QUERY_MOUSE_SAVE_SIZE@ ©

purpose 10 get the buffer size for the mouse state.

Syntax SUBROUTINE QUERY_MOUSE_SAVE_SIZE@(SIZE)
INTEGER*2 SIZE

Description N preparation for a call tSAVE_MOUSE_DRIVER_STATE@, this routine
is used to determine the buffer size in bytes that is required to store the mouse
state. Drivers vary in the amount of storage they require, but typically about 500
bytes are needed.

RESTORE_MOUSE_DRIVER_STATE@ ©

Purpose 10 restore a former state of the mouse driver.

Syntax SUBROUTINE RESTORE_MOUSE_DRIVER_STATE@(BUFFER,NBYTES)
INTEGER*2 BUFFER,NBYTES

Description T his routine restores the state of the mouse driver corresponding to an earlier cal
to SAVE_MOUSE_DRIVER_STATE@. The contents of the buffer are
determined by the call tSAVE_MOUSE_DRIVER_STATE@. NBYTES is
given by a call toQUERY_MOUSE_SAVE_SIZE@. The mouse cursor is
not automatically redrawn.

118

Chapter 12 Mouse

SAVE_MOUSE_DRIVER_STATE@ ©
purpose 10 save the current state of the mouse driver.
Syntax SUBROUTINE SAVE_MOUSE_DRIVER_STATE@(BUFFER,NBYTES)
INTEGER*2 BUFFER,NBYTES

Description ~ This routine stores the current mouse driver state in the array pointed to by
BUFFER. NBYTES is the size of the buffer in bytes obtained by a call to
QUERY_MOUSE_SAVE_SIZE@.

SET_MOUSE_BOUNDS@ ©

Purpose 10 restrict mouse movements to a specified rectangle.

Syntax SUBROUTINE SET_MOUSE_BOUNDS@(LX,LY,HX,HY)
INTEGER*2 LX,LY,HX,HY

Description ~ This routine defines a rectangle, withX(LY) and HX, HY) at opposite
corners, within which the mouse cursor will be confined. If, in the default state,
the mouse cursor is too restricted then this routine can be used to extend the
bounds.

SET_MOUSE_GRAPHICS CURSOR@ ©

purpose 10 specify the shape of the mouse cursor for graphics mode.

Syntax SUBROUTINE SET_MOUSE_GRAPHICS_CURSOR@(HOT_X,HOT_Y,
+ CURSOR_DEF)
INTEGER*2 HOT_X,HOT_Y,CURSOR_DEF(32)

Description This routine allows the user to specify the shape of cursor in graphics mode and

how it reacts with the screen data underneath. The position of the hot-spot can
also be set.

The hot-spot is the point (relative to the top left (0,0) of a 16x16 array of pixels)
to which the cursor points. For example, if the default cursor is an arrow, then
the hot-spot would be the tip of this arrow. For a cross, the hot-spot would
naturally be the point where the bars intersect.

CURSOR_DEF points to an array of 32 elements. Elements 1..16 define the

119

FTN77 Library Reference

“data mask” whilst elements 17..32 define the “cursor mask”. Each element of
the array represents a bit-mapped row of the cursor. On a bit-by-bit basis, the
screen under the cursor amded with the data mask and theored with the
cursor mask in order to produce the visible effect of the cursor.

The default cursor can be restored by reinitialising the mouse.

Example

C The following will define a simple cross to be xor’ed
C against the screen data
INTEGER*2 CURSOR DEF(32)
C The screen mask ensures that all the screen data is
C preserved for Xor’ing with the cursor mask
CURSOR_DEF(1)= B”*1111111111111111°
CURSOR_DEF(16)=B”1111111111111111"
C Elements 17 to 32 are the cursor mask and define
C the shape of the cursor
CURSOR_DEF(17)=B*0000000000000000"
CURSOR_DEF(18)=B*0000000010000000°
CURSOR_DEF(24)=B*0000000010000000°
CURSOR_DEF(25)=B°0111111111111110°
CURSOR_DEF(26)=B*0000000010000000°
CURSOR_DEF(31)=B*0000000010000000°
CURSOR_DEF(32)=B*0000000000000000"
C Enter VGA mode
CALL VGA@
C Set the cursor shape with hot-spot at (8,8)
CALL SET_MOUSE_GRAPHICS CURSOR@(8,8,CURSOR_DEF)
C Display cursor
CALL DISPLAY_MOUSE_CURSOR@

SET_MOUSE_INTERRUPT_MASK@

Purpose 10 enable mouse actions to produce interrupts.

Syntax SUBROUTINE SET_MOUSE_INTERRUPT_MASK@(MASK)
INTEGER*2 MASK

Descripion ~ ThiS routine causes certain mouse actions to produce interrugise

120

Chapter 12 Mouse

SET_TRAP@ routine or its equivalent must first be called with a trap code of 4
to trap mouse events. Each bit in the mask corresponds to an event that may be
trapped. The least significant bit is bit O.

bit interrupt

interrupt on cursor position change
interrupt on left button press

interrupt on left button release
interrupt on right button press

A W N P O

interrupt on right button release

ThusMASK = 2+8 = 10 gives an interrupt on left and right button presses.

Example

C Use of interrupts on cursor movement and button presses
EXTERNAL MOUSE_TRAP
INTEGER*4 Q
INTEGER*2 CURSOR_H,CURSOR_V,BUTTON_STATUS
COMMON CURSOR_H,CURSOR_V,BUTTON_STATUS
C Set up a trap for mouse events (code 4 specifies mouse)
CALL SET_TRAP@(MOUSE_TRAP,Q,4)
C Say we want to interrupt on cursor movement and button
C press
CALL SET_MOUSE_INTERRUPT_MASK@(11)
C Perform some process which uses the
C Cursor coordinates from time to time

INTERRUPT SUBROUTINE MOUSE_TRAP

INTEGER*2 CURSOR_H,CURSOR_V,BUTTON_STATUS

COMMON CURSOR_H, CURSOR_V,BUTTON_STATUS

CALL GET_MOUSE_POSITION@(CURSOR_H,CURSOR_V,BUTTON_STATUS)
END

SET_MOUSE_MOVEMENT_RATIO@ ©

Purpose 10 Set the mouse cursor sensitivity.

Syntax SUBROUTINE SET_MOUSE_MOVEMENT_RATIO@(IH,IV)
INTEGER*2 IH,IV

121

FTN77 Library Reference

Description

This routine sets the cursor sensitivity to horizontal and vertical changes in the
mouse position. It may also be used to adjust the mouse movements to change
in the horizontal and vertical pixel sizes so that, for example, a circular
movement of the mouse causes circular movement of the mouse cursor. The
larger the values dH andlIV, the less sensitive is the mouse cursor to physical
mouse movements.IH=8m and IV=8n wherem is the horizontal anch the
vertical number of mickeys per pixel. The minimum valudifband forlV is 1.

The default values are likely to Hd=8 andlV=16.

SET_MOUSE_POSITION@

Purpose 10 move the mouse cursor to a particular position.
Syntax SUBROUTINE SET_MOUSE_POSITION@(IH,IV)
INTEGER*2 IH,IV
Description This routine sets the hot-spot of the mouse cursor to the poskipiVv] on the
screen. The coordinates are in pixels from the top left of the screen.
SET_MOUSE_SENSITIVITY@ ©
purpose 10 set the mouse cursor sensitivity and the threshold for the double speed.
Syntax SUBROUTINE SET_MOUSE_SENSITIVITY@(DX,DY,SPEED)
INTEGER*2 DX,DY,SPEED
Description This routine combines the actions of the routines
SET_MOUSE_MOVEMENT_RATIO@ and SET_MOUSE_SPEED_THRESHOLD@.
Please refer to these routines for further details.
SET_MOUSE_SPEED THRESHOLD@ ©
purpose 10 set the threshold for double speed.
Syntax SUBROUTINE SET_MOUSE_SPEED_THRESHOLD@(SPEED)
INTEGER*2 SPEED
Descripton T his routine sets the mouse double speed threshold. When the mouse is moved ¢

122

a speed abovBPEED mickeys per second the mouse cursor will move across

Chapter 12 Mouse
the screen at double speed.
SET_MOUSE_TEXT _CURSOR@ ©
purpose 10 specify details of the mouse cursor for text mode.
Syntax SUBROUTINE SET_MOUSE_TEXT_CURSOR@(SELECT,IA,IB)
INTEGER*2 SELECT,IA,IB
Description This routine allows the user to specify details of the cursor for text mode. There

are two possible types of cursor, the “hardware” cursor and the “attribute
cursor”.

By default, the hardware cursor is usually the familiar flashing under-score
character which otherwise relates to keyboard input. By seBfigeCT=1,

this hardware cursor is assigned to the mouse position. In this mode the value
assigned tdA is the start line of the rectangle didis the end linelA=6, IB=7

is often the default) and these values have the same effect as parameters in
SET_CURSOR_TYPE@. The effect will endure after the program terminates
unless the default is reset. In this mode there will normally be only one visible
cursor since the mouse takes over the hardware cursor.

The attribute cursor is more like the associated graphics cursor and can co-exist
with the hardware cursor. By settifgELECT=0, this attribute cursor is
assigned to the mouse position. In this mode the value assighdstanded

with the underlying screen character and its attribute. The result isdhesh

with the value assigned IB.

The screen character/attribute takes a two byte form with the low byte giving the
ASCII code for the character and the high byte giving its attributes in the bit

pattern fbbbtttt where f is set for a flashing character, bbb is the palette register
for the background colour (0..7) and tttt is the palette register for the text colour
(0..15).

Thus (0, Z’FFFF’, Z'7700") first preserves the underlying character/attribute
and then inverts the colour. Similarly (0, Z’FFFF’, Z’F700')il ke the same

but will also invert the flashing mode. Likewise (0, Z'FF00’,7Z20") will
remove the underlying character, replace it with a space (hex 20) and invert the
colour.

Particular care needs to be taken with the attribute cursor since, although it is
more flexible than the hardware cursor, it is susceptible to screen changes. For
example, if the screen scrolls, the original attributes will not be restored at the old

123

FTN77 Library Reference

cursor position, unless the cursor is first switched off.

124

13.

Printer (DOS)

The following routines drive the printer viglOS calls. The printer number can be 1,
2,0r 3 (PT1, LPT20rLPT3).

PRINT_CHARACTER@ 2]

purpose 10 send one character to the printer.

Syntax SUBROUTINE PRINT_CHARACTER@(CHAR,P)
CHARACTER CHAR
INTEGER*2 P

Description ~ The printer numbeP should be in the range 1 to 3.

INITIALISE_PRINTER@ 2]

purpose 10 initialise the printer.

Syntax SUBROUTINE INITIALISE_PRINTER@(P)
INTEGER*2 P

Description ~ The printer numbeP should be in the range 1 to 3.

125

FTN77 Library Reference DOs

GET_PRINTER_STATUS@ 2]

purpose 10 Obtain status information for the printer.

Syntax SUBROUTINE GET_PRINTER_STATUS@(P,S)
INTEGER*2 P,S

S is returned with the status information for prinker The printer numbeP
should be in the range 1 to 3.

The bits ofS have the following significance:

Description

bit value significance
1 Time-out
2 Reserved
4 Reserved
8 I/O error
16 Selected
32 Out of paper
64 Acknowledge
128 Not busy

126

14.

Process control

CISSUE

Purpose

Syntax

Description

Example

Notes

To issue aystem command.

SUBROUTINE CISSUE(A,IFAIL)
CHARACTER*(*) A
INTEGER*2 IFAIL

Issues the command stored as a character striag IFAIL is returned as one
of the following:

IFAIL | Meaning

0 Successful invocation of a command processor to execute the conjmand

1 A command processor could not be invoked

The value oflFAIL refers to the success or failure of invoking M8-DOS
command processcEOMMAND.COM. Unfortunately, MS-DOS does not
provide a mechanism whereby the success or failure of the invocation of the
particular command can be reported back to the caller. So, for example, if you
get asystem error such as “Not found” for the commandAIL will be
returned as zero.

It is not possible to issue a command which itself E@OS (e.g. run another
FTN77 program). Also the use @ISSUE to startTSR programs should be
avoided since this can fragment memory.

127

FTN77 Library Reference

CALL COU@(’the contents of this Directory are:-’)
CALL CISSUE(’DIR’,K)
IF(K.NE.O)CALL COU@(’DIR failed for some reason’)

EXIT
Purpose 10 terminate a program.
Syntax SUBROUTINE EXIT(ERROR_CODE)
INTEGER*2 ERROR_CODE
Description This routine terminates the program and returns to the operating system. If the
error code is non zero the termination will be abnormal. Abnormal termination
will interrupt the flow of aBAT file (as if control break had been pressed).
EXIT@
Purpose 10 terminate a program.
Syntax SUBROUTINE EXIT@(ERROR_CODE)
INTEGER*2 ERROR_CODE
Description ~ EXIT@ is a synonym foEXIT.

GET_KEY_OR_YIELD@

Purpose

Syntax

Description

128

To get the next keycode.

SUBROUTINE GET_KEY_OR_YIELD@(KEY)
INTEGER*2 KEY

This routine returns a key typed on the keyboard in exactly the same way as
GET_KEY@ except that it will yield control to other tasks (if any) when no
keypress is pending. This routine is usedRIBAD_EDITED_LINE@ and
WREAD_EDITED_LINE@. Care should be taken to ensure that only one
process is performing keyboard input with these routines at any one time -
otherwise the characters will be shared randomly across several tasks!

Chapter 14 Process control

seealso SPAWN@, YIELD@.

SLEEP@

Purpose 10 suspend program execution for a specified time interval.

Syntax SUBROUTINE SLEEP@(TIME)
REAL*4 TIME

Descripion ~ The time is given in seconds and is accurate to within one tick (18.2 ticks per
second).

SPAWN@ 2]

Purpose 10 initiate a concurrent subtask.

Syntax SUBROUTINE SPAWN@(SUBTASK,STACK,STACKSIZE,HANDLE)
INTEGER*2 HANDLE
EXTERNAL SUBTASK
INTEGER*4 STACKSIZE
INTEGER*1 STACK(STACKSIZE)

Descripion SPAWN@ creates a subtask which executes routBEBTASK (no
arguments) concurrently with the rest of the program. Up to nine such subtasks
may be created, though one will suffice for most purposes. STH&EK array
will hold the stack for the new task. It should be big enough to ensure that stack
overflow cannot occur in the subtask. It is suggested that the array be made very
large (say 10 Megabytes) and put in an uninitialised common block so that
DBOS will only allocate memory for it as it is actually usedHANDLE is
returned as an integer which defines the task.

seealso YIELD@, GET_KEY_OR_YIELD@.

START_PROGRAM@ (2
purpose 10 start another SalfordBOS) program.

Syntax SUBROUTINE START_PROGRAM@(FILE,FLAGS)

129

FTN77 Library Reference

Description

Notes

Example

CHARACTER*(*) FILE
INTEGER*4 FLAGS

This routine offers a way to start another Salford program (operating under
DBOS) from within an FTN77 program (for example, anothdfTN77
program). Control will never return to the caller ®TART_PROGRAM@.

The flags parameter is bit significant with the following meaning:

bit meaning

value

1 set if you want the program to behave aBREAK had
been specified on the command line

2 set if underflows are to be treated (by default) as errorp

4 set if you wantHARDFAIL

All other bits in the flags are reserved and must be set to 0.

This routine can only be used to execute programs which have been compilec
with FTN77 or one of its sister compilers.

The full pathname must be provided when the file is not in the current directory.

SET_COMMAND_LINE@ can be used to provide command line arguments
for the call.

CALL START_PROGRAM@(’PROG.EXE”,0)

END
YIELD@ (2]
purpose 10 Yield control to a subtask.
Syntax SUBROUTINE YIELD@(UNCONDITIONAL)
LOGICAL*2 UNCONDITIONAL
Descripton If the logical UNCONDITIONAL is set to FALSE., YIELD@ will yield

130

control to another task (initialised ISPAWN@) if one exists and the present
task has run for about 2 clock ticks. YIFELD@ is called and does not actually
yield control it consumes very little time, so it should be called in one of the loops
of a task which is going to perform a long calculation.

Chapter 14 Process control

If UNCONDITIONAL is set to TRUE., YIELD@ always Yyields control if
another task exists. The routine is called in this way from routines such as
GET_KEY_OR_YIELD@ when no key is availableYIELD@ will just return
if SPAWN@ has never been called or if all subtasks have been completed.

131

FTN77 Library Reference

132

15.

Random numbers

RANDOM

Purpose 10 return a pseudo-random double precision value.

Syntax pQUBLE PRECISION FUNCTION RANDOM()

Descripion This routine sets its seed automatically and produces the same sequence every
time the program is run.

Alternatively, you may us®ATE_TIME_SEED@ or SET_SEED@ which
are described below.

Retunvalue RANDOM returns a uniformly distributed random numbersuch that
0.0D0< x < 1.0D0.

Example

DOUBLE PRECISION RANDOM,RANVEC(100)
DO 1 I=1,100
1 RANVEC (I)=RANDOM()

133

FTN77 Library Reference

DATE_TIME_SEED@

Purpose

To select a new “seed” for the pseudo-random number generator function
RANDOM.

Syntax SUBROUTINE DATE_TIME_SEED@

Descripion T his routine sets the seed for the random number generator to a value based o
the currentDATE/TIME. This routine is used to obtain a non repeatable
sequence of pseudo-random numbers.

SET_SEED@
Pupose 10 enter a new “seed” for the pseudo-random number generator function
RANDOM.
Syntax SUBROUTINE SET_SEED@(SEED)
REAL*8 SEED
Descripion T his routine sets the seed for the random number generator to a value based o

134

SEED. SEED may take any value. Each value produces a repeatable sequence
of pseudo-random numbers.

16.

Real mode interface (DOS)

The following routines are used to interfd€EN77 software with code executing in
real mode. They should be used in conjunction with chapter 26 &Tthé7 User's
Guide

It is not possible simply to call real mode functions from a protected FoNE 7
program. A particular real mode memory address always corresponds to the same byte
in physical memory, whereas because of the virtual memory scheme USEN DY, a
particular virtual memory address can even refer to different addresses in physical
memory in the course of one run of a single program, as the page which it belongs to
gets paged out and paged in again (see chapter 23 BT Mig7 User's Guide In

addition to this, a particular virtual address may, at a given time, correspond to a
physical address in extended memory, and thus not be directly accessible from a real
mode program.

These factors mean that there is no simple way to provide a mapping for data held in
memory in protected mode to that in real mode. That is not to say it is impossible to
call real mode software - in fadETN77 has itself to calDOS andBIOS functions
extensively, and these are real mode functions. A number of options exist whereby a
user can invoke real mode code. These are outlined below:

The simplest method is to make the real mode code into a free-standing application,
and invoke it with the€€CISSUE routine. Any data that needs to be passed to and from
the real mode application can be written to a file.

If the code to be invoked is an interrupt handler, and the required data can be passed in
registers, it is simply a matter of loading up the required registers and generating the
appropriate interrupt. This can be done B@DE/EDOC sequence, or by using the
routine REAL_MODE_INTERRUPT@. Many DOS andBIOS functions can be
invoked directly in this way.

Also, the user can write BSR program which hooks an interrupt and is invoked from
a FTN77 program by this mechanism. If the code to be invoked is an interrupt
handler, but requires more information than can be returned in the registers, then a

135

FTN77 Library Reference DOs

mechanism exists using what is termed BH@SCOM buffer. This mechanism was
designed primarily to allow thodeOS interrupts which perform some data transfer
(and therefore require a data buffer) to be invoked, but it can be used for othel
applications.

If the code to be invoked is not in the form of an interrupt handler, then a number of
functions are provided to set up and perform the real mode call. This makes it possibl
to write a general purpose binding to a real mode library which will make it appear as
if it had a simple call interface, and this is done in several available bindings for
popular libraries.

Much of the material which follows assumes some knowledge of Intel 32-bi8nd
DOS architecture. For those not aquainted with these subjects several good referenc
are available.

A real mode address of the for®ELECTOR:ADDRESS is equivalent to an
absolute address b65(SELECTOR,4)+ADDRESS.

Programs compiled with real mode compilers and accessed from witHT A7
program must use either large, compact, or huge models. Failure to do this leads to «
interface failure and often requires a machine reboot.

ALLOCATE_REAL_MODE_MEMORY@ 2]

purpose 10 allocate real mode memory.

Syntax SUBROUTINE ALLOCATE_REAL_MODE_MEMORY@(POINTER,NBYTES, ICODE)
INTEGER*4 POINTER,NBYTES
INTEGER*2 ICODE

Description This routine causd30S to allocateNBYTES of real mode memory and returns
its address ifPOINTER. This is a real-mode (20-bit) address which is returned
by the routine.ICODE is returned as zero if the call is successful.

Notes O ALLOCATE_REAL_MODE_MEMORY@ is normally called before
copying to and from real mode memory unless copying takes place to and
from existingBlOS memory locations.

O The FTN77 program can reference any or all of the allocated real mode
memory by using?OINTER as a base, to which suitable offsets may be
added in calls of COPY_FROM_ REAL MODEl@ and
COPY_TO_REAL_MODEl1@

136

Chapter 16 Real mode interface (DOS)
COPY_FROM_REAL_MODE@ (2]
Purpose 10 copy data from a real mode program.
Syntax SUBROUTINE COPY_FROM_REAL_MODE@(ANY_VARIABLE,NBYTES)
INTEGER*4 NBYTES
Descripion This routine copieNBYTES bytes from the data area previously specified in
the real mode program by calling the real mode rolRR77WT, to the data
area in theFTN77 protected mode program specified by the argument
ANY_VARIABLE. In practice, it is convenient to mak&Y_VARIABLE the
first word of a common block, thus ensuring a contiguous area of data, and to
use ANY_VARIABLE as a flag to communicate actions to the real mode
program.
Notes O NBYTES mustbe of typd NTEGER*4.
o ANY_VARIABLE can be a variable of any type.
o A call to COPY_FROM REAL MODE@ must not be made until
LOAD REAL MODE_LIBRARY@ has been called from thETN77
program, andFTN77WT has been called to return from the real mode
program.
COPY_FROM_REAL_MODE1@ (2]
Purpose 10 copy data from a real mode program.
Syntax SUBROUTINE COPY_FROM_REAL_MODE1@(ANY_VARIABLE,NBYTES,
+ ADDRESS)
INTEGER*4 NBYTES,ADDRESS
Description ~ COpiesNBYTES of information from the absolute real mode address space at

the given address intANY_VARIABLE. The real mode address must be less
that 1 Megabyte.

137

FTN77 Library Reference DOs

COPY_FROM_SEGMENT@ (2]
Purpose 10 copy data from another segment.

Syntax SUBROUTINE COPY_FROM_SEGMENT@(DATA,SELECTOR,OFFSET,NBYTES)
INTEGER*2 SELECTOR
INTEGER*4 OFFSET,NBYTES

Description ~ Copies data to the variable or arf@ATA (which may be of any type) from a
separate segment (e.g. the screen segm@#J-SET is the position within the
segment from which the data is obtained.
COPY_TO_REAL_MODE@ (2]
Purpose 10 copy data to a real mode program.

Syntax SUBROUTINE COPY_TO_REAL_MODE@(ANY_VARIABLE,NBYTES)

INTEGER*4 NBYTES
Description This routine copiefNBYTES bytes to the data area previously specified in the

real mode program by calling the real mode roukn&l77WT, from the data
area in theFTN77 protected mode program specified by the argument
ANY_VARIABLE.
In practice, it is convenient to malkeNY_VARIABLE the first word of a
common block, thus ensuring a contiguous area of data, and to use
ANY_VARIABLE as a flag to communicate actions to the real mode program.

Notes O NBYTES mustbe of typd NTEGER*4.

138

o ANY_VARIABLE can be a variable of any type.

o A call to COPY_TO REAL MODE@ must not be made until
LOAD REAL MODE_LIBRARY@ has been called from thETN77
program, andcFTN77WT has been called from the real mode program.

Chapter 16 Real mode interface (DOS)

COPY_TO_REAL_MODE1@ 2)

Purpose 10 copy data to a real mode program.

Syntax SUBROUTINE COPY_TO_REAL_MODE1@(ANY_VARIABLE,NBYTES,ADDRESS)
INTEGER*4 NBYTES,ADDRESS

Description ~ COpiesNBYTES of information to the absolute real mode address space at the
given address frorANY_VARIABLE. The real mode address must be less that
1 Megabyte. This routine must be used with great care, as it is possible to
corruptDOS or DBOS if an unsuitable address is specified.

COPY_TO_SEGMENT@ 2]

Purpose 10 cOpy data to another segment.

Syntax SUBROUTINE COPY_TO_SEGMENT@(DATA,SELECTOR,OFFSET,NBYTES)
INTEGER*2 SELECTOR
INTEGER*4 OFFSET,NBYTES

Description ~ Copies data from the variable or arf@ATA (which may be of any type) to a
separate segment (e.g. the screen segm@#J-SET is the position within the
segment at which the data should be put.

DEALLOCATE_REAL MODE_MEMORY@ (2
purpose 10 free real mode memory.
Syntax SUBROUTINE DEALLOCATE_REAL_MODE_MEMORY@(POINTER,ICODE)

INTEGER*4 POINTER
INTEGER*2 ICODE

Description ~ Deallocates real mode memory that was previously obtained with
ALLOCATE_REAL_MODE_MEMORY@. POINTER must be a pointer
returned byALLOCATE_REAL_ MODE_MEMORY@.

139

FTN77 Library Reference DOs

DOSCOM@ 2]

Purpose

Description

To obtain a segment selector for I®SCOM buffer.

This routine returns a segment selectorFB for the 1K DOSCOM buffer

which is arranged so as to overlap the real mode space. This allows systen
interrupts to be used which require a buffer to be passed (e.g. I/O transfer
operations). When aBVC/3 call is issued from a&CODE/EDOC (in-line
assembler) sequence, tS and ES registers are set up to point at the
DOSCOM buffer.

By its nature this routine is only useful from withirC®O DE/EDOC sequence.
See page 316 of tHeTN77 User's Guidéor an example of its use.

FTN77WT etc. 2

Purpose

Syntax

Description

140

Notes

Used within a real mode program to receive control from and return control to a
FTN77 program.

SUBROUTINE FTN77WT(ANY_VARIABLE)

FTN77WT is one of a number of routines that can be used within a real mode
program. Each routine is appropriate to a particular real mode compiler. These
routines are used both to indicate where execution of the real mode program
should start wheREAL_MODE@ is called from thd=TN77 program and to
transfer control back to tHeTN77 program. The routine is called each time this
transfer is required.

It is usually convenient to use the single argum&hty VARIABLE, as a flag
to indicate an action to be taken by the calidN77 program. In this case the
argument should be declaredIAl§ EGER*4, INTEGER*2 or INTEGER*1 in
both the real mode and protected mode programs.

O The FTN77 program acts as a driver for the “slave” real mode program
which callsFTN77WT.

O The source code for these routines is located inDIROS.DIR directory,
ready for compilation using your real mode assembler. You should select the
one that is appropriate to your particular compiler. They are also supplied
pre-assembled, ready for inclusion in a real mode object library.

o FTN77WT has been used successfully with IBM Professional Fortran. As
the method of argument passing may differ amongst real-mode compilers, it

Chapter 16

Real mode interface (DOS)

may not function correctly when called, for example, from a program
compiled with the Lahey F77L compiler.

LINEAR_ONE_MEG_SEG@ (>}
purpose 10 obtain the real mode address 0.
Syntax SUBROUTINE LINEAR_ONE_MEG_SEG@

Description ~ Returns with theFS segment selector pointing to real mode address 0. The
segment is a one megabyte segment so the whole of real mode memory can be
accessed off the segment. This is really only of use for machine code
programmers.

It is advised that the routine€COPY_FROM_ REAL MODEl1@ and
COPY_TO_REAL_MODE1@ be used in preference.
LOAD REAL MODE_LIBRARY@ (2]
purpose 10 load and execute a real mode program.
Syntax SUBROUTINE LOAD_REAL_MODE_LIBRARY@(REAL_MODE_EXE_FILE)
CHARACTER *(*) REAL_MODE_EXE_FILE

Description ~ This routine loads, and starts to execute, a previously compiled and linked real
mode program so that it can be called from a protected mode program. The
argumentREAL_MODE_EXE_FILE, is a filename or pathname of a suitable
MS-DOS .EXE file.

Notes O LOAD_REAL_MODE_LIBRARY@ must be the first routine called by the

FTN77 program which wishes to communicate with a real mode program.

O This routine both loads and starts to execute the real mode program.
Execution of the real mode program starts with the first statement. Real mode
routine FTN77WT must be called by the real mode program in order to
return to the=TN77 program.

o Programs compiled with real mode compilers and accessed from within an
FTN77 program must use either large, compact, or huge models.

141

FTN77 Library Reference DOs

MODIFY_REAL MODE_MEMORY@ (2]
purpose 10 change the size of a block of real mode memory.

Syntax SUBROUTINE MODIFY_REAL_MODE_MEMORY@(POINTER,NBYTES,ICODE)

INTEGER*4 POINTER,NBYTES
INTEGER*2 ICODE

Description ~ This attempts to change the size of a block of real mode memory previously
allocated withALLOCATE_REAL_ MODE_MEMORY@. POINTER must
be a pointer returned byALLOCATE_REAL_MODE_MEMORY@.
NBYTES should be set to the size in bytes of the new bld€kODE will be
returned as zero if the new size is acceptable. It is much easier to shrink a block
than to enlarge it.

REAL _MODE@ (2]
purpose 10 transfer control from BTN77 to a real mode program.

Syntax SUBROUTINE REAL_MODE@

Description ~ This routine is used to transfer control froniF&8N77 program to a real mode
program which has been loadedl@AD_REAL_MODE_LIBRARY@. Each
time REAL_MODE@ is called, control is transferred to the statement which
immediately follows the call FFTN77WT in the real mode program.

Notes O A call to REAL MODE@ must not be made until
LOAD REAL MODE_LIBRARY@ has been called from thETN77
program, andcTN77WT has been called to return the real mode program.

O Real mode routinETN77WT must be called by the real mode program in
order to return to thETN77 program.
REAL_MODE_ADDRESS_OF DOSCOM@ (>}
Purpose 10 Obtain the address of tB®®SCOM buffer.

Syntax

142

SUBROUTINE REAL_MODE_ADDRESS_OF_DOSCOM@(ADDRESS,SELECTOR)
INTEGER*4 ADDRESS
INTEGER*2 SELECTOR

Chapter 16

Real mode interface (DOS)

Description ~ Returns the absolute address of the 1K B@SCOM buffer and a protected
mode segment selector. Note that thisota real-mode selector:address pair.
A real mode address of the folBELECTOR:ADDRESS is equivalent to an
absolute address b65(SELECTOR,4)+ADDRESS.
REAL_MODE_INTERRUPT@ (2]
Purpose 10 cause a real mode interrupt fromFariN77 program.
Syntax SUBROUTINE REAL_MODE_INTERRUPT@(REGISTERS,INTERRUPT)
INTEGER*2 REGISTERS(10),INTERRUPT
Descripion INTERRUPT contains an interrupt number. The elementfRBEGISTERS
have the correspondence with the real mode registers as shown in the table below.
Notes O Element 10 oREGISTERS (FLAGS) is returned. Its value before the call

has no significance.

O This subroutine may only be called fromRRAN77 program.

REGISTER REAL MODE
ELEMENT REGISTER

AX
BX
CX
DX
S
DI
BP
DS
ES
FLAGS

© 00 N O U b W N PP

=
o

143

FTN77 Library Reference DOs

SCREENSEG@ 2]

purpose 10 Obtain the segment selector for the graphics area.
Syntax SUBROUTINE SCREENSEG@

Description ~ Returns with thé=S segment selector pointing to real mode address Z’A0000’,
the graphics area. This is really only of use for machine code programmers.

144

17.

Serial communications

GETTERMINATECOMMCHAR@

purpose 10 get the character that terminated the last c&EfxDCOMMDEVICE®@.
Syntax CHARACTER GETTERMINATECOMMCHAR@(PORTNUM)
INTEGER*4 PORTNUM
Retunvalue ~GETTERMINATECOMMCHAR@ returns the character that terminated the last
READCOMMDEVICE@ call. This will be one of the characters set using
SETCOMMTERMINATECHAR@. If the port is not open the function returns -1.
If READCOMMDEVICE@ has not been called the default return is zero.
OPENCOMMDEVICE@
Purpose 10 open a serial port for 1/0.
Syntax: INTEGER*4 OPENCOMMDEVICE@(PORTNUM,COMSPEC,RSIZE,TSIZE)
INTEGER*4 PORTNUM, RSIZE,TSIZE
CHARACTER*(*) COMSPEC
Descripion 10 initiate serial communications between the computer and external devices a

communications port must be selected and opened. On a standard PC there is a
maximum of four serial ports, although it is common for only two to be
installed. PORTNUM can therefore be either 1, 2, 3 or 4. Port 1 is commonly
used to connect the mouse and so may not be available.

COMSPEC is a string that specifies the baud rate, parity, data and stop bit
information (e.g. '9600, n, 8, 1"). Possible values are:

baud rate: 300,600,1200,2400,4800,9600,19200,38400,57600,115200
parity: n (none), o (odd), e (even)

145

FTN77 Library Reference

data bits: 7o0r8
stop bits: Oorl

Under Windows 3.1(1) it is necessary to specify a size for input and
output buffers. The size of the input buffze and the size of the output
buffer Tsize should be set at about 1024. On slower systems with high
data rates it may be advisable to specify larger values.

Retumvalue = OPENCOMMDEVICE@ returns a positive value when successful otherwise it

returns -1.
READCOMMDEVICE@
Purpose 10 read data from an open serial port.
Syntax INTEGER*4 READCOMMDEVICE@(PORTNUM,STRING,NREAD)

INTEGER*4 PORTNUM,NREAD
CHARACTER*(*) STRING

Description Use this function to read data from a serial port that has been opened by a call to
OPENCOMMDEVICE@. PORTNUM must be a valid port number in the range 1 to
4 andNREAD is set as the maximum number of characters to be read. After the
call STRING will contain the data held in the serial port uNREAD characters.
Fewer tharNREAD characters will be read if one of the termination characters
(set USiNGBETCOMMTERMINATECHAR@) is encountered.

Retunvalue =~ READCOMMDEVICE@ returns the number of characters read or -1 if an error

occurred.

SETCOMMTERMINATECHAR@

Purpose

Syntax

Description

146

To set the characters that may be used to terminate a call to
READCOMMDEVICE@ .

INTEGER*4 SETCOMMTERMINATECHAR@(PORTNUM,STRING,LEN)
INTEGER*4 PORTNUM, LEN
CHARACTER*(*) STRING

PORTNUM must be a valid serial port number in the range 1 toS#RING
contains a string of lengttEN. This string is used to provide a list of characters

Chapter 17

Return value

Serial communications

that may be used to terminate a calREADCOMMDEVICE@. The termination
character is discarded wheBeADCOMMDEVICE@ is called. For example
char(0)//char(12)//char(15) provides for the data to be terminated
by a null character, a line feed or a carriage return.

SETCOMMTERMINATECHAR®@ returns a positive value if successful or -1 if an
error has occurred

SETECHOONREADCOMM@

Purpose

Syntax

Description

Return value

To set the communication port to echo back to the sending device.

INTEGER*4 SETECHOONREADCOMM@(PORTNUM, STATE)
INTEGER*4 PORTNUM, STATE

When communicating with a serial device such as a terminal, it is often
necessary to return the data to the sender. In the case of a terminal the data will
be transmitted from its keyboard to the host computer.
SETECHOONREADCOMM@ is used to enable S(ATE=1) or disable
(STATE = 0) the echoing of data. Data that is echoed back to a terminal will be
displayed on its VDUPORTNUM is a valid port number in the range 1 to 4.

SETECHOONREADCOMM@ returns a positive value if successful or -1 if an
error has occurred

WRITECOMMDEVICE@

Purpose

Syntax

Description

Return value

To write a string to a serial port.

INTEGER*4 WRITECOMMDEVICE@(PORTNUM,STRING)
INTEGER*4 PORTNUM
CHARACTER*(*) STRING

Use this function to write a string to a serial port that has been opened by a call
to OPENCOMMDEVICE@. PORTNUM must be a valid port number in the range 1
to 4.

The function returns the number of characters writteri if an error has
occurred

147

FTN77 Library Reference

148

18.

Sound

BEEP@ 2]

Purpose 10 output an audible beep.

Syntax SUBROUTINE BEEP@

SOUND@ 2]

purpose 10 make an audible sound at the console.

Syntax SUBROUTINE SOUND@(FREQUENCY,TIME)
INTEGER*2 FREQUENCY,TIME

Description ~ Produces a tone 6fREQUENCY hertz for a time measured in ticks. There are
approximately 18 ticks per second.

149

FTN77 Library Reference DOs

150

19.

Storage management

The routines described in this chapter fall into three main categories:
o Provision of a virtual storage heap.

o Control over and information about the virtual memory environment provided by
theDBOS DOS extender.

o A facility to make Fortran scratch files “memory resident”.

The virtual memory heap is located in memory above the stack, and has an initial size
of 100 Megabytes. Since these routines work with addresses, the storage acquired by
these routines must be manipulated by the ‘core’ intrinsics. As with any storage heap,
it is important to avoid excessive fragmentation. This can be achieved by a variety of
strategies, such as allocating blocks of fixed size, or deallocating all allocated storage
at once, so that no ‘holes’ are created. The first fit algorithm is used by the routines.
Block sizes are rounded up to multiples of 4 bytes in size and carry a maximum of a
16-byte overhead. This overhead is reduced when many blocks are allocated and can
be reduced to as little as 4 bytes.

It is not necessary to return allocated storage before a program terminates - this is done
automatically.

For Win32 there are two separate heaps, both 100Mb.

a) A heap used byGET STORAGE@, RETURN_STORAGE@ and
SHRINK_STORAGE@. This is fully virtual. Pages are provided by the runtime
system in order to fill program page demands. The program may fail if it uses too
much of the address space allocated, if the physical resources n the system are not
sufficient to satisfy the program’s demands. This is the same asRBOS.

b) A C/C++ heap used hyalloc, new etc. in order to provide physical (committed)
pages. Memory allocated from this heap is guaranteed to be available.

151

FTN77 Library Reference

For bothDBOS and Win32, memory allocated BET_STORAGE@ should not be
returned usindree or delete Similarly, memory allocated usimgalloc or new should
not be returned usifRETURN_STORAGE@.

FREE_SPACE_AVAILABLE@ (2]
Purpose 10 Obtain the amount of free memory in the system.
Syntax TNTEGER*4 FUNCTION FREE_SPACE_AVAILABLE@()
Retunvalue The value returned is the number of bytes available in free memory pages.
FREE VIRTUAL PAGES@ (2]
purpose 10 free memory for reuse.
Syntax SUBROUTINE FREE_VIRTUAL_PAGES@(ADDR,N)
INTEGER*4 ADDR,N
Description ~ This routine provides the capability to reuse memory that is no longer needed.
You may, for example, have a large array that is used in a calculation and is ther
not needed for the rest of the program. This function allows the memory taken
by the array to be freed and used for some other purpose. The routine should b
used with care, the freed array is still accessible but it will contain random
values. ADDR is the address of the memory to frids the size in bytes.
It is not necessary to use this routine with memory allocated with
GET_STORAGE@, the memory taken will be passed back to the system with
the correspondinBETURN_STORAGE@ call.
Example

SUBROUTINE WASTE_MEMORY
INTEGER*4 A(100000)
SAVE A

C COULD USE A(1), WE ARE ACTUALLY PASSING A REFERENCE

152

CALL FREE_VIRTUAL_PAGES@(A,100000*4)
END

Chapter 19

Storage management

GET_MEMORY_INFO@ (2
purpose 10 obtain information about the memory.
Syntax SUBROUTINE GET_MEMORY_INFO@(NP1,NP2,NP3,NP4,NP5,NP6,NP7)
INTEGER*4 NP1 ,NP2,NP3,NP4,NP5,NP6,NP7
Descripion Obtains information about the amounts of various sorts of memory in the system.

The size of a page is 4096 bytes.

NP1 = Total available pages beneath 64@OS memory)

NP2 = Total available pages above 1 Megabyte (extendedory)

NP3 = RemainingDOS pages

NP4 = Remaining extendegahges

NP5 = Total disk swap pages

NP6 = Remaining dislswap pages

NP7 = Number of page turrsince progranstart

A page turn is defined as the process whereby useful data is removed from

memory to make way for something else. A program will generate no page turns
if it is executed with sufficient memory.

GET_STORAGE@

Purpose

Syntax

Description

To get a block of storage of sikebytes from the storage heap.

SUBROUTINE GET_STORAGE@(ADDR,N)
INTEGER*4 ADDR,N

ADDR is returned as the address of the first byte of the block. UDBES a
returned value of -1 indicates that there is insufficient contiguous storage to
create the block. Under Win32 a returned value of zero indicates that there is
insufficient contiguous storage to create the block.

153

FTN77 Library Reference

Notes The heap used by GET_STORAGE@, RETURN_STORAGE@ and
SHRINK_STORAGE® is fully virtual. Pages are provided by the runtime system
to satisfy the program’s page demands. The program may fail if it uses too much
of the address space allocated or if the physical resources on the system are n
sufficient to satisfy the program’s demands.

Memory allocated using GET_STORAGE@ should be returned using
RETURN_STORAGE@. The C functiorfree and the C++ operatatelete can not
be used for this purpose.

GET_STORAGE1@ (2]

Purpose 10 get a block of storage from the storage heap.
Syntax SUBROUTINE GET_STORAGE1@(ADDR,N)
INTEGER*4 ADDR,N
Description ~ Gets a block of storage of at least sikbytes from the storage heapDDR is

returned as the address of the first byte of the block or -ID@&S, zero for
Win32) if there is insufficient contiguous storage to create the block. This
routine never splits a contiguous area of storages returned with the actual
size of block allocated.
One use of this is to allocate a block us®T_STORAGE1@ for storing
data whose size you do not know in advance, and then using
SHRINK_STORAGE@ to set the block to the size required when all the data
has been collected.

Notes SeeGET_STORAGE@.

LARGEST BLOCK AVAILABLE@ (2]
Purpose 10 obtain the size of the largest free block in the storage heap.
Syntax SUBROUTINE LARGEST_BLOCK_AVAILABLE@(AMOUNT)
INTEGER*4 AMOUNT
Descripion AMOUNT is returned as the size required. The value does not indicate that there

154

is enough physical memory to allocate this amount. This block can be obtained
by callingGET_STORAGE@.

Chapter 19 Storage management

MEMORY_AVAILABLE@ (2]
Purpose 10 get the total size of available heap space.
Syntax SUBROUTINE MEMORY_AVAILABLE@(AMOUNT)
INTEGER*4 AMOUNT

Descripion AMOUNT is returned as the size required. The value does not indicate that there
is enough physical memory to allocate this amount. Calls to
GET_STORAGE@ can be used to obtain pieces of this space.

RETURN_STORAGE@
purpose 10 return a block of storage.
Syntax SUBROUTINE RETURN_STORAGE@(ADDR)
INTEGER*4 ADDR

Description ~ Returns a block of storage previously allocated by one of the storage
management routinesADDR must be the address of the start of the storage
block to be returned.

SET_PAGES RESERVE@ (2]
purpose 10 warn of a limited page reserve.
Syntax SUBROUTINE SET_PAGES_RESERVE@(N)
INTEGER*4 N

Descripion ~ Specifies that the system should generate the fault “Down to pages reserve” (or
take a trap) when the total number of pages remaining in store or on the disk has
dropped ta\.

SET_TRAP_ON_PAGE_TURN@ 2)

purpose 10 warn of the first page turn.

Syntax SUBROUTINE SET_TRAP_ON_PAGE_TURN@

155

FTN77 Library Reference

Description

Specifies that the system should generate the fault “Down to pages reserve” (or
take a trap) when the first page turn is generated. This routine uses
SET_PAGES_RESERVE@. A typical use for this routine would be in a
program package which you do not want to run slowly due to page swapping.
By usingSET_TRAP@ to trap the event you could ensure that, if the package
is run on a machine with insufficient memory, a suitable diagnostic will be
generated.

SHRINK_STORAGE@

purpose 10 shrink a block of storage.
Syntax SUBROUTINE SHRINK_STORAGE@(ADDR,N)
INTEGER*4 ADDR,N
Description ~ Shrinks a block of storage previously allocated by one of the storage
management routinesADDR must be the address of the start of the storage
block whose size is to be adjusted.is the new size of the block. This routine
cannot be used to enlarge a storage block.
USE_STORAGE@ (2]
purpose 10 Offer additional memory to the storage heap.
Syntax SUBROUTINE USE_STORAGE@(ADDR,N)
INTEGER*4 ADDR,N
Descripion ADDR is the address of the memory (e.g. the address of an array in common)
andN is the number of bytes being offered.
Notes Once memory has been given to the storage heap in this way it must not be
referenced in any other way.
Example

156

THIS PROGRAM WILL ENLARGE THE STORAGE MAP TO 20 MBYTES
CALLS TO GET_STORAGE@ ETC. WILL FOLLOW LATER
CHARACTER X(10000000)

COMMON/HEAP/X

CALL USE_STORAGE@(LOC(X),10000000)

Chapter 19 Storage management
USE VIRTUAL _SCRATCH_FILES@ 1
purpose 10 enable or disable the virtual scratch file facility.
Syntax SUBROUTINE USE_VIRTUAL_SCRATCH_FILES@(OPTION)
LOGICAL*2 OPTION
Description ~ Enables or disables (according to whet®&TION is true or false) the virtual

scratch file facility. When enabled, any scratch file which is created by an
OPEN statement$TATUS="SCRATCH’) will be held in virtual memory and
never explicitly written to disk. This routine provides a simple way to accelerate
programs which were written for a small address space (640K) and which
consequently write data out to temporary files. Even if some of the data ends up
being paged to disk the use of this routine will usually give substantial
performance gains. It is the user’s responsibility to ensure that there is sufficient
memory (real and/or virtual) to accommodate the files. Currently no one file may
exceed 41 Megabytes in size.

If you are writing software to run in a variety of environments it may be useful to
call GET_MEMORY _INFO@ in order to decide whether to call this routine.

Note that, once created, a virtual scratch file does not change type if the virtual
scratch file facility is turned off. Equally, existing ordinary scratch files are not
affected by a call to this routine. This means that it is possible to force some
scratch files to use virtual memory, while others are still written to disk.

157

FTN77 Library Reference

158

20.

System information

DBOS VERSION@ (2]
Purpose 10 get the currer®BOS version number.
Syntax SUBROUTINE DBOS_VERSION@(VERSION)
CHARACTER*6 VERSION
Descripion ~ VERSION is returned as the version numbeiDBOS that the current program
is running under (ot necessarily the version the program was compiled with).
The result is a character string to allow version numbers of the form 1.23. This
routine was added at version 2.60, so it may be wise to test the presence of the
routine with a call tdYNT@.
DOSPARAM@
Purpose 10 get aDOS environment parameter value.
Syntax SUBROUTINE DOSPARAM@(PARAM,VALUE)
CHARACTER*(*) PARAM,VALUE
Description ~ This routine returns the vallALUE of a DOS parameter PARAM, which
has been set using tl®0OS SET command. This can be very useful while
creating environments in which programs are controlled by global information set
up in batch files.
Example After theDOS command

SET FILENAME=FRED

has been executed, the following would open thd-R&D:

159

FTN77 Library Reference

CHARACTER*50 FILE
CALL DOSPARAM@(’FILENAME’,FILE)
OPEN(FILE=FILE,UNIT=6)

DYNT@ (2]
purpose 10 test for the presence of a system routine.
Syntax SUBROUTINE DYNT@(NAME,RESULT)
CHARACTER*(*) NAME
INTEGER*4 RESULT
Descripion DYNT@ tests to see iINAME is the name of a system routine or a routine in an
active dynamic link library.
If it is, RESULT is set to the address of the routine, otherwise it is set to zero.
NAME may be in upper or lower case.
DYNT1@ (2]
purpose 10 test for the presence of a user routine.
Syntax SUBROUTINE DYNT1@(NAME,RESULT)
CHARACTER*(*) NAME
INTEGER*4 RESULT
Descripion DYNT1@ tests to see INAME is the name of a routine in the user’s program.
If it is, RESULT is set to the address of the routine, otherwise it is set to zero.
NAME may be in upper or lower case.
GET_COPROCESSOR_ENVIRONMENT@ (2]
Purpose 10 Obtain the types of processors available on the system.
Syntax SUBROUTINE GET_COPROCESSOR_ENVIRONMENT@(K)
INTEGER*2 K
Description ~ This routine returns a bit significant result indicating the type(s) of coprocessor

160

available on the system thus:

Chapter 20 System information

bit value [functionality
1 287 functionality
2 387 functionality
4 1167 Weitek functionality]
8 3167 Weitek functionality]
64 386 or 486 processor
128 Pentium processor

If bit 1 (bit value 2) is set then bit 0 will be also. Likewise if bit 3 is set so bit 2
will also be set.

GET_CURRENT_FORTRAN_IO@

Purpose 10 access the state of the current Fortran 1/0 unit.

Syntax SUBROUTINE GET_CURRENT_FORTRAN_IO@(UNIT,REC,RECL,STATUS,

+ NBYTES)
INTEGER*2 UNIT,STATUS
INTEGER*4 REC,RECL,NBYTES

This routine supersed€3ET_CURRENT_FORTRAN_UNIT@. This allows

a Fortran device driver (set up with theVICE= keyword - see page 113 of the
FTN77 User’s Guideto access the state of the current unit. This is useful when
a device driver is attached to multiple units. The current unit is returned in
UNIT, the current record ilREC and the current record length RECL.
NBYTES is filled with the number of bytes to read/write.

STATUS is filled thus:

Bit-0 set forFORMATTED, unset folUNFORMATTED I/O,
Bit-1 set forDIRECT, unset folSEQUENTIAL access.

Description

161

FTN77 Library Reference

GET_CURRENT_FORTRAN_UNIT@

purpose 10 get the unit number for the current I/O operation.

Syntax SUBROUTINE GET_CURRENT_FORTRAN_UNIT@(UNIT)
INTEGER*2 UNIT

Description This routine is useful in device drivers (using BeVICE= 1/0O keyword) which
are to be attached to more than one Fortran stream.

GETENV@ (5]

Purpose 10 get an environment variable.

Syntax CHARACTER*(*) FUNCTION GETENV@(VARIABLE)
CHARACTER*(*) VARIABLE

Retunvalue Returns the value of the specified environment variable.

162

21.

Text screen/keyboard

The routines in this chapter provide facilities for screen and keyboard I/O and control.
Note that routines which control the graphics aspects of the screen are described in
chapters 7 and 8.

While the routines described here are nominally for screen and keyboard, they can
more accurately be described as for standard output and standard input. As such,
DOS I/O redirection will work for these routines.

Certain subroutines which display text on the screen require colour information for the
text. This information appears as the least significant 8 bits of an integer
(INTEGER*2) as follows:

Bit 7 6 5 4 3 2 1 0
f bbb t t t ¢t
f - set for flashing text
bbb - background colour (between 0 and 7)

tttt - text colour (between 0 and 15)

For a list of the colour numbers see page 45. For example, to give flashing red text
(colour 4) on a green background (colour 2) the attribute is

1*128 + 2*16 + 4 = 161
thatis (f)*128 + (bbb)*16 + (tttt) where 128 and 16 are the appropriate offsets.

163

FTN77 Library Reference

COu@
Purpose 10 output text to the screen with a new line.
Syntax SUBROUTINE COU@(A)
CHARACTER*(*) A
Descripion COU@ takes the message length (which must be less than 1024 characters
from its character argumeAt
seealso COUA@, COUP@, SOU@, SOUA@.
Example
CALL COU@(’message to screen’)
END
COUA@
Purpose 10 output text to the screen without a new line.
Syntax SUBROUTINE COUA@(A)
CHARACTER*(*) A
Descripion COUA@ takes the message length (which must be less than 1024 characters’
from its character argumet. This is useful as a prompt or as part of a
sequence of calls which build up a line on the screen.
seealso COU@, COUP@, SOU@, SOUA@.
Example
CALL COUA@(’enter number of samples: *)
READ *,N
COUP@ (2]
Purpose 10 output text to a given screen position.
Syntax

164

SUBROUTINE COUP@(STRING,ATTRIBUTE,ICOL,IROW)
CHARACTER*(*) STRING
INTEGER*2 ATTRIBUTE,ICOL,IROW

Chapter 21 Text screen/keyboard

Descripon COUP@ writes STRING at position [COL,IROW) relative to (0,0) at the top
left of the screen, with the colour informati8M TRIBUTE (see the introduction

to this chapter). COUP@ takes the message length (which must be less than
1024 characters) from its character argun@ariRING.

seealso COU@, COUA@, SOU@, SOUA@.

Example
C COLOUR 7 IS WHITE
CALL COUP@(’IN THE MIDDLE’,7,35,12)
DOS_KEY_WAITING@ (2

purpose 10 test if the keyboard buffer is empty.

Syntax | 0GICAL*2 FUNCTION DOS_KEY_WAITING@()

Description This routine is identical tKkEY_WAITING@ except that this routine respects
DOS redirection.

Returnvalue DOS_KEY_WAITING@ returns TRUE. if there is a key waiting to be read
from the keyboard bufferFALSE. if not.

ECHO_INPUT@ 2]

purpose 10 control the echoing of text from standard input.

Syntax SUBROUTINE ECHO_INPUT@(STATE)
LOGICAL*2 STATE

Description By default text is echoed to standard output. SFATE is given the value

.TRUE. then echoing is performed, if it i$ALSE. then echoing is not
performed.

ERRCOU@ (5]

Purpose 10 output text to the standard error device.

Syntax SUBROUTINE ERRCOU@(STRING)
CHARACTER*(*) STRING

165

FTN77 Library Reference

Descripion ERRCOU@ outputs text followed by a new line taking the message length from
its character argumeBTRING.

ERRCOUA@ (5]

Purpose 10 output text to the standard error device.

Syntax SUBROUTINE ERRCOUA@(STRING)
CHARACTER*(*) STRING

Descripion ERRCOUA@ outputs text (without a new line) taking the message length from
its character argumer@TRING. This is useful as a prompt or as part of a
sequence of calls which build up a line on the screen.

ERRNEWLINE@ (5]

Purpose 10 Write a newline to the standard error device.

Syntax: SUBROUTINE ERRNEWLINE@

ERRSOU@ (5]

Purpose 10 output text to the standard error device.

Syntax SUBROUTINE ERRSOU@(STRING)
CHARACTER*(*) STRING

Descripon ERRSOU@ outputs text from the character argum&itRING to standard
error omitting any trailing blanks, and outputing a new line.

ERRSOUA@ (5]

Purpose 10 output text to the standard error device.

Syntax SUBROUTINE ERRSOUA@(STRING)
CHARACTER*(*) STRING

Descripon ERRSOUA@ outputs text from the character argum8MRING to standard

166

Chapter 21 Text screen/keyboard

error omitting any trailing blanks. Does not output a new line.

GET_CURSOR_POS@ 2)

Purpose 10 get the co-ordinates of the text cursor.

Syntax SUBROUTINE GET_CURSOR_POS@(IH,IV)
INTEGER*2 IH,IV

Description This subroutine gets the horizontal positibhand the vertical positiotV of the
console screen text cursor. If the screen has 80x25 character positions then the
range oflH is 0..79 and the range ¥ is 0..24 with (0,0) at the top left-hand
corner.

seealso SET _CURSOR_POS@.

GET_DOS_KEY@ 2]

Purpose 10 get the next keycode.

Syntax SUBROUTINE GET_DOS_KEY@(K)
INTEGER*2 K

Descripon ~ This routine is similar toGET_KEY@ except thatDOS redirection is
respected.

GET_DOS_KEY1@ 2]

Purpose 10 get the waiting keycode.

Syntax SUBROUTINE GET_DOS_KEY1@(K)
INTEGER*2 K

Descripon ~ This routine is similar toGET_KEY1@ except thatDOS redirection is
respected.

167

FTN77 Library Reference

GET_EXTENDED CHAR@ (2]
Purpose 10 get the waiting two-byte keycode.
Syntax SUBROUTINE GET_EXTENDED_CHAR@(K)
INTEGER*2 K
Description This subroutine gets a two-byte keycode from the keyboard. If the buffer is not
empty therK is read and removed from the buffer. If the buffer is empty khen
is set to zero and the function does not wait for a keyboard input. The high byte
is the scan code for the key whilst the low byte iSABEIl value. Sometimes it
is simpler to use the functioBET_KEY@ which returns the keycode in a
different form.
Example
CALL GET_EXTENDED_CHAR@(K)
IF(K.EQ.Z"3B00")THEN
PRINT *,”F1 Key pressed’
ELSEIF(K.EQ.Z"13C”)THEN
ENDTF
GET KEY@
Purpose 10 get the next keycode.
Syntax SUBROUTINE GET_KEY@(K)
INTEGER*2 K
Description ~ This subroutine gets a keycode from the keyboard. If the buffer is not empty
then a value is read and removed from the buffer. If the buffer is empty then the
function waits for a keyboard input. The valuekofassigned such that if the
high byte is equal to 0 then the low byte is A%Cll value for the key pressed.
If the high byte is equal to 1 then the low byte is the scan code for a Function key
or anALT key combination (the scan code is tie256).
seealso GET_KEY1@, GET_DOS_KEY@, GET_DOS_KEY1@,
KEY_WAITING@, GET_KEY_OR_YIELD@.
Example

168

Chapter 21 Text screen/keyboard

CALL GET_KEY@(K)
IF(K.EQ.Z*13B’)THEN

PRINT *,”F1 Key pressed’
ELSEIF(K.EQ.Z*13C’)THEN

ENDIF

GET_KEY1@ 2]

Purpose 10 get the waiting keycode.

Syntax SUBROUTINE GET_KEY1@(K)
INTEGER*2 K

Descripon GET_KEY1@ is the same a6ET_KEY@ except that it does not wait for a
key to be pressed when the buffer is empty. In this situktisrset to zero.

Example

CALL GET_KEY1@(K)

C Ensure a key has been pressed
IF(K.EQ.0)GOTO 100
IF(K.EQ.Z*13B’)THEN

PRINT *,”F1 Key pressed’
ELSEIF(K.EQ.Z*13C’)THEN

ENDIF

GETCL@ 2]

Purpose 10 get a line of text from the keyboard.

Syntax SUBROUTINE GETCL@(C,LC)
CHARACTER*(*) C
INTEGER*2 LC

Description This routine waits until the next line is typed at the keyboard, and return8.it in
LC is set to the length of the line.

Example

169

FTN77 Library Reference

CHARACTER*10 ANS
INTEGER*2 LC

1 CALL COUA@(’Type STOP or GO *)
CALL GETCL@(ANS,L)
CALL UPCASE@(ANS)
IF(ANS.EQ.”STOP*)GOTO 10
IF(ANS.EQ.’G0")GOTO 20
GOTO 1

HIDE_CURSOR@ 2]

purpose 10 hide the text cursor.

Syntax: SUBROUTINE HIDE_CURSOR@

Description ~ HIDE_CURSOR@ records the current shape of the cursor and removes it from
the screen. A subsequent call RESTORE_CURSOR@ will return the
cursor. This routine is often useful while processing windows in which the
cursor is an irrelevance.

KEY_WAITING@ 2]

purpose 10 test if the keyboard buffer is empty.

Syntax | 0GICAL*2 FUNCTION KEY_WAITING@()

Returnvalue KEY_WAITING@ returns TRUE. if there is a key waiting to be read from the
keyboard, FALSE. if not.

seealso DOS _KEY_WAITING@.

Example

LOGICAL KEY_WAITING@

IF(KEY_WAITING@())THEN
CALL GET_KEY@(KEY)
CALL PROCESS(KEY)

ENDIF

END

170

Chapter 21 Text screen/keyboard

NEWLINE@

Purpose 10 Write a carriage return/linefeed to the screen (standard output).

Syntax SUBROUTINE NEWLINE@

PRINT_BYTES@

Purpose 10 Write a sequence of hexadecimal values.

Syntax SUBROUTINE PRINT_BYTES@(IARR,N)
INTEGER*2 IARR(*),N

Descripion PRINT_BYTES@ writes N bytes of datumlARR in hexadecimal to standard
output, separating each byte value by a space, with no terminating new line.

PRINT BYTES R@

purpose 10 write a hexadecimal sequence in reverse order.

Syntax SUBROUTINE PRINT_BYTES_R@(IARR,N)
INTEGER*2 TARR(*),N

Description T his routine is similar t&®RINT_BYTES@, but the bytes are written in reverse
order.

PRINT_HEX1@

purpose 10 print a lbyte hexadecimal number (2 digits) without a new line.

Syntax SUBROUTINE PRINT_HEX1@(L)
INTEGER*1 L

171

FTN77 Library Reference

PRINT_HEX2@

Purpose 10 print a 2byte hexadecimal number (4 digits) without a new line.

Syntax SUBROUTINE PRINT_HEX2@(L)
INTEGER*2 L

PRINT_HEX4@

Purpose 10 print a 4byte hexadecimal number (8 digits) without a new line.

Syntax SUBROUTINE PRINT_HEX4@(L)
INTEGER*4 L

PRINT_I1@

purpose 10 print anINTEGER*1 decimal number without a new line.

Syntax SUBROUTINE PRINT_I1@(I)
INTEGER*1 1

PRINT_I2@

purpose 10 print anINTEGER*2 decimal number without a new line.

Syntax SUBROUTINE PRINT_I2@(I)
INTEGER*2 1

PRINT_4@

purpose 10 print anINTEGER*4 decimal number without a new line.

Syntax SUBROUTINE PRINT_I4@(L)
INTEGER*4 L

172

Chapter 21 Text screen/keyboard

PRINT_R4@

purpose 10 print aREAL*4 value as a number without a new line.

Syntax SUBROUTINE PRINT_R4@(R)
REAL*4 R

PRINT_RS@

purpose 10 print aREAL*8 value as a number without a new line.

Syntax SUBROUTINE PRINT_R8@(R)
REAL*8 R

READ_EDITED LINE@ 2]
Purpose 10 input text from a screen position.
Syntax SUBROUTINE READ_EDITED_LINE@(LINE,HP,VP,ATTRIBUTE,IC)

CHARACTER*(*) LINE
INTEGER*2 HP,VP,ATTRIBUTE,IC

Descripion READ_EDITED_LINE@ provides a user friendly text input function for the

screen.

LINE contains the default string which is initially displayed on the screen.

may then be edited by using any of the standard line editing key strokes. If the
cursor is not repositioned before editing the string then the input string is deleted

on the screen.

(HP,VP) provide the character position of the string relative to the top left of the
screen.ATTRIBUTE provides the colour of the text and its background (see the
introduction to this chapter). Before editing, the colour of the string is reversed.

The subroutine yields a vall€ = -1, if theEsc key was pressed to end the edit

rather tharEnter. OtherwisdC = 0.

173

FTN77 Library Reference

RESTORE_CURSOR@ (2
Purpose 10 show the text cursor.
Syntax SUBROUTINE RESTORE_CURSOR@
Descripion RESTORE_CURSOR@ restores a cursor which has been hidden by a call to
HIDE_CURSOR@. It should only be used after such a call.
SET_CURSOR_POS@ (2}
purpose 10 Set the co-ordinates of the text cursor.
Syntax SUBROUTINE SET_CURSOR_POS@(IH,IV)
INTEGER*2 IH,IV
Descripion T his subroutine sets the horizontal positiinand the vertical positioh/ of the
console screen text cursor. If the screen has 80x25 character positions then th
range oflH is 0..79 and the range ¥ is 0..24 with (0,0) at the top left-hand
corner.
seealso GET_CURSOR_POS@.
SET_CURSOR_TYPE@ (2]
Purpose 10 Set the shape of the text cursor.
Syntax SUBROUTINE SET_CURSOR_TYPE@(TYPE)
INTEGER*2 TYPE
Description T his subroutine sets the shape of the text cursor according to the vaNBBf

174

The cursor is rectangular and is made up of a number of scan lines (the numbe
depending on the graphics adapter) numbered from the top which is line number
zero. The high byte oFYPE is set to the starting scan line and the low byte is
set to the ending scan line.

TYPE=Z'0607’ is often the default setting for a colour/ graphics adapter.

Chapter 21

Text screen/keyboard

SOU@
Purpose 10 output text with a new line, omitting any trailing blanks.
Syntax SUBROUTINE SOU@(A)
CHARACTER*(*) A
Description SOU@ writes to the screen from the character argumentlt is identical to
COU@ except that the cursor will not scan over any trailing blanks.
seealso COU@, COUA@, COUP@, SOUA@.
SOUA@
Purpose 10 output text without a new line, omitting any trailing blanks.
Syntax SUBROUTINE SOUA@(A)
CHARACTER*(*) A
Descripion SOUA@ writes to the screen from the character argurferdmitting any
trailing blanks. Itis likesSOU@ but does not output a new line.
seealso COU@, COUA@, COUP@, SOU@.
Example

CHARACTER*20 FRED

CALL COUA@Q(’using the fact that FRED=")
CALL SOUA@(FRED)

CALL COUA@(’ enter the value of N: ’)
READ *,N

175

FTN77 Library Reference

176

22.

Text windows (DOS)

This chapter describes routines which implement text mode windowing. Any positional
arguments P, VP, HS, VS) are text screen relative (i.e. character positions), with
position (0,0) being the top left-hand corner of the scrédéNDLE is an identifier

given a value when a window is first created and used subsequently. It is analogous to
aDOS file handle. Text is written to a window (usiiglCOU@ or WCOUP@, not

WRITE or PRINT) with a given attribute (coloutpT as described in the introduction

to chapter 211AT=-1 implies the use of a default attribute which is assigned when the
window is created.

The following routines work equally well when the screen is in graphics mode with the
exception that window shadows are not available.

The FTN77 library does not provide direct support for graphicadeivs, although
routines such asGET_SCREEN BLOCK@ and RESTORE_SCREEN BLOCK@
allow users to implement their own graphics windowing system.

CONCEALW@ (2]

Purpose 10 move a window to the bottom of the stack.

Syntax SUBROUTINE CONCEALW@(HANDLE)
INTEGER*2 HANDLE

Description This routine moves a text window to the bottom of the stack, making it the least
visible. If only one window has been created, tB&@NCEALW@ will hide it.

seeaso WCREATE@, POPW@, MOVEW®@.

177

FTN77 Library Reference DOs

KILLW@ (2]
Purpose 10 remove a text window.
Syntax SUBROUTINE KILLW@(HANDLE)
INTEGER*2 HANDLE
Description ~ KILLW@ removes a text window created ByCREATE@ from the system
freeing the associated memory and disassociating the handle.
See also WCREATE@
MOVEW@ (2]
purpose 10 change the position of a window on the screen.
Syntax SUBROUTINE MOVEW@(HANDLE,HP,VP)
INTEGER*2 HANDLE,HP,VP
Descripion This routine moves a text window so that its top left hand corner is at the
specified position HP,VP) relative to the top left of the screen. The routine
removes the window and redraws it at the new position.
See also WCREATE@
POPW@ (2]
purpose 10 move a window to the top of the stack.
Syntax SUBROUTINE POPW@(HANDLE)
INTEGER*2 HANDLE
Descripion POPW@ moves a text window to the top of the stack making it the most visible.
When a window is created, it must be popped to make it visible even if it is the
only one that has been created.
seealso WCREATE@, CONCEALW@, MOVEW@.

178

Chapter 22 Text windows (DOS)

SCROLL_DOWN@ and SCROLL_UP@ (2}

Purpose 10 scroll text in a window.

Syntax SUBROUTINE SCROLL_DOWN@(HANDLE)
SUBROUTINE SCROLL_UP@(HANDLE)
INTEGER*2 HANDLE

Descripion These routines scroll the text in a given window one line at a time with re-display
on each call. Text that is scrolled out of a window cannot be recovered by a call
to the other function in the pair.

SET_CURSOR_POSW@ (2]
Purpose 10 Set the cursor position for a text window.
Syntax SUBROUTINE SET_CURSOR_POSW@(HANDLE,HP,VP)
INTEGER*2 HANDLE,HP,VP

Description This routine sets the position of the text cursor in a windowdRy\(P) relative
to the top left of the window.

seealso WCREATE@, WCOUP@, WCOU@.

WBORDER@ 2]

purpose 10 set the border style for a text window.

Syntax SUBROUTINE WBORDER@(HANDLE,BORDER)
INTEGER*2 HANDLE,BORDER

Descripion ~The WBORDER@ routine selects the border styg®©RDER for the window
with handleHANDLE as follows.

179

FTN77 Library Reference DOs

BORDER | style

0 Empty spaces as border
Double horizontal and vertical lines (the defaul

~

Single horizontal and vertical lines
Double horizontal and single vertical lines
Single horizontal and double vertical lines

a A W N PP

Thick horizontal and vertical lines

seealso WCREATE@, WDBORDER@.

WCLEAR@ 2]

Purpose 10 Clear a text window

Syntax SUBROUTINE WCLEAR@(HANDLE)
INTEGER*2 HANDLE

Descripion WCLEAR@ clears a window to the background colour and bordppled to
WCREATE@.

WCOU@ 2]

Purpose 10 write text to a window.

Syntax: SUBROUTINE WCOU@(C,IAT,HANDLE)
CHARACTER*(*) C
INTEGER*2 IAT,HANDLE

Descripion ~ WCOU@ writes the stringC to the given window. Each call @2WWCOU@
begins a new line with the first call writing to the first line of the windbAil.
provides the colour attributes of the text and its background (see the introduction
to chapter 21).

seeaso SET_CURSOR_POSW@, WCOUP@.

180

Chapter 22 Text windows (DOS)

WCOUP@ 2]

Purpose 10 write text to a window position.

Syntax SUBROUTINE WCOUP@(C,IAT,HP,VP,HANDLE)
CHARACTER*(*) C
INTEGER*2 IAT,HANDLE
INTEGER*2 HP,VP

Descripion ' WCOUP@ writes a stringC to the window at the positiotHP,VP) relative to
the top left of the windowlAT provides the colour attributes of the text and its
background (see the introduction to chapter 21).

seeaso SET_CURSOR_POSW@, WCOU@.

WCREATE@ 2]

Purpose 10 create a text window.

Syntax SUBROUTINE WCREATE@(HP,VP,HS,VS,IAT,HANDLE)
INTEGER*2 HANDLE,IAT
INTEGER*2 HP,VP,HS,VS

Descripon WCREATE@ vyields a handléd{ANDLE for a text window with top left corner
at HP,VP) measured in character positions with (0,0) at the top left of the
screen. HS andVS provide the width and height (in characters) of the window.
The input value for the colour attribut®T sets the border colour (which is also
the default text colour) and the background colour for the window (see the
introduction to chapter 21). The window must be popped RP€&RW@) to
make it visible.

seealso KILLW@.

WDBORDER@ 2]

purpose 10 set the default border style for all subsequent text windows created.

Syntax SUUBROUTINE WDBORDER@(BORDER)
INTEGER*2 BORDER

181

FTN77 Library Reference DOs

Description ~ This routine selects the default border style for all text windows that will be
created.BORDER has the same meaning a3WB8ORDER@.

seealso WCREATE@, WBORDER@.

WDSHADOW@ 2]

purpose 10 set the default shadow style for all subsequent text windows created.

Syntax SUBROUTINE WDSHADOW@(SHADOW)
INTEGER*2 SHADOW

Descripion ~ This routine selects the default shadow style for all text window that will be
created. SHADOW has the same meaning adMsHADOW@.

seealso WCREATE@, WSHADOW@.

WMEMORY@ 2]

Purpose 10 get the memory pointer for a text window.

Syntax SUBROUTINE WMEMORY@(HANDLE,PTR)
INTEGER*2 HANDLE
INTEGER*4 PTR

Descripon ~WMEMORY @ returns the memory point&TR to a window.

WREAD_EDITED_LINE@ 2]

Purpose 10 input text from a window position.

Syntax SUBROUTINE WREAD_EDITED_LINE@(LINE,HP,VP,HANDLE,IAT,IC)
CHARACTER*(*) LINE

INTEGER*2 HP,VP,HANDLE,IAT,IC

WREAD_EDITED_LINE@ provides a user friendly text input routine for use
with the text windowing system.

LINE contains the default string which is initially displayed on the screen. It
may then be edited by using any of the standard line editing key strokes. If the

182

Chapter 22

Description

Text windows (DOS)

cursor is not repositioned before editing the string then the input string is deleted
on the screen.

(HP, VP) provide the character position of the string relative to the top left of the
window. IAT provides the colour attributes of the text and its background (see
the introduction to chapter 21). Before editing, the colour of the string is
reversed.

The routine yields a valuk = -1, if theEsc key was pressed to end the edit
rather tharEnter. OtherwisdC = 0.

WSHADOW@ (2]
purpose 10 Set the shadow style for a text window.
Syntax SUBROUTINE WSHADOW@(HANDLE, SHADOW)
INTEGER*2 HANDLE,SHADOW
Descripon ~The WSHADOW®@ routine selects the shadow stSielADOW for the window
with handle HANDLE as follows. The shadow is a row and column,
respectively below and to the right of the window, offset one character. The style
of the shadow is formed by changing the text/background attribute of the
corresponding character. The colours 7 and O refer to the palette register
numbers for the default text and background colours which are usually white and
black (seeSET_PALETTE@ for details).
SHADOW | style
0 No shadow (the default)
1 Intense bit of background attribute turned qff
2 Text colour = 7, background colour =0
3 No text, solid colour =0
4 No text, chequered colour 7 on colour 0
5 No text, solid colour =7
seealso WCREATE@, WDSHADOW@.

183

FTN77 Library Reference DOs

WTITLE@

Purpose

Syntax

Description

184

To assign a title to a text window.

SUBROUTINE WTITLE@(HANDLE,C,IAT)
CHARACTER*(*) C
INTEGER*2 IAT,HANDLE

The WTITLE@ routine assigns a title to the window with handieNDLE. C

is the string to be used as a title. If the string is wider than the window then it is
cut short. IAT provides the colour of the text and its background as in
WCREATE@. If IAT = -1, the default values for the text and its background
are supplied (se&/CREATE@).

23.

Time and date

CLOCK@
Purpose 10 get a time in seconds.
Syntax: SUBROUTINE CLOCK@(R)
REAL*4 R
Description This routine is usually used to time a process as shown in the example below.

Notes It should not be used to time processes ubeBQview as it returns elapsed
time, which isnot CPU time, if multiple windows are in use.

seealso DCLOCK@, HIGH_RES_CLOCK@, SECONDS_SINCE_1980@.

Example

CALL CLOCK@(START)
C some calculation
CALL CLOCK@(FINISH)

PRINT *,’elapsed time used = ’,FINISH-START
END

CONVDATE@ (5]

Purpose 10 get the date in numeric form.

Syntax SUBROUTINE CONVDATE@(SECS,IDW,IDAY,IMONTH,IYEAR)
INTEGER*4 SECS

185

FTN77 Library Reference

INTEGER*2 IDW,IDAY,IMONTH,IYEAR

Description ~ ConvertsSECS into a day of the weekPW (0 = Sunday) and the day, month
and year.

DATE@
purpose 10 get the date in the forMM/DD/YY (American format).

Syntax CHARACTER*8 FUNCTION DATE@()
See also EDATE@, FDATE@
Example

CHARACTER*8 DATE@
PRINT *,’program run on °,DATE@()

DCLOCK@

Purpose 10 get a time in seconds.

Syntax SUBROUTINE DCLOCK@(R)
REAL*8 R

Description ~ This routine is usually used to time a process as shown in the example for
CLOCK@. This routine differs fromCLOCK@ only in that its argument is
REAL*8. Its main purpose is for use in conjunction WiEFREAL, when all
variables declareBREAL*4 are actually compiled &8EAL*8.

See also HlGH_RES_CLOCK@

EDATE@
purpose 10 get the date in the for®D/MM/YY (European format).

Syntax CHARACTER*8 FUNCTION EDATE@()
See also DATE@, FDATE@

186

Chapter 23 Time and date

Example

CHARACTER*8 EDATE@
PRINT *,’program run on ’,EDATE@()

FDATE@

Purpose 10 get the date in text form.

Syntax CHARACTER*(*) FUNCTION FDATE@()

Returnvalue FDATE@ returns the date in the form:
Thursday February 11, 1988

See also DATE@ , EDATE@ .

Example

CHARACTER*20 FDATE@
PRINT *,’Program run on ’,FDATE@()

HIGH_RES_CLOCK@

Purpose 10 Obtain theCPU time accurate to 1 microsecond.

Syntax REAL*8 FUNCTION HIGH_RES_CLOCK@(ALIGN)
LOGICAL*2 ALIGN

Description This function returns th€PU time as seconds since midnight accurate to about
1 microsecond (although the cost of the function call is approximately 100
microseconds because it must €20S). To achieve this precision the system
clock is reprogrammed in mode 2. This could in principle affect other software,
although we are not aware of any problems. The clock remains programmed in

mode 2 until the system is rebooted. If 8&idGN argument is sefTRUE., this

function will not return until after the next clock tick to help to obtain consistent

timings. Obviously the second of a pair of calls tHiGH_RES CLOCK@
should haveALIGN set to FALSE.. Although the function is defined as
REAL*8 it actually returns an 80-bit precision result.

See also DCLOCK@.

187

FTN77 Library Reference

Example

REAL*8 T1,T2,HIGH_RES_CLOCK@
T1=HIGH_RES_CLOCK@(.TRUE.)

CALL SOME_PROCESS
T2=HIGH_RES_CLOCK@(.FALSE.)
PRINT *,’Time required = *,T2-T1
END

SECONDS_SINCE_1970@

Purpose

Syntax

Description

To get the number of seconds from a fixed date.

SUBROUTINE SECONDS_SINCE_1970@(DR)
REAL*8 DR

Returns the value bR as the number of seconds that have elapsed since
12.00am on 1st January 1970.

SECONDS_SINCE_1980@

purpose 10 get the number of seconds from a fixed date.
Syntax SUBROUTINE SECONDS_SINCE_1980@(DR)
REAL*8 DR
Descripion T his routine returns the value DR as the number of seconds that have elapsed
since 12.00am on 1st January 1980. It can be used in a similar way to
CLOCK@ (or DCLOCK@). SECONDS_SINCE_1980@ should be used
when making timings which straddle midnight.
SET_ALARM_CLOCK@ (2
purpose 10 Set the elapsed time before an alarm.
Syntax SUBROUTINE SET_ALARM_CLOCK@(TIME)
INTEGER*4 TIME
Description After calling this routine an alarm clock event will occur aféviE ticks. You

188

should have useBET_TRAP@ with a code of 3 to set up an interrupt routine

Chapter 23 Time and date

to handle the interrupt.

Example
EXTERNAL ALARM
INTEGER*4 Q,TICKS
CALL SET_TRAP@(ALARM,Q,3)
TICKS=500
CALL SET_ALARM_CLOCK@(TICKS)
1 PRINT *,’TESTING’
GOTO 1
END
INTERRUPT SUBROUTINE ALARM
PRINT *,’TIME UP!”’
Note that the rules of interrupt subroutines forbid a return from this
point, since we have done an I/0 operation and will in all probability
be returning to another I/0 statement. To continue we would need to use
subroutine JUMP@
STOP
END

OO OO

TIME@
Purpose 10 get the time in the formétH:MM:SS.
Syntax CHARACTER*8 FUNCTION TIME@()

Example

CHARACTER*8 TIME@
PRINT *, program starting execution at *,TIME@()

TODATE@ (5]

purpose 10 convert the time given to a date for the form MM/DD/YY (American format).

Syntax CHARACTER*(*) FUNCTION TODATE@(SECS)
INTEGER*4 SECS

189

FTN77 Library Reference

TOEDATE@ (5
purpose 10 convert the time given to a date in the format DD/MM/YY (European
format).
Syntax CHARACTER*(*) FUNCTION TOEDATE@(SECS)
INTEGER*4 SECS
TOFDATE@ (5]

Purpose 10 get the date in text form.

Syntax CHARACTER*(*) FUNCTION TOFDATE@(SECS)

Returnvalue TOFDATE@ returns the date in textual format based on time given in the form:

“Friday January 29, 1993".

TOTIME@

Purpose 10 return the time in the form “HH:MM:SS”.

Syntax CHARACTER*(*) FUNCTION TOTIME@(SECS)

INTEGER*4 SECS

Retunvalue Returns the time corresponding3&CS.

190

Index

A COPY_TO_REAL_MODEG@ routine, 138
ACCESS. DETAILS@ routine, 17 COPY_TO_REAL_MODE1@ routine, 139

ALLOCATE_REAL_MODE_MEMORY@ routine, 136 COPY_TO_SEGMENT@ routine, 139
Allocating storage, 152 COU@ routine, 164
ALLOCSTR@ routine, 3 COUA@ routine, 164

) COUP@ routine, 164
APPEND_STRING@ routine, 3 y :
ATTACH®@ routine, 27 CREATE_POLYGON@ routine, 52

CREATE_SCREEN_BLOCK@ routine, 76
Critical errors, 24

B CURDIR@ routine, 29

BEEP@ routine, 149 CURRENT_DIR@ routine, 29

. . . Cursor

Bit-handling routines, 1 mouse, 113, 119, 123
text, 174

C
CENTRE@ routine, 4 D
CHAR_FILL@ routine, 4 . .
Character-handling routines, 3 DAC information, 46, 61, 64, 70, 77
CHSEEK@ routine, 5 Data sprtlng rqutmes, 15
CHSORT@ routine, 15 Date/time roqtlnes, 185
CISSUE routine, 127 DATE@ routine, 186 _
CLEAR_BIT@ routine, 1 DATE_TIME_SEED@ rqutlne, 134
CLEAR_FLT_UNDERFLOW@ routine, 18 DBOS_VERSION@ routine, 159
CLEAR_SCREEN@ routine, 50 DCLOCK@ routine, 186 _
CLEAR SCREEN_AREA@ routine, 50 DEALLOCATE_REAL_MODE_MEMORY@ routine, 139
CLOCK_@ routine,_185 DEFINE_HOT_KEY@ routine, 107
CLOSE_GRAPHICS PRINTER@ routine, 92 DELETE_POL_(GON_DEFINITION@ routine, 53
CLOSE_PLOTTER@ routine, 76 DIRENT@ routine, 29 _
CLOSE_VSCREEN@ routine, 76 DISPLAY_MOUSE_CURSOR@ routine, 114
CLOSEF@ routine, 28 DOS_ERROR_MESSAGE@ routine, 18
CLOSEFD@ routine, 28 DOS_KEY_WAITING@ routine, 165
CLOSEV@ routine, 28 DOSCOMQ@ routine, 140
CMNAM routine, 11 DOSERR@ routine, 18
CMNAMR routine, 12 DOSPARAM@ routine, 159
CMNARGS@ routine, 13 DRAW_HERSHEY@ routine, 53
CMNUM@ routine, 13 DRAW_LINE@ routine, 55
CMPROGNM@ routine, 13 DRAW_TEXT@ routine, 56
CNUM routine, 6 DSORT@ routine, 16
Colour graphics DYNT@ routine, 160

16 colours, 45 DYNT1@ routine, 160

256 colours, 47

COMBINE_POLYGONS@ routine, 51 E
COMMAND_LINE routine, 13 ECHO_INPUT@ routine, 165
COMPRESS@ routine, 6 ;

. EDATE@ routine, 186
CONCEALW@ routine, 177 B

. EGA@ routine, 56
CONVDATE@ routine, 185 ELLIPSE@ routine, 56
COPY_FROM_REAL_MODE@ routine, 137 EMPTY@ routine él
COPY_FROM_REAL_MODE1@ routine, 137 ERASE@ routine’ 31
COPY_FROM_SEGMENT@ routine, 138 ’

Index-1

FTN77 Library Reference

ERR77 routine, 19 GET_PATH@ routine, 35

ERRCOU@ routine, 165 GET_PATHV@ routine, 36
ERRCOUA@ routine, 166 GET_PCL_PALETTE@ routine, 92
ERRNEWLINE@ routine, 166 GET_PIXEL@ routine, 60

ERROR@ routine, 19 GET_PRINTER_STATUS@ routine, 126
ERRSOU@ routine, 166 GET_PROGRAM_NAME@ routine, 14
ERRSOUA@ routine, 166 GET_SCREEN_BLOCK@ routine, 77
EXCEPTION_ADDRESS@ routine, 20 GET_STORAGE@ routine, 153

EXIT routine, 128 GET_STORAGE1@ routine, 154
EXIT@ routine, 128 GET_TEXT_MODES@ routine, 60

GET_TEXT_SCREEN_SIZE@ routine, 61
GET_VIDEO_DAC_BLOCK@ routine, 61

F GET_VIRTUAL_COMMON_INFO@ routine, 20
FDATE@ routine, 187 GETCL@ routine, 169

FEED_KEYBOARD@ routine, 108 GETENV@ routine, 162

FEXISTS@ routine, 31 GETSTR@ routine, 7

FILE_EXISTS@ routine, 32 GETTERMINATECOMMCHAR®@ routine, 145
FILE_SIZE@ routine, 32 Graphics devices

FILE_TRUNCATE@ routine, 32 auxiliary, 73

FILEINFO@ routine, 33 closing, 74

File-manipulation routines, 36
FILES@ routine, 33

FILL@ routine, 109
FILL_ELLIPSE@ routine, 57
FILL_POLYGON@ routine, 57
FILL_RECTANGLE@ routine, 58
Fonts,additional, 48

coordinate systems, 49

drawing to, 74

production of output, 74
Graphics routines, 45
Graphics screen

saving and restoring, 75

FORTRAN_ERROR_MESSAGE@ routine, 20 screen blocks, 74
FPOS@ routine, 34 virtual screen, 74
FPOS_EOF@ routine, 34 GRAPHICS_MODE_SET@ routine, 61
FREE_SPACE_AVAILABLE@ routine, 152 GRAPHICS_WRITE_MODE@ routine, 62
FREE_VIRTUAL_PAGES@ routine, 152
FTN77WT routine, 140 H

Heap storage, 152
G Hershey fonts, 48, 53
GET_ALL_PALETTE_REGS@ routine, 58 HERSHEY_PRESENT@ routine, 63
GET_COPROCESSOR_ENVIRONMENT@ routine, 160 HIDE_CURSOR®@ routine, 170
GET_CURRENT_FORTRAN_IO@ routine, 161 HIDE_MOUSE_CURSORQ@ routine, 116
GET_CURRENT_FORTRAN_UNIT@ routine, 162 HIGH_RES_CLOCK@ routine, 187 _
GET_CURSOR_POS@ routine, 167 HIGH_RESOLUTION_GRAPHICS_MODE@ routine, 63
GET_DACS_FROM_SCREEN_BLOCK@ routine, 77 HOTKEY77 utility, 105

GET_DEVICE_PIXEL@ routine, 59
GET_DOS_KEY@ routine, 167 I
GET_DOS_KEY1@ routine, 167

GET_EXTENDED_CHAR@ routine, 168 IN@ routine, 109 _
GET_FILE_DATE_TIME_STAMP@ routine, 34 INITIALISE_MOUSE@ routine, 116
GET FILES@ routine, 35 INITIALISE_PRINTER@ routine, 125
GET_GRAPHICS_MODES@ routine, 59 In-line routines, 110
GET_GRAPHICS_RESOLUTION@ routine, 59 IS_TEXT_MODEQ@ routine, 63
GET_KEY@ routine, 168 ISORT@ routine, 16
GET_KEY_OR_YIELD@ routine, 128

GET_KEY1@ routine, 169 J

GET_MEMORY_INFO@ routine, 153
GET_MOUSE_BUTTON_PRESS_COUNT@ routine, 114
GET_MOUSE_EVENT_MASK@ routine, 115
GET_MOUSE_PHYSICAL_MOVEMENT@ routine, 115
GET_MOUSE_POSITION@ routine, 115
GET_MOUSE_SENSITIVITY@ routine, 116

JUMP@ routine, 21

Index-2

K

KEY_WAITING@ routine, 170
KILLW@ routine, 178

L

LABEL@ routine, 22
LARGEST_BLOCK_AVAILABLE@ routine, 154
LCASE@ routine, 7
LINEAR_ONE_MEG_SEG@ routine, 141
LOAD_PCL_COLOURS@ routine, 93
LOAD_REAL_MODE_LIBRARY@ routine, 141
LOAD_STANDARD_COLOURS@ routine, 64

M

MATCH@ routine, 110
MEMORY_AVAILABLE@ routine, 155
MKDIR@ routine, 36

MODIFY_REAL_MODE_MEMORY@ routine, 142

MOUSE@ routine, 117
MOUSE_CONDITIONAL_OFF@ routine, 117

MOUSE_LIGHT_PEN_EMULATION@ routine, 117

MOUSE_SOFT_RESET@ routine, 118
MOVE@ routine, 110
MOVE_POLYGON@ routine, 64
MOVEW@ routine, 178

N

NEW_PAGE@ routine, 79
NEWLINE@ routine, 171
NONBLK routine, 8

O

OPEN_GPRINT_DEVICE@ routine, 93
OPEN_GPRINT_FILE@ routine, 94
OPEN_PLOT_DEVICE@ routine, 80
OPEN_PLOT_FILE@ routine, 81
OPEN_VSCREEN@ routine, 82
OPENCOMMDEVICE@ routine, 145
OPENR@ routine, 36

OPENRW@ routine, 37

OPENV@ routine, 38

OPENW@ routine, 38

OUT@ routine, 110

P

Palette information, 45, 58, 67, 68, 77

PCX file, 82, 84, 87
PCX_TO_SCREEN_BLOCK@ routine, 82
PERMIT_UNDERFLOW@ routine, 22
Plotter device, 73
PLOTTER_SET_PEN_TYPE@ routine, 83
Polygon filling, 47

POLYLINE@ routine, 65

POP@ routine, 111

Index

POPW@ routine, 178

PRERR@ routine, 23
PRINT_BYTES@ routine, 171
PRINT_BYTES_R@ routine, 171
PRINT_CHARACTER@ routine, 125
PRINT_GRAPHICS_PAGE@ routine, 94
PRINT_HEX1@ routine, 171
PRINT_HEX2@ routine, 172
PRINT_HEX4@ routine, 172
PRINT_I1@ routine, 172
PRINT_I2@ routine, 172
PRINT_l4@ routine, 172
PRINT_R4@ routine, 173
PRINT_R8@ routine, 173

Printer device, 73

Printer routines, 125

PUSH@ routine, 111

QUERY_MOUSE_SAVE_SIZE@ routine, 118
QUIT_CLEANUP@ routine, 23

R

Random numbers

non repeatable sequence, 134

repeatable sequence, 134
RANDOM routine, 133
READ_EDITED_LINE@ routine, 173
READCOMMDEVICE@ routine, 146
READF@ routine, 39
READFA@ routine, 39
REAL_MODE@ routine, 142
REAL_MODE_ADDRESS_OF_DOSCOM@ routine, 142
REAL_MODE_INTERRUPT@ routine, 143
RECTANGLE@ routine, 65
REMOVE_HOT_KEY@ routine, 108
RENAME@ routine, 40
RESTORE_CURSOR@ routine, 174
RESTORE_DEFAULT_HANDLER@ routine, 23
RESTORE_GRAPHICS_BANK@ routine, 66
RESTORE_MOUSE_DRIVER_STATE@ routine, 118
RESTORE_SCREEN_BLOCK@ routine, 83
RESTORE_TEXT_SCREEN@ routine, 66
RETURN_STORAGE@ routine, 155
RFPOS@ routine, 40
RSORT@ routine, 16
RUNERR@ routine, 24

S

SAVE_MOUSE_DRIVER_STATE@ routine, 119
SAVE_TEXT_SCREEN@ routine, 67

SAYINT routine, 8

Screen/keyboard routines, 164
SCREEN_BLOCK_TO_PCX@ routine, 84
SCREEN_BLOCK_TO_VSCREEN@ routine, 86
SCREEN_TO_VSCREEN@ routine, 87

Index-3

FTN77 Library Reference

SCREEN_TYPE@ routine, 67

SCREENSEG@ routine, 144

SCROLL_DOWN@ routine, 179

SCROLL_UP@ routine, 179
SECONDS_SINCE_1970@, 188
SECONDS_SINCE_1980@, 188
SELECT_DOT_MATRIX@ routine, 95
SELECT_FILE@ routine, 40
SELECT_PCL_PRINTER@ routine, 95
SET_ALARM_CLOCK@ routine, 188
SET_ALL_PALETTE_REGS@ routine, 67
SET_BIT@ routine, 1

SET_COMMAND_LINE@ routine, 14
SET_CURSOR_POS@ routine, 174
SET_CURSOR_POSW@ routine, 179
SET_CURSOR_TYPE@ routine, 174
SET_DEVICE_PIXEL@ routine, 68
SET_DISK_ERRORS@ routine, 24
SET_FILE_ATTRIBUTE@ routine, 41
SET_IO_PERMISSION@ routine, 111
SET_MOUSE_BOUNDS@ routine, 119
SET_MOUSE_GRAPHICS_CURSOR@ routine, 119
SET_MOUSE_INTERRUPT_MASK@ routine, 120
SET_MOUSE_MOVEMENT_RATIO@ routine, 121
SET_MOUSE_POSITION@ routine, 122
SET_MOUSE_SENSITIVITY@ routine, 122
SET_MOUSE_SPEED_THRESHOLD@routine, 122
SET_MOUSE_TEXT_CURSOR@ routine, 123
SET_PAGES_RESERVE@ routine, 155
SET_PALETTE@ routine, 68
SET_PCL_BITPLANES@ routine, 99
SET_PCL_GAMMA_CORRECTION@ routine, 100
SET_PCL_GRAPHICS_DEPLETION@ routine, 100
SET_PCL_GRAPHICS_SHINGLING@ routine, 101
SET_PCL_LANDSCAPE@ routine, 102
SET_PCL_PALETTE@ routine, 102
SET_PCL_RENDER@ routine, 103

SET_PIXEL@ routine, 68

SET_SEED@ routine, 134

SET_SUFFIX@ routine, 41

SET_SUFFIX1@ routine, 42
SET_TEXT_ATTRIBUTE@ routine, 69
SET_TRAP@ routine, 23, 24, 113, 120, 121, 156, 188
SET_TRAP_ON_PAGE_TURN@ routine, 155
SET_VIDEO_DAC@ routines, 70
SET_VIDEO_DAC_BLOCK@ routine, 70
SETCOMMTERMINATECHAR@ routine, 146
SETECHOONREADCOMM@ routine, 147
SHRINK_STORAGE@ routine, 156

SLEEP@ routine, 129

SOU@ routine, 175

SOUA@ routine, 175

SOUND@ routine, 149

SPAWN@ routine, 129

START_PROGRAM@ routine, 129

Storage management routines, 152

Index-4

T

TEMP_FILE@ routine, 43
TEMP_PATH@ routine, 43
TEST_BIT@ routine, 2

Text attributes, 48

Text windows, 177
TEXT_MODE@ routine, 71
TEXT_MODE_SET@ routine, 71
Time/date routines, 185

TIME@ routine, 189

TODATE@ routine, 189
TOEDATE@ routine, 190
TOFDATE@ routine, 190
TOTIME@ routine, 190
TRAP_EXCEPTION@ routine, 25
TRIM@ routine, 9

TRIMR@ routine, 9

U

UNDERFLOW_COUNT@ routine, 26

UPCASE@ routine, 10

USE_STORAGE@ routine, 156

USE_VESA _INTERFACE@ routine, 71
USE_VIRTUAL_SCRATCH_FILES@ routine, 157

V

VGA@ routine, 72

Virtual screen, 73
VSCREEN_TO_PCX@ routine, 87
VSCREEN_TO_SCREEN@ routine, 88

w

WBORDER@ routine, 179
WCLEAR@ routine, 180

WCOU@ routine, 180

WCOUP@ routine, 181
WCREATE@ routine, 181
WDBORDER@ routine, 181
WDSHADOW@ routine, 182
WILDCHECK@ routine, 43

Window manipulation routines, 177
WMEMORY @ routine, 182
WREAD_EDITED_LINE@ routine, 182
WRITE_TO_PLOTTER@ routine, 88
WRITECOMMDEVICE@ routine, 147
WRITEF@ routine, 44

WRITEFA@ routine, 44
WSHADOW@ routine, 183
WTITLE@ routine, 184

Y

YIELD@ routine, 130

	FTN77 Library reference
	Preface
	Contents
	Bit handling
	Character handling
	Data sorting
	Error and exception handling
	File manpulation
	Graphics Drawing
	Graphics printer
	Hotkey (DOS)
	Inline
	Mouse
	Printer (DOS)
	Process control
	Random numbers
	Real mode interface (DOS)
	Serial communications
	Sound
	Storage management
	System information
	Text screen/keyboard
	Text windows (DOS)
	Time and date
	Index

