
)71��


User’s Guide

ii

IMPORTANT NOTICE

Salford Software Ltd. gives no warranty that all errors have been eliminated from
this manual or from the software or programs to which it relates and neither the
Company nor any of its employees, contractors or agents nor the authors of this
manual give any warranty or representation as to the fitness of such software or
any such program for any particular purpose or use or shall be liable for direct,
indirect or consequential losses, damages, costs, expenses, claims or fee of any
nature or kind resulting from any deficiency defect or error in this manual or such
software or programs.

Further, the user of such software and this manual is expected to satisfy
himself/herself that he/she is familiar with and has mastered each step described in
this manual before the user progresses further.

The information in this document is subject to change without notice.

May 1998

© Salford Software Ltd 1998

All copyright and rights of reproduction are reserved. No part of this document may
be reproduced or used in any form or by any means including photocopying, recording,
taping or in any storage or retrieval system, nor by graphic, mechanical or electronic
means without the prior written consent of the Salford Software Ltd.

iii

Preface

This user’s guide describes the facilities available in version 3.55 and later of
FTN77(DOS/Win16), the Salford Software Fortran 77 compiler for 80386-, 80486-
and Pentium-based Personal Computers running MS-DOS revision 5 and later. This
compiler and the applications generated from it can be run under DOS or in a DOS
box under Windows 3.1(1) or Windows 95. When used with Salford’s ClearWin+, it
can also be used to create Win16 applications for Windows 3.1(1) or Windows 95.

This guide also describes the facilities available in version 3.62 and later of
FTN77(Win32), the Salford Fortran 77 compiler for 80486 and Pentium based
Personal Computers. This edition of the compiler is suitable for the Windows NT
Operating System and for Windows 95. It can also be used with ClearWin+ in order
to generate Win32 applications for Windows 3.1(1) (using Win32S), Windows 95 and
Windows NT.

The guide concentrates on compiler-specific features and those areas of the Fortran
language where the ANSI Standard1 needs amplification.

The guide is not intended to be used as a Fortran language reference manual although
chapter 10 does contain a detailed guide to the features of input/output and chapter 12
is a comprehensive guide to character handling. For further information about Fortran
77 the reader is referred to one of the many published texts such as Effective Fortran
77 by Michael Metcalf (Clarendon Press ISBN 0-19-853709-3).

FTN77 provides a large number of useful subroutines and functions in addition to
those specified in the ANSI Standard. Some of the functions that have been provided
are defined as intrinsic functions and are described in chapter 11. The remaining
functions and all of the subroutines are outlined in chapter 29 and described in the on-
line Help systems (one for DOS and one for Windows) and also in a companion
volume called the FTN77 Library Reference manual.

On the next page you will find a list of chapter headings in this guide. A full table of
contents appears after the acknowledgements.

1ANSI X3.9-1978

FTN77 User’s Guide

iv

Chapter headings in this guide: page

1. Introduction ... 1

2. Installation guide and getting started (DOS/Win16)................. 5

3. Installation guide and getting started (Win32) 15

4. Compiling with FTN77 ... 21

5. Using /LGO and /LINK... 39

6. Compiler options ... 43

7. Using SDBG.. 51

8. Program development ... 75

9. Optimisation and efficient use of Fortran............................... 85

10. Fortran input/output ... 95

11. Intrinsic functions... 139

12. Fortran 77 character handling facilities.............................. 157

13. Language extensions... 177

14. The in-line assembler .. 193

15. The in-line assembler and DBOS....................................... 201

16. Mixed language programming... 209

17. The COMGEN utility.. 217

18. Calling the Windows API (Win32) 223

19. Using LINK77, RUN77 and Libraries (DOS/Win16) 229

20. SLINK (Win32) .. 241

21. Using MK and MK32.. 265

22. Using Plato.. 277

23. DBOS (DOS)... 289

24. Running DBOS applications under Windows (Win16) 307

25. Plotter Interfacing (DOS) ... 313

26. Calling real mode libraries and programs (DOS) 315

27. Execution errors and IOSTAT values................................ 325

28. Error and exception handling (Win32) 333

29. Overview of the FTN77 run-time library 335

Some chapters relate only to one version of the compiler (either DOS/Win16 or Win32).
These are distinguished in the even page header. In chapters that are largely common to both
versions, sections that relate only to one version are presented with a shaded background.

v

Acknowledgements

* * *

FTN77 is a registered trademarks of Salford Software Ltd.

DBOS, Salford C++, SLINK and ClearWin+ are trademarks of Salford Software
Ltd.

FTN90 is a joint trademark of Salford Software Ltd and the Numerical Algorithms
Group Ltd.

MS-DOS, Windows, Windows 95 and Windows NT are trademarks of Microsoft
Corporation.

BRIEF is a trademark of Borland International Inc.

Intel is a registered trademark of Intel Corporation.

AUTOMAKE is a trademark of Polyhedron Software Ltd.

FTN77 User’s Guide

vi

Contents-1

Table of Contents

1. Introduction .. 1

The compiler... 1

High compilation speed... 1

Object code... 1

Compile-time diagnostics.. 2

Run-time diagnostics... 2

Source level debugger... 2

In-line assembler... 2

Other language extensions... 3

Portability aids.. 3

Mixed language programming and libraries... 3

ClearWin+.. 3

2. Installation guide and getting started (DOS/Win16) .. 5

Hardware requirements ... 5

Installing FTN77... 5

A simple example...8

Getting started .. 9

HELP!... 13

The HELP77 utility... 13

3. Installation guide and getting started (Win32)... 15

Hardware requirements ... 15

Installing FTN77...15

A simple example... 16

Getting started .. 17

Using the linker .. 18

HELP!... 19

Resource compiler (SRC).. 19

How to use this guide to create Win32 applications... 20

FTN77 User’s Guide

Contents-2

4. Compiling with FTN77 .. 21

The compilation/loading process.. 21

Compiler source input... 22

Compiler options...23

Compilation listing... 23

Compilation messages and statistics... 27

Specifying the properties of the object code.. 29

Configuring the FTN77 command.. 32

Reading compiler options from a file... 33

Compiler directives... 34

The OPTIONS directive... 35

The NOLIST directive.. 35

The INCLUDE directive... 36

The PROFILE facility.. 36

5. Using /LGO and /LINK .. 39

Load and go.. 39

The /LGO option...39

The /LINK compiler option... 40

Relocatable binary libraries and input files.. 41

The /HARDFAIL option.. 41

The /UNDERFLOW option... 42

The /PARAMS option... 42

Opening input/output files... 42

6. Compiler options .. 43

Quick reference... 43

Default compiler options... 49

7. Using SDBG .. 51

Introduction... 51

Invoking SDBG... 52

Location of source files.. 53

Using SDBG... 54

Desktop window...55

The stack/status window... 55

Source code window.. 57

Setting breakpoints... 58

Table of Contents

Contents-3

Setting conditional breakpoints... 59

Run to line ... 60

Single stepping... 60

Examining variables... 61

Profiling information.. 61

Miscellaneous information.. 62

Variables window... 62

Data viewing windows.. 63

Simple expression.. 63

Array.. 64

Structure.. 65

Memory dump.. 66

Data view window.. 68

Machine code windows ... 68

Command line... 69

Commands.. 69

Customising the debugger... 73

8. Program development .. 75

Diagnostic facilities... 75

Compilation diagnostics.. 75

Linker diagnostics... 78

Run-time diagnostics... 78

Arithmetic overflow checking... 79

Argument consistency checking.. 80

Array subscript checking.. 81

Checking for undefined variables (/UNDEF).. 82

ASSIGNED GOTO statement checks.. 83

Character data .. 83

9. Optimisation and efficient use of Fortran .. 85

Introduction... 85

Optimisation... 85

The /OPTIMISE compiler option.. 85

Using a coprocessor.. 85

Optimisation processes... 86

Helping the optimiser... 90

Efficient use of Fortran 77... 90

FTN77 User’s Guide

Contents-4

Labels.. 90

Intrinsic functions... 91

Statement functions.. 92

Common subexpressions.. 92

Constants... 92

Dummy array dimensions... 92

Character variables... 92

Format statements.. 93

Switching off variable tracking.. 94

10. Fortran input/output ... 95

Overview.. 95

Records... 96

Unformatted record.. 96

Formatted record.. 98

Endfile record... 98

Files.. 99

File existence ... 99

File names.. 99

File properties .. 99

File structure.. 99

File position..100

File access...101

Internal files..101

Units..102

Unit specifier..103

Internal file identifier ..103

Error and end-of-file conditions..103

Connecting files...106

The OPEN statement...106

User-supplied input/output device drivers..113

The CLOSE statement...116

The INQUIRE statement..117

Data transfer statements ...122

Formatted, sequential access..128

Unformatted, sequential access..129

Formatted, direct access..129

Unformatted, direct access...130

Table of Contents

Contents-5

File positioning statements...131

BACKSPACE statement..132

ENDFILE statement..132

REWIND statement...132

Extensions to the standard..132

Extensions to the OPEN Statement..133

Extensions to the CLOSE Statement..133

Input/output of binary, octal and hex. values..133

Business Editing..133

Miscellaneous Input/Output Extensions...137

11. Intrinsic functions... 139

Introduction..139

Non-ANSI intrinsic functions...139

Generic and specific names..140

Intrinsic function names as actual arguments..140

Integer arguments and function results..141

Logical arguments and function results...142

Intrinsic function descriptions...142

Notes for the table of intrinsic functions...148

12. Fortran 77 character handling facilities.. 157

Character statements ..157

Character constants..159

Character expressions...159

Character assignments..160

Character expressions in parameter statements ...161

Character arrays...162

Character substrings...162

Data statements involving character entities...163

Input and output of character data...164

Comparing character strings...167

Intrinsic functions for handling character data...169

Conversion from character to integer and vice-versa...169

Length of a character entity..170

Locating a substring..170

Portable character comparisons..171

Character functions..172

FTN77 User’s Guide

Contents-6

Characters as dummy and actual arguments..173

Character entities in common blocks..175

13. Language extensions ... 177

INTEGER and LOGICAL data types..178

REAL and DOUBLE PRECISION data types..179

Data initialisation in type statements ..179

Hollerith data and ENCODE/DECODE..180

Use of @, $ and _ characters in names...182

Long names..182

Octal, hexadecimal and binary values...182

Constants..182

Input and output..183

WHILE statement...184

DO WHILE statement..184

END DO statement..185

Extra subroutines and intrinsic functions..185

Internal procedures...186

The INTERNAL PROCEDURE statement...186

The PROCEDURE statement..186

The EXIT statement..187

The INVOKE statement...187

Example of the use of an internal procedure...187

In-line 32-bit assembler..188

Numeric checking of variables and arrays...188

Special form of the DATA statement..189

Conditional compilation...190

SPECIAL PARAMETER and /SPARAM...190

CIF, CELSE and CENDIF...190

IMPLICIT NONE...191

INTERRUPT subroutines...191

14. The in-line assembler ... 193

Introduction..193

The execution environment (Win32)...193

The CODE/EDOC facility..193

Mixing of Intel 32-bit Assembler and Fortran...194

Labels..195

Table of Contents

Contents-7

Referencing Fortran variables...195

Literals ..196

Halfword and byte forms of instructions...196

Using the coprocessor...197

Instruction prefixes...197

Other assembler facilities...198

Calling MS-DOS and BIOS..199

Other machine-level facilities...199

Error messages...200

15. The in-line assembler and DBOS... 201

FTN77 programs and the DBOS environment...201

Segment selector registers...201

Variable storage..201

Linkage to subroutines...203

Trap routines..206

The machine code programmer’s window...207

16. Mixed language programming .. 209

Introduction..209

Data types..209

Basic data types...209

Arrays...209

Character strings...211

Calling FTN77 from C/C++..211

Introduction...211

CHARACTER variables..211

Arrays...212

INTEGER, LOGICAL and REAL..212

Common blocks...212

Calling C/C++ from FTN77 or FTN90..212

Calling Windows 3.1 functions..215

Mixing I/O systems in C/C++, FTN77 and FTN90..215

17. The COMGEN utility.. 217

Introduction..217

Command line..217

Source file format...217

FTN77 User’s Guide

Contents-8

Changing the process mode/state..218

INCLUDE directive..218

Comments..218

Variable declarations..219

Data type mapping...221

Limitations...221

18. Calling the Windows API (Win32) .. 223

Introduction..223

Calling Windows API routines from Fortran...223

19. Using LINK77, RUN77 and Libraries (DOS/Win16)... 229

Introduction..229

The LINK77 utility...230

LINK77 commands..230

Using LINK77...233

Running the program..233

The RUN77 utility...234

Libraries..235

Relocatable binary libraries...235

Dynamic link libraries...237

Creating dynamic link libraries..238

Common blocks in dynamic link libraries..239

20. SLINK (Win32) ... 241

Introduction..241

Getting started ...241

Executables..245

Libraries..249

SLINK command reference...253

Interactive mode..253

Command Line mode...259

Direct import of Dynamic Link Libraries...261

21. Using MK and MK32.. 265

Introduction..265

Tutorial..266

Reference...270

Table of Contents

Contents-9

22. Using Plato.. 277

Introduction..277

Getting started...277

The Options Menu...278

The Toolbar...278

Editing Source Files...280

Creating a New File ..280

Open an Existing File..281

Compiling a Single Source File..281

The Message Window...281

Changing File Options...282

Working with Projects..282

Creating a New Project..282

The Project Window..283

Compiling and Building a Project..284

The Project Menu..284

Projects - Advanced Features...284

Customising Plato...284

Accelerator Keys..285

Standard Windows..285

Compiling...286

Block Marking..287

23. DBOS (DOS) .. 289

Introduction..289

DBOS and expanded memory managers...290

Network cards and expanded memory managers...293

DBOS command line arguments...293

Memory management...296

Configuring DBOS...297

The CONFIGDB utility...297

The DBOS_SET and DBOS_RESET commands..298

The paging algorithm...299

Writing programs within memory capacity..301

Assembler instructions and the execution environment...302

Using assembler instructions to call DOS and BIOS...304

DBOS memory map...306

FTN77 User’s Guide

Contents-10

24. Running DBOS applications under Windows (Win16) 307

Introduction..307

Installing WDBOS...307

Windows modes...308

Running programs in a DOS box..309

Switching back to Windows...310

WDBOS version number..311

25. Plotter Interfacing (DOS) .. 313

The plotter ...313

Cabling requirements...313

Panel settings...313

Plotting plot files..314

26. Calling real mode libraries and programs (DOS) .. 315

Introduction..315

Real and protected modes...315

Rules for calling real mode from protected mode..316

Calling real-mode libraries..317

Calling real-mode drivers..323

27. Execution errors and IOSTAT values ... 325

28. Error and exception handling (Win32).. 333

29. Overview of the FTN77 run-time library.. 335

Bit-handling...336

Character-handling...336

Command line parsing..337

Data sorting...337

Error and exception handling..338

File manipulation ...338

Graphics..340

Graphics plotter/screen...341

Graphics printer ...342

Hot key..342

In-line..342

Table of Contents

Contents-11

Mouse..343

Printer..344

Process control...344

Random numbers...344

Real mode..345

Sound...345

Storage management..346

System information..346

Text screen/keyboard...347

Text windows...348

Time and date ..348

FTN77 User’s Guide

Contents-12

1

1.

Introduction

The compiler
FTN77, the Salford Fortran 77 compiler for 32-bit Intel microprocessor systems
represents a significant advance for Fortran programmers. It provides fast
compilation speed and a range of diagnostic, development and optimisation facilities
which together far surpass those usually available on either mainframes, minis or PCs.
These facilities and features are summarised below.

High compilation speed
FTN77 achieves typical compilation speeds of between 100,000 and 200,000 lines per
minute on a 66mhz Pentium machine.

The linkers, LINK77 and SLINK, are correspondingly fast. This means that the time
required to compile and link any reasonably sized Fortran program is considerably less
than when using other Fortran compilers and linkers on the same hardware.

Object code
The compiler incorporates many features such as constant folding and common sub-
expression recognition which make efficient object programs the norm.

Programs can be compiled in check mode, local optimisation mode (the default), or
globally optimised mode.

An option enables you to study the instructions generated in symbolic form.

FTN77 User’s Guide

2

LINK77 and SLINK can be used for mixed language whilst SLINK will accept any
Win32 COFF object file.

Compile-time diagnostics
All compile-time error messages are in plain English and refer to names, labels etc. as
appropriate.

Run-time diagnostics
Optional run-time checks are available for array bounds, arithmetic overflow,
subroutine argument consistency, undefined variables etc. Full trace-back through
subroutine calls, and post-mortem facilities are also available in the event of a run-
time error. A language extension allows a check that the numeric value assigned to
any numeric variable or array is within a specified range. A compile-time option
enables all static variables and arrays to be initialised to zero zero or to a special
“undefined” value at the start of execution. These checks are sufficient to ensure that
almost all faulty programs that contain run-time errors fail cleanly and give an
informative error message.

Source level debugger
The compiler provides a full screen source level debugger which can be used with or
without the optional run-time checks being in force. The debugger makes it possible
to execute any size of program while viewing the source on screen, with the option to
view variable and array values, input/output status, calling sequences etc. in pop-up
windows. The debugger is controlled by function keys and commands. The hardware
debugging facilities available in the 80486 family of processors are supported and the
debugger has a powerful conditional break pointing facility.

In-line assembler
FTN77 supports a CODE/EDOC facility for in-line Intel assembly instructions in 32-
bit protected mode.

Chapter 1 Introduction

3

Other language extensions
Language extensions that are available include DO / END-DO and DO / WHILE
statements, ENCODE / DECODE, Hollerith data and business editing. Shifts, masks
and address handling are available as intrinsic functions which generate in-line code.
Conditional source code compilation is available using CIF, CELSE and CENDIF.
An INCLUDE directive allows nested source files to be automatically included in a
compilation. Declaration and use of variable types have been extended to
INTEGER*1, INTEGER*2, INTEGER*4, REAL*4, REAL*8 (synonymous with
DOUBLE PRECISION), COMPLEX*8 and COMPLEX*16, LOGICAL*1,
LOGICAL*2 and LOGICAL*4.

Portability aids
The provision of a /ANSI compile-time option allows programs to be validated both at
compile-time and run-time for compatibility with the ANSI Standard. The /DREAL
compile-time option allows single precision programs to be automatically compiled
using double precision arithmetic throughout (where appropriate). It is not necessary
to use the generic intrinsic function names for this feature to function correctly.

Mixed language programming and libraries
Compiled code written in FTN77 can be linked with code from Salford C/C++ and in
both cases the programmer has access to an extensive library functions and
subroutines for graphics and other requirements. Also by using the C_EXTERNAL
statement in Fortran, you can define an interface between routines written in C and
Fortran and it is possible to call Fortran routines from C and visa versa.

ClearWin+
ClearWin+ is Salford’s revolutionary new Windows programming environment. A
simple series of function calls allows you to build a complex Windows interface with
little or no knowledge of Windows programming methods. For more information see
the Fortran edition of the ClearWin+ User’s Guide.

FTN77 User’s Guide

4

5

2.

Installation guide and getting
 started (DOS/Win16)

Hardware requirements
The hardware requirements for running FTN77 (DOS/Win16) are as follows:

� An 80386SX-, 80386DX-, 80486SX-, 80486DX- or Pentium-based PC, with a
hard disk.

� If you are using an 80386, an 80387 maths coprocessor is recommended. Equally,
if you are using an 80486SX, an 80487 coprocessor is recommended (the
80486DX includes its own coprocessor). For those who do not have a coprocessor,
a coprocessor emulator is incorporated within DBOS. This offers the ability to
run DBOS applications containing floating point arithmetic without the use of a
coprocessor, but with unavoidable execution speed penalty. Applications written
in Fortran also support a Weitek coprocessor. Further information about the use
coprocessors is given on page 85.

� FTN77 requires version 5 (or later) of MS-DOS, PC-DOS or Novell-DOS.

� The compiler requires a minimum of 2 Megabytes of memory. FTN77 programs
are not limited to 640K and are capable of addressing all the memory available.

Installing FTN77
In order to install FTN77 follow these steps. Information given here may be
superseded by that given in a README file on the first installation disc.

FTN77 User’s Guide DOS/Win16

6

� Ensure that the following parameters in your CONFIG.SYS file have at least the
values shown here:

58;4B,"�

1D554AB,"�

� You will have been shipped two high density discs (either 31
2 or 51

4 inch). Put
the first disc in either drive A or drive B , change to this drive and type:

8=BC0;;

As you run through the installation sequence, press Enter for the default response
and Esc to abort from the sequence.

� The INSTALL program will read the file FILES.CFG from the disk and issue
warnings about running other DOS extenders. When you have read the warnings
enter “Y” to the prompts.

� INSTALL will use the DOS PATH to search for a previously installed version of
DBOS. If this directory cannot be found you will be asked for the name of the
directory for DBOS which you wish to create. This directory will hold nothing
but DBOS. You may choose to call it, for example:

2)K31>B�38A

INSTALL will now search for FTN77. If it is not found you will be asked for the
name of the directory for FTN77 which you wish to create. This directory could
be dedicated to FTN77 or you might wish to use the same directory as that for
DBOS. You may choose to call it, for example:

2)K5C=&&�38A

Now you will be shown the directories and asked to confirm that these are what
you want.

� The files are then copied from the release diskettes to the nominated directories,
with some of the larger files being converted from the compressed format in which
they appear on the release diskette. This process may take several minutes.

When the first diskette has been copied you will be prompted to remove it and
insert the second of the two diskettes. The contents of the second diskette are then
copied.

� You will then be asked if you want to update your Windows 3 SYSTEM.INI file in
order to use the WDBOS.386 virtual device driver. WDBOS.386 is essential if
you wish to run ClearWin+ applications or run DBOS in a DOS box in Windows
enhanced mode (further information is provided in chapter 24).

� Next you will be asked if you want your AUTOEXEC.BAT file to be updated to
include the DBOS and FTN77 directories on the path, and to add the command

Chapter 2 Installation guide and getting started (DOS/Win16)

7

DBOS. If you choose the default response “No”, then you will need to edit the
AUTOEXEC.BAT file yourself as described below.

� You will then be given a terminating message, and prompted to terminate. When
you terminate the program, you will be reminded to reboot your system.

� If you have not allowed INSTALL to amend your AUTOEXEC.BAT file, you
should now edit the AUTOEXEC.BAT file as follows:

1) Amend the PATH command to include the new directories containing the
compiler and DBOS.

2) Add the following command at the bottom of the file:

31>B

Alternatively, you can type the DBOS command once, before you use the
compiler or any other program that uses DBOS. If you are using Windows
3.1(1) this must be loaded before DBOS (see chapter 24) for further
information).

If you want to limit the amount of memory which is available to DBOS, you
should type:

31>B +\T\^ah [X\Xc-

where <memory limit> is the hexadecimal address (for example, 31>B

!����� limits DBOS to two megabytes; for further details see page 305).

After loading DBOS, the HELP77 utility may also be loaded (see page 13).

In the unlikely event that you have difficulty loading DBOS (for example the
system hangs, or DBOS crashes with a traceback) you should progressively
remove non-essential drivers, TSRs etc. from your CONFIG.SYS and
AUTOEXEC.BAT files, in order to find any possible incompatibility.

� After you have completed the installation sequence, you must reboot the system.

DBOS is a Terminate and Stay Resident (TSR) program. Once it has been loaded,
you do not need to reload DBOS again unless it is explicitly removed by use of the
KILL_DBOS command, or a system reboot is performed. DBOS takes care of the
memory management and provides services to FTN77 programs. A full description of
DBOS can be found in chapters 23 and 23.

For compatibility with previous versions, FTN77 defaults to /INTS and /LOGS. You
may wish to use the FTN77 option /CONFIG at this point to change these options
(see page 32).

FTN77 User’s Guide DOS/Win16

8

A simple example
The example below shows a simple Fortran 77 program created using an ASCII text
editor and stored in a file named MYPROG.FOR.

2 ?A>6A0< B8<?;4

 A403 ��0�1�2

85�0�;C�����BC>?

?A8=C ��0�B@AC�0��1�2

6>C>

4=3

This program can be executed using the FTN77 command:

5C=&& <H?A>6 �;6>

with the following typical input/output:

J5C=&& ETa g�gg 2^_haXVWc �R� BP[U^aS B^UcfPaT ;cS� ((gL

=> 4AA>AB J+<08=/-5C=&& � ETa g�ggL

?a^VaP\ T]cTaTS

 ! "

 ������ ������ %������

$ %

#������ !������ "������

� � �

Notes:

� FTN77 assumes by default that source files have the .FOR suffix.

� A detailed specification of the FTN77 command appears in chapters 6 and 5.

� FTN77 and all executable files produced by FTN77 need DBOS to be loaded in
order to run.

��In this example, the first parameter is the name of the source file containing the
Fortran 77 program and /LGO means “load-and-go” (see chapters 4 to 6 for a full
description of all of the options available). Selecting this option means that the
program is compiled and executed immediately without the need to use the linker.

Chapter 2 Installation guide and getting started (DOS/Win16)

9

Getting started
We have provided a simple statistics program, together with some test data, to show
you some of the main features of FTN77. The relevant files can be found in the sub-
directory \DEMO which will have been copied on to your hard disk. To illustrate
these features work through the following steps:

� You may find it helpful to print the file STATS.FOR (which is about 150 lines
long), so that you can refer to it during the demonstration.

� Compile and execute STATS.FOR using FTN77 with the “load-and-go” option,
/LGO, as follows:

5C=&& BC0CB �;6>

The results will be displayed on your screen. Notice that the file suffix “.FOR” is
implied when compiling (any other suffix should be given explicitly). The /LGO
option avoids using the linker, and shows how quick it is to compile and execute a
program during development.

� Now try some of the features which make FTN77 an outstanding program
development tool. Try the compiler without any debugging aids by typing:

5C=&& BC0CB �;6>

The program fails, but the co-processor fault is not easily traced in its raw state.

You can now use some of the unique combinations of features provided by FTN77,
in order to locate the cause of the error. Type:

5C=&& BC0CB �2742: �;6>

/CHECK is used so that, when a run-time error occurs, the FTN77 system can
help you to find it. A window appears which contains an error message. Press
Esc to remove this window and you will see a (red) arrow pointing to the faulty
source statement. Press F1 to display the help window for full details of the
debugger facilities. Press Shift F1 to exit from the debugger.

� In order to illustrate another powerful FTN77 feature, compile program
STATS2.FOR by typing:

5C=&& BC0CB!

Note that a warning message is displayed saying that the variable “NVALUE” is
undefined.

Sometimes you will have an undefined variable in a program which is not so easy
to locate as this one and the compiler cannot output a compile-time message. In
this case, you can use the /UNDEF option to pinpoint the undefined variable at
run-time. Type:

FTN77 User’s Guide DOS/Win16

10

5C=&& BC0CB! �D=345 �;6>

The run-time system displays the error message and indicates the faulty source
program line. Press Esc to clear this window and note the faulty line in the source
indicated by a (red) arrow.

� Often you will know where an error is, but not its cause. You can use the FTN77
window-based debugger to find out. Try the facilities of the debugger with
STATS.FOR (remember there is no error in this program). Type:

5C=&& BC0CB �1A40:

/BREAK implies both /CHECK and /LGO and causes the system to enter the
debugger. A window appears showing the source program, with a (red) arrow
pointing to the first statement. Press key F1, and the HELP window for the
debugger will appear. You will see from this that you can step through progam
execution in one of two ways either:

� statement by statement (pressing F7) or by

� setting breakpoints by moving the cursor and pressing F3.

You can also:

� display the values of all variables in a routine (F4),

� toggle F5 to switch between the normal display screen for the program
(including any graphical output) and the debugger window,

� and print the values of variables and array elements (type: PRINT <variable>
on the blank command line).

All these and many other facilities are described in the HELP window. Try
stepping through the source code and printing the values of some variables. When
you have finished, press Shift-F1 to exit from the debugger.

� So far we have always used the /LGO option (either explicitly or implicitly) to run
the programs. With this option, no intermediate files are created. When the
program is free of errors (or when a number of modules must be linked together),
it can be compiled with FTN77 and then linked with LINK77 as follows. Compile
STATS.FOR again using:

5C=&& BC0CB

This creates the file STATS.OBJ. Use the linker to link-load it with:

;8=:&& BC0CB�;=:

STATS.LNK is a short ASCII file of commands. These commands load
STATS.OBJ and generate the file STATS.EXE. Now run STATS.EXE by
typing:

Chapter 2 Installation guide and getting started (DOS/Win16)

11

BC0CB

The program will display the same results as before.

(As an alternative to using the information file STATS.LNK, the LINK77
commands can be typed in directly as in the next example.)

� The program EX1.FOR illustrates how FTN77 traps run-time errors which, in
large programs, can save many hours of valuable program development time.
Print the file EX1.FOR. Now compile it, and link-load it as follows:

5C=&& 4G �2742:

;8=:&&

;> 4G

58;4

(Note that LINK77 uses a “$” sign as a command prompt. In this case LINK77
reports that routine NOWT is missing. This is deliberate.)

To execute this program with the option of entering the debugger, use the RUN77
utility and type:

AD=&& 4G

From the display, choose the number of one of the deliberate run-time errors.
Rerun EX1.EXE using the different numbers until you have seen all the errors that
can be trapped in this way.

� Now try the profiling facility, which allows you to see how many times each
statement in the program has been exercised. Type:

5C=&& BC0CB �?A>58;4 �1A40:

Press F6 to execute the program, then Down Arrow to trace back to the main
program. Press Esc to clear the “program terminated” message, then press F9 to
profile the program. Observe that the source window displays the required
information. Use the Page Up/Page Dn and arrow keys to scroll the source in
the window. Press Shift-F1 when you have finished with the profile window.

The combination of /PROFILE (to ensure that all code has been exercised) with
the checking option /BREAK makes FTN77 a very powerful development tool.

� If you want to see the assembler equivalent of the machine code generated by the
compiler, type:

5C=&& BC0CB �4G?;8BC

The compiler produces a file STATS.LIS which is a source listing showing
assembler interspersed with the Fortran statements.

Using /LIST instead of /EXPLIST produces a listing file of the source program.
Notice how all the compile-time options are listed at the start, and how levels of

FTN77 User’s Guide DOS/Win16

12

nesting of DO and block- IF statements are indicated by .1 .2 etc. following the
line numbers at the left hand side.

� You might now like to look at some other FTN77 facilities which are
demonstrated by the programs EX2.EXE and EX3.EXE. These programs have
already been compiled and link-loaded. Before you execute the programs, you may
want to look at the comment lines at the start of the source versions of these
programs (EX2.FOR and EX3.FOR).

EX2.EXE can be used to view a file in binary format. The user can scan forward
or backward through the file using the cursor keys. This program illustrates a
number of FTN77 features: windows, CODE/EDOC, and the use of virtual
memory file access.

The program should be used with a filename as a parameter, thus:

4G! <H58;4

where MYFILE is any file.

� EX3.EXE, which requires an EGA or VGA colour screen, illustrates the use of a
number of low level graphics primitives. The program draws the graphs of some
elementary functions. It requires no data and is executed by typing

4G"

� The programs of the form GRAPHx.FOR also illustrate the use of graphics
primitives and require an EGA or VGA colour screen. Some of these (numbers 7
to 11) are supplied in executable form. GRAPH4.FOR requires an on-line
graphics printer whilst GRAPH5.FOR requires an on-line plotter. The command
lines are, for example:

5C=&& 6A0?7 �;6>

6A0?7&

� GWIN.FOR is a substantial program that implements a graphics drawing
application and illustrates how pop down graphics menus can be incorporated into
an FTN77 program. The program is presented in executable form and is almost
entirely mouse driven. In this case you type:

6F8=

� THREADS.FOR illustrates the multi-threading facilities that are available with
FTN77. This program is also supplied in executable form. The command line is:

C7A403B

This brings us to the end of our “Getting started” tutorial. Now that you have been
introduced to some of the powerful tools that are available with FTN77, you will
be ready to develop your own software.

Chapter 2 Installation guide and getting started (DOS/Win16)

13

HELP!
FTN77 provides a HELP facility which is invoked, in its simplest form, by typing:

5C=&& �74;?

This causes the system to output information about the use of FTN77 on the screen.
The HELP subsystem consists of a large number of pages of useful information. Each
page may be longer than a screen, in which case you may scroll through the text by
using the arrow keys and Page Up, Page Dn .

The following function keys are the most useful:

F1 invokes a brief explanation on how to use the HELP subsystem

F2 returns to the previous HELP screen (which may be from a previous in-
vokation of HELP)

F3 gives an index of HELP pages

Enter As you move the cursor down the page, references to other pages will
change colour. The Enter-key will transfer you to that screen

Esc leaves the HELP subsystem

Each of the utilities LINK77, RUN77, MKLIB77 and the FTN77 debugger also have
a help option.

The on-line HELP system includes details of the FTN77 run-time library. An
overview of the subroutines and functions in this library is presented in chapter 29.

The HELP77 utility
HELP77 provides pop up help information from within other applications (FTN77-
based or otherwise). To use HELP77 you should include the following statements in
your AUTOEXEC.BAT file after the DBOS command:

7>C:4H&&

74;?&&

Any other hot key programs should be loaded after HOTKEY77. After you have
rebooted your PC you will find that the key Ctrl Alt H will enter this help subsystem at
the general index. Items are selected using the cursor keys. The help information
provided is the same as that described on page 13 but note that F2 returns to the
previous HELP screen even after re-entering the help subsystem.

FTN77 User’s Guide DOS/Win16

14

The HELP system includes many fragments of sample code.

15

3.

Installation guide and getting
 started (Win32)

Hardware requirements
The hardware requirements for running FTN77 using the Windows 95 or Windows
NT operating system are as follows:

� An 80486DX or Pentium based PC, with a hard disk. It is feasible to use a 386 or
a 486SX based PC but these machines are not really adequate for Windows 95 and
Windows NT.

� 16 Megabytes of memory is recommended for the compiler and operating system.

� 4 to 5 Megabytes of free hard disk space.

Installing FTN77
The compiler and associated tools are distributed on high density floppy disks. The
installation program is a Windows application and can be run under Windows NT,
Windows 95 or Windows 3.1(1).

If you are installing FTN77 on a network, you should be logged in as the system
administrator. You should also install the system whilst running Windows NT or
Windows 95. This is necessary to ensure that the “Salford Compiler” group is added
to the common areas.

The installation program can be run from either the file manager or the program
manager. Insert the first disk into one of the floppy disk drives, say drive A. From
either of the above applications, select the Run... item from the file menu. A dialog
box will appear prompting you for the command line. Enter the command

FTN77 User’s Guide Win32

16

0)B4CD?

and click on the OK button. The installation program will now load from the floppy
disk.

Now follow the setup instructions on the screen. These will guide you through the
setup procedure. You will be asked to specify the directory where you wish to install
the FTN77 compiler. You will also be asked to confirm the location of your Windows
SYSTEM directory (normally C:\WINNT\SYSTEM32 for Windows NT). If this is
the first installation, you will be asked to enter your name and other related details.

When the installation has been completed, a batch file called FTN77VAR.BAT will
have been created in the FTN77 directory. This sets the appropriate environment
variables and should be executed before using the compiler. As an alternative, you
could add the directory C:\WIN32APP\FTN77 to your path by using the System
option from the Control Panel (see the entry for “Environment Variables” in the
Windows NT system manual).

A simple example
The example below shows a simple Fortran 77 program created using an ASCII text
editor and stored in a file named MYPROG.FOR.

2 ?A>6A0< B8<?;4

 A403 ��0�1�2

85�0�;C�����BC>?

?A8=C ��0�B@AC�0��1�2

6>C>

4=3

If you have not already executed FTN77VAR.BAT from the FTN77 directory, you
should do so now. This program can be compiled using the FTN77 command:

5C=&& <H?A>6

with the following typical initial output:

J5C=&& ETa g�gg 2^_haXVWc �R� BP[U^aS B^UcfPaT ;cS� ((gL

=> 4AA>AB J+<08=/-5C=&& � ETa g�ggL

Notes:

� FTN77 assumes by default that source files have the .FOR suffix. In this example,
the first parameter is the name of the source file containing the Fortran 77
program.

� A detailed specification of the FTN77 command appears in chapters 4 to 6.

Chapter 3 Installation guide and getting started (Win32)

17

Getting started
We have provided a simple statistics program, together with some test data, to show
you some of the main features of FTN77. The relevant files can be found in the sub-
directory \DEMO which will have been copied on to your hard disk. To illustrate these
features work through the following steps:

� You may find it helpful to print the file STATS.FOR (which is about 150 lines
long), so that you can refer to it during the demonstration.

� Compile and execute STATS.FOR using FTN77 as follows:

5C=&& BC0CB

followed by:

BC0CB

The results will be displayed on your screen. Notice that the file suffix “.FOR” is
implied when compiling (any other suffix should be given explicitly).

� Now try some of the features which make FTN77 an outstanding program
development tool. Try the compiler without any debugging aids by typing:

5C=&& BC0CB

and run the program.

The program fails, but the co-processor fault is not easily traced in its raw state.

You can now use some of the unique combinations of features provided by FTN77,
in order to locate the cause of the error. Type:

5C=&& BC0CB �2742:

and run the program.

/CHECK is used so that, when a run-time error occurs, the FTN77 system can
help you to find it. When the program is run, a run-time error message is
displayed on the console detailing the cause of the error. The line which generates
the error can be located by using the debugger supplied with the compiler. A full
description of the debugger and its use can be found in chapter 7.

� In order to illustrate another powerful FTN77 feature, compile program
STATS2.FOR by typing:

5C=&& BC0CB!

Note that a warning message is displayed saying that the variable “NVALUE” is
undefined.

Sometimes you will have an undefined variable in a program which is not so easy
to locate as this one and the compiler cannot output a compile-time message. In

FTN77 User’s Guide Win32

18

this case, you can use the /UNDEF option to pinpoint the undefined variable at
run-time. Type:

5C=&& BC0CB! �D=345

Now run the program by typing

BC0CB!

The run-time system displays the error message and indicates the faulty source
program line.

� If you want to see the assembler equivalent of the machine code generated by the
compiler, type:

5C=&& BC0CB �4G?;8BC

The compiler produces a file STATS.LIS which is a source listing showing
assembler interspersed with the Fortran statements.

Using /LIST instead of /EXPLIST produces a listing file of the source program.
Notice how all the compile-time options are listed at the start, and how levels of
nesting of DO and block-IF statements are indicated by .1 .2 etc. following the line
numbers at the left hand side.

Using the linker
SLINK is the Salford 32-bit linker for Win32. It can be employed to link more than
one object file by adopting one of three modes of operation that are available.

a) Command line mode
For example typing:

B;8=: <08=�>19 BD1 �>19 BD1!�>19

will create an executable called MAIN.EXE.

b) Interactive mode
Typing B;8=: will put the linker in interactive mode and generate a “$”
command prompt. For example:

B;8=:

� ;>03 <08=

� ;>03 BD1

� ;>03 BD1!

� 58;4 58ABC

Chapter 3 Installation guide and getting started (Win32)

19

generates an executable called FIRST.EXE. If the name 58ABC had not been
supplied on the last line then the default name of the executable would be
MAIN.EXE.

c) Script file mode
It is also possible to use an editor to create a script file and then supply this file on
the command line. For example suppose the file SCRIPT.LNK contains:

;>03 <08=

;>03 BD1

;>03 BD1!

<0?

58;4 58ABC

The the command line:

B;8=: B2A8?C�;=:

will produce the executable FIRST.EXE together with a link map in the file
FIRST.MAP. For further information see chapter 20.

HELP!
In order to call upon the FTN77 help system either

� use the help option on the compiler command line:

5C=&& �74;?

� or click on the help icon in the “Salford Compilers” group,

� or issue the command

F8=74;?"! 5C=&&�7;?

from a command prompt.

Resource compiler (SRC)
The Salford resource compiler, SRC, is supplied for Windows programmers. To
compile a resource type:

BA2 +A4B>DA24N58;4-�A2

The resultant object file should be linked to the program using SLINK.

FTN77 User’s Guide Win32

20

For example:

5C=&& <H?A>6

BA2 <HA4B�A2

B;8=: <H?A>6�>19 <HA4B�>19

See the Fortran edition of the ClearWin+ User’s Guide for further information.

How to use this guide to create Win32 applications

The following chapters are not relevant to Win32:

� Chapter 19 describing LINK77, RUN77 and libraries.

� Chapter 23 describing DBOS.

� Chapters 25 to 26 describing BTRIEVE, connecting to a plotter, and using
realmode libraries respectively.

For a details of the Win32 runtime library see chapter 29.

21

4.

Compiling with FTN77

The compilation/loading process
A Fortran 77 program must be converted to binary form before it can be executed.
The process of producing an executable program takes place in two phases.

� Compilation : where the Fortran 77 program is checked for syntactic and
semantic correctness and relocatable binary code is output to an intermediate file
<filename>.OBJ, where <filename>.FOR is the name of the source file.

� Loading : using the FTN77 Linker, LINK77 or SLINK, where the relocatable
binary code is loaded together with:

1) any other relocatable binary code files,

2) library files that might have been produced by previous compilation(s) with
FTN77 (or other compatible compilers, such as Salford C++) and

3) routines from the FTN77 library, other system libraries and dynamic link
libraries.

FTN77 is controlled by means of compiler options and compiler directives. The first
part of this chapter describes many of the available compiler options. Some of the
compiler directives are described on page 34. A summary of all the compiler options
and directives is given in chapter 6.

If the program resides in a single file, the two phases of compilation and loading can
be combined by means of the compiler option /LINK whilst the “load and go” option
/LGO adds a third phase and automatically runs the program. /LGO and other
associated options are described in chapter 5. The use of LINK77 together with
RUN77 to link and run DOS/Win16 programs, is described in chapter 19. Details of
the Win32 linker SLINK are given in chapter 20.

FTN77 User’s Guide

22

The compiler option defaults described in this manual are those provided when
FTN77 is distributed . Page 32 describes how to reconfigure the compiler to give
different defaults.

Compiler source input
The compiler reads programs from text files which have been created by a suitable
ASCII text editor.

The source file should be specified as the first parameter to the FTN77 command as
follows:

5C=&& +_PcW]P\T-

When <pathname> does not include an extension, the compiler searches for the file
<pathname>.FOR and if it finds it, it is compiled, otherwise the compiler outputs an
error message. Source files must have .FOR as a suffix, or be specified with an
explicit extension. Any file name acceptable to the operating system can be used.

For example

5C=&& <H?A>6

compiles the program in the file MYPROG.FOR which is in the current directory
whilst

5C=&& 2)K5C=K?A>942CK<H?A>6

compiles the file MYPROG.FOR in the directory C:\FTN\PROJECT\.

Only one source file name may be specified unless wildcards are used. For example:

5C=&& ��5>A

would compile all of the .FOR files in the current directory. In this case an explicit
extension (like .FOR) is essential.

Note that any lower case letters in the source file are treated as upper case letters
except within character constants or Hollerith data.

Chapter 4 Compiling with FTN77

23

Compiler options
Compiler options may be specified as part of the FTN77 command line, for example:

5C=&& <H?A>6 �0=B8 �;8BC

causes FTN77 to compile a program held in a source file MYPROG.FOR using the
options /ANSI and /LIST. The options may be abbreviated, but care should be
exercised to ensure that the abbreviated form is unique. The subsections below
describe some of the options that are available. A complete list is given in chapter 6.

Compilation listing
/LIST <pathname> or /LIST

The /LIST compiler option generates a program listing on a given file. If
<pathname> is omitted, then the default name for the listing file is
<filename>.LIS.

When a compilation listing is produced, it always contains the following
information:

� Date and time of compilation

� Source file pathname

� Compiler version number

� Compiler options in use

� Source statement listing

� Error, warning and comment messages.

The listing consists of all source statements and directives, numbered from line 1.
If an INCLUDE file is listed (the INCLUDE directive is described on page 36), its
numbering starts from 1 and numbering reverts to that of the previous file once the
INCLUDE file has been processed. At the end of the listing of each program unit,
three blank lines are output (unless /PAGETHROW is also used). Some error
messages, warnings and comments are interspersed with the listing of statements
and directives; others appear at the end of the listing of a program unit. More
details of such messages will be found in chapter 8. A summary of all compiler
messages is provided in chapter 6. A number of other features of the listing should
be noted:

� The line numbers of an INCLUDEd file are preceded by a slash character,
which itself is preceded by two digits specifying the level of nesting of the
INCLUDE directive.

FTN77 User’s Guide

24

� The level of nesting (n) of DO and/or block-IF statements is indicated by .n
following the line number for non-zero values of n. Each time a DO or block-
IF is started, n is incremented by one and each time a DO or block-IF is
completed, n is decremented by one. In the unlikely event that this level
exceeds 99, two asterisks appear instead of n. n is not decremented until the
first non-comment line appears following the definition of either the DO label
or of the ENDIF statement.

� Non-printing ASCII characters are represented by a query character (?) on the
compilation listing. Note that the actual non-printing character is, however,
treated as part of the source line to be processed.

� The relative address of each statement is printed in hexadecimal at the right of
the line (unless /NO_OFFSET is also used). Relative addresses allow the user
to locate the source of run-time errors which occur in parts of the program
where no checks have been specified. This is the byte address of the first
machine instruction corresponding to the statement, relative to the start of the
current program unit. The relative address is incremented for each statement
for which the compiler generates code. Code generation ceases for the
remainder of the source file when a compilation error is found (unless
/PERSIST is also used).

� The information in positions 73 to 80 is separated from the remainder of the
line by several spaces. This makes the problem of lines overflowing past
column 72 more noticeable from the compilation listing. Note, however, that
information contained in positions 73 to 80 is overwritten in the source listing
by the address offset information (unless /NO_OFFSET is also used). See
also page 27 and the option /NO_WARN73.

/APPEND_LIST <pathname>
is equivalent to /LIST but allows the compilation listing to be appended to the end
of an existing file, thus enabling the listings produced by several separate
compilations to be sent to the same file. For example, to compile PROG1.FOR
and PROG2.FOR and send the resulting compilation listings to the file
BOTH.LIS, it is only to necessary to type:

5C=&& ?A>6 �;8BC 1>C7�;8B

5C=&& ?A>6! �0??4=3N;8BC 1>C7�;8B

/EXPLIST
is equivalent to /LIST but causes each source statement to be followed by the 32-bit
Intel assembler statements into which it was compiled. The assembly language
listing is fully symbolic. Information on 32-bit Intel assembler can be found in one
of the Intel Programmer’s Reference Manuals.

Chapter 4 Compiling with FTN77

25

/MAP
implies /LIST but also produces a list of all names used in a program unit in a
source file (see Figure 4-1) except for system routines and variables that have been
declared but not used (see also /FULLMAP and /EXTREFS in chapter 6). A map
contains the following information for each name used in it:

� USAGE local, common, argument etc.

� TYPE integer, real, character etc.

� COMMON BLOCK NAME if appropriate.

� OFFSET The offset field enables the run-time address of a variable to be
calculated if desired. For a variable or array in COMMON, the offset is its
position relative to the start of the common block. For a local variable or array,
the offset is its position relative to the local workspace pointer (EBX%) or the
stack frame pointer (EBP%) of the program unit (see chapter 15).

� COMMENTS This information tells the user whether the name has been
implicitly typed, has appeared in an equivalence statement, is an array, or (in
the case of a local variable) if that variable has never been used in an
executable statement in the program unit.

Under Win32, if the /LINK option is used together with /MAP then a linker
map is placed in the file <filename>.MAP.

/XREF
implies /MAP and is used to produce a cross-reference listing for each program
unit in a source file. The cross-reference listings for a program unit in a source
file appear after the compilation listing for that program unit. It excludes variables
that have been declared but never used (but see also /FULLXREF in chapter 6).
An example of a cross-reference listing appears in Figure 4-2. The cross-reference
listing contains the source file line numbers of each reference to each label and
name in a program unit. The names and labels are sorted into ascending
alphanumeric or numeric order respectively.

An asterisk following the line number has a different meaning for a name and for
a label:
� For a name, the asterisk means that the named variable has been modified on

the line in question by, for example, an assignment.

� For a label, the asterisk means that the label was defined on the line in
question.

B0;5>A3 D=8E4AB8CH 5C=&& E4A� g�gg 2)KC4BC4A�5>A

2><?8;4A >?C8>=B) ;8BC8=6 8=CB =>2742: ;>6B 3H=< >55B4C =>0=B8

=>?064C7A>F =>B8;4=C =>N>?C8<8B4

FTN77 User’s Guide

26

��� <0?

���! 270A02C4A 6�$��=6�&!�=0<4� #

���" 38<4=B8>= ?�$�

���# 2><<>=�0123�=6�=0<4

���$ 30C0 ?�#���"���!��� �������

���% 30C0 6�´0´�´1´�´2´�´3´�´4´� 0C �� 3

���& A403� �#�4=3,%�=0<4�= 0C �� 3

���' A403� �#�=6 0C ��'�

���(BD< , � 0C ��2%

�� � 3> " 8, �= 0C ��23

�� �� 3> ! 9, �$ 0C ��43

�� !��! ! 85�=6�8)8��4@�6�9��BD< , BD<�?�9� 0C � �!

�� "�� " 2>=C8=D4 0C � !&

�� # FA8C4�!�$�=0<4�8=C�BD<�=���$� 0C � !(

�� $ 6>C> 0C � 0#

�� % # 5>A<0C�0�8$� 0C � 0(

�� & $ 5>A<0C� G�0�´ 0E4A064 =D<14A >5 ?>8=CB´�8#� 0C � 2#

�� ' % 4=3 0C �!�"

=P\T DbPVT Ch_T >UUbTc 2^\\T]cb

6 ;^RP[270A02C4A � 0aaPh 41G��!� BPeTS

8 ;^RP[8=C464A�! 41G��"' 8_[XRXc[h

STUX]TS

BPeTS

8=C 8]caX]bXR � �

Ud]RcX^]

9 ;^RP[8=C464A�! 41G��#� 8_[XRXc[h

STUX]TS

BPeTS

= ;^RP[8=C464A�! 41G��!! 8_[XRXc[h

STUX]TS

BPeTS

=0<4 2^\\^] �0123� 270A02C4A � # �&!

=6 2^\\^] �0123� 270A02C4A �&! ��

? ;^RP[A40; 0aaPh 41G��� BPeTS

BD< ;^RP[A40; 41G��"% 8_[XRXc[h

STUX]TS

BPeTS

2^\\^] Q[^RZ �0123� Xb '% QhcTb [^]V

4]S ^U R^_X[PcX^] � 2[^RZTS ��$ bTR^]Sb

Figure 4.1 A compilation listing and compile-time map

Chapter 4 Compiling with FTN77

27

2A>BB�A454A4=24 <0?

6 ! %� !

8 �� !

8=C #

9 � !

= &� � #

=0<4 ! # &� #

=6 ! # '� !

? " $� !

BD< (� !� #

;014;

&� $

;014;

!

 !�

;014;

"

 � "�

;014;

#

& ' %�

;014;

$

 # &�

;014;

%

& '�

Figure 4.2 Cross-reference for the program Figure 4.1

Note: The cross-reference facility has no means of knowing whether the actual
arguments of a function or subroutine are modified when the routine is referenced.
Thus an asterisk will not appear in the cross-reference listing when a variable is
used as an actual argument. If the line number is followed by the character “i”, the
number is a line number in an INCLUDE file whose name can be found from the
source listing.

Compilation messages and statistics
All error, warning and comment messages are output to the compilation listing file if
one is specified or implied, otherwise, these messages are output on the screen. Note
that these messages are never simultaneously output to the compilation listing file and
on the screen. Messages fall into three categories - error, warning and comment.

/SILENT
suppresses the printing of warning and comment messages. Unless the /SILENT
option is in force, the message that is output on the screen at the end of

FTN77 User’s Guide

28

compilation of a program unit will include the numbers of warning and comment
messages.

/IGNORE <n>
allows the suppression of any given compilation error, warning or comment. A
typical use of this option might be to permit checking of ANSI-conformity, but to
allow the use of Hollerith data. The appropriate error number, 081 in this case,
can be found by including the compiler option /ERROR_NUMBERS. Thus the
compiler could then be invoked with:

5C=&& ?A>6 �0=B8 �86=>A4 �'

It is possible to ignore more than one type of error, warning or comment. In this
case every error number to be ignored should be preceded by the /IGNORE option.
It is important to note that if errors (as opposed to warnings or comments) are
ignored, the code generated may be incorrect.

/DCLVAR
causes the compiler to report an error for each occurrence of a name in a program
unit that has not appeared either as an argument, in a type statement, an
EXTERNAL statement, an INTRINSIC statement or a COMMON statement.
Note that all external function and subroutine names must appear in an
EXTERNAL statement if /DCLVAR is used.

/NO_WARN73
One unfortunate feature of Fortran is that information beyond position 72 of a line
is ignored by the compiler. This can often lead to lines being rejected by the
compiler with an apparently spurious error message. For example, if a FORMAT
statement is not continued and yet extends past position 72 the message:

∗∗∗∗ D]_PXaTS [TUc QaPRZTc�b�

would be output. In order to make this sort of problem easier to recognise, by
default FTN77 issues a warning when characters are found in columns 73
onwards. This may be tedious if your program uses columns 73 onwards for
statement sequence numbers, in which case the default can be changed by using
the /NO_WARN73 option.

/STATISTICS
causes the compiler to output a message on the screen stating the number of lines
compiled and the compilation speed.

/ANSI
ensures that all constructs used in a program conform to the ANSI Standard. The
/ANSI option also informs the FTN77 run-time system that ANSI-conformity is
required. This means that, for example, non-standard use of format descriptors
(such as business editing in a run-time format) causes a run-time failure.

Chapter 4 Compiling with FTN77

29

/NO_CR
Under DOS/Win16, by default FTN77 expects lines in the source file to be
terminated with carriage return, and ignores the following line feed character
which is normally present in MS-DOS format text files. The /NO_CR option
causes carriage returns in a source file to be ignored, and line feed to be treated as
end-of-line. This allows FTN77 to deal with source files in MS-DOS text file
format and also source files in UNIX text file format (where end-of-line is
indicated simply by line feed). This is particularly useful in a networked
environment, with MS-DOS machines connected to UNIX servers.

Specifying the properties of the object code
By default FTN77 always produces relocatable binary code unless the /NO_BINARY
option is specified. The relocatable binary code can be either loaded automatically by
FTN77 using /LINK or /LGO (see chapter 5) or it can be made available in a (.OBJ)
file for loading with the linker, LINK77 or SLINK.

/BINARY <pathname>
specifies <pathname> as the name of the resulting relocatable binary file.

Under DOS/Win16, this is particularly useful when used in conjuction with a
widecard form for the source file name, where the effect is to output all of the code
into one file. If the option is omitted, the source file name is used with a .OBJ
extension.

/SAVE
By default, local variables are stored dynamically on the stack. Space for dynamic
variables is reserved on entry to a program unit; the space is freed, and all data
values are lost on RETURN. The alternative is to store variables statically. Static
variables maintain their values until execution terminates. The following types of
variables will automatically be static:

� Any variable that appears in a SAVE statement.

� Any variable in a program unit containing a blank SAVE statement.

� Any variables that appear in a DATA statement.

� Any COMMON block variable.

All other variables will be made static if the /SAVE option is used. However, it is
better programming practise to use SAVE statements in program units where
static storage is required, rather than relying on the use of a /SAVE compiler
option.

Note that while recursion is not part of the Fortran 77 standard, it is supported by
FTN77, and in order to obtain different instances of variables for different
invocations of a routine called recursively, these variables must be allocated to
dynamic storage.

FTN77 User’s Guide

30

/ZEROISE
is used to set all static variables and arrays (that have not appeared in a DATA
statement) to zero at the start of execution. It is sometimes found that programs
developed with other Fortran compilers, will not run when FTN77 is used. These
problems can often be traced to the assumption that all non-DATAed variables are
initially set to zero. The use of the /SAVE and /ZEROISE options will often
make the program “work”, but efforts should be made to correct the program
source by explicitly giving values to the undefined variables. In this context, the
use of the /UNDEF option, which causes all non-DATAed variables to be
initialised to a known “undefined” value, will be found to be very useful (see below
and chapter 8).

Note that it is necessary to compile the main program with this option if
uninitialised common blocks are to be set appropriately.

/DEBUG
causes FTN77 to generate symbolic information and to activate the symbolic
debugger when fatal errors occur. /DEBUG is included in both /CHECK and
/UNDEF which are normally preferred. /DEBUG can be used on its own in order
to allow the debugger to be used on “dirty” code, which intentionally violates some
of the rules of Fortran 77.

/CHECK
implies /DEBUG and causes FTN77 to plant extra object code so that errors (such
as array subscript errors and arithmetic overflow) result in a run-time error and
entry into the symbolic debugger. /CHECK is fully described in chapter 8.

/UNDEF
implies /CHECK and also causes FTN77 to plant code to check that a variable or
array element has previously been given a value when it appears in, for example,
the right hand side of an assignment statement. /UNDEF is fully described in
chapter 8.

/INTL and /INTS
With /INTS, every variable of type INTEGER will become INTEGER*2 unless it
is explicitly declared as INTEGER*4 or INTEGER*1. Similarly every constant of
type INTEGER will become INTEGER*2 unless one or more of the following is
true:

� Its value lies outside the range -32768 to +32767.

� It contains more than five decimal digits including leading zeros.

� It is not followed by the letter L or B. For example, 1011L means the
INTEGER*4 constant 1011 and 56B means the INTEGER*1 constant 56.
(This form of constant is not allowed with the /ANSI option.)

Chapter 4 Compiling with FTN77

31

If the /INTL option is used, every variable of type INTEGER will become
INTEGER*4 unless it is explicitly declared as INTEGER*2 or INTEGER*1.
Also every constant of type integer will become INTEGER*4 unless it is followed
by the letter S or B. For example, 26S means INTEGER*2 constant 26 and 123B
means INTEGER*1 constant 123. (This form of constant is not allowed with the
/ANSI option.)

FTN77 only acts as a standard-conforming compiler when /INTL is used.

You can use FTN77 /CONFIG to determine the default setting (whether /INTS or
/INTL) and to change the default if you prefer.

Note that the use of the /ANSI option does not imply /INTL. FTN77 provides the
intrinsic functions INTB, INTS and INTL for conversion between INTEGER*1,
INTEGER*2 and INTEGER*4 data (see chapter 11).

The DOS/Win16 version of FTN77 is released with /INTS as the default whilst
the Win32 version is released with /INTL as the default.

/LOGL and /LOGS
With /LOGS, every variable of type LOGICAL will become LOGICAL*2 unless it
is declared as LOGICAL*1 or LOGICAL*4 and every constant of type LOGICAL
will become LOGICAL*2.

If the /LOGL option is used, every variable of type LOGICAL will become
LOGICAL*4 unless it is declared as LOGICAL*1 or LOGICAL*2. Also, every
constant of type LOGICAL will become LOGICAL*4.

FTN77 only acts as a standard-conforming compiler when /LOGL is used.

You can use FTN77 /CONFIG to determine the default setting (whether /LOGS
or /LOGL) and to change the default if you prefer.

Note, however, the use of the /ANSI option does not imply /LOGL. FTN77
provides the intrinsic functions LOGB, LOGS and LOGL for conversion between
LOGICAL*1, LOGICAL*2 and LOGICAL*4 data (see chapter 11).

The DOS/Win16 version of FTN77 is released with /LOGS as the default whilst
the Win32 version is released with /LOGL as the default.

/DREAL
specifies that FTN77 should treat all single precision (REAL) variables and
constants as double precision (REAL*8). Correspondingly, all COMPLEX
variables are treated as COMPLEX*16. It is not necessary to use the generic
forms of the intrinsic functions when using /DREAL. If /DREAL is used, the
compiler becomes aware of the allowable extensions.

/DREAL can make it very easy to compile and execute a single precision program
that has produced valid results on a machine with a more accurate single precision

FTN77 User’s Guide

32

floating point representation, which would otherwise not work satisfactorily
without a major conversion.

/OPTIMISE
controls program optimisation and is described on page 85.

/STACK <n>
under Win32, when linking an object module to produce an executable file, the
linker needs to know how much memory to set aside for the program stack. n is
the size of the program stack in bytes.

This option is not generally required as the default supplied by the compiler is
more than adequate. For more information see chapter 20.

/WEITEK
under DOS, causes code to be generated for Weitek 1167 and 3167 coprocessors
on a 386 and for a Weitek 4167 coprocessor on a 486. If the machine on which
the resulting program is run does not have such a coprocessor, the program will
fault on the first attempt to perform an operation requiring the coprocessor. A
Weitek coprocessor is not required in order to perform the compilation. /WEITEK
must also appear on the DBOS command line before the resulting executable can
be run.

Configuring the FTN77 command
The FTN77 command has many options and it is often convenient to alter the default
settings for the options or to create alternative versions of the compiler for specific
purposes. For example, you might wish to use the compiler with /LGO and /CHECK
as default options. To configure your compiler type:

5C=&& �2>=586

and follow the instructions on the screen. These differ under DOS/Win16 and Win32.
Under DOS/Win16 the default options are built into FTN77.EXE whilst under Win32
the default options are stored in an ASCII file called FTN77.OPT that is automatically
called when the compiler is executed.

Under DOS/Win16, you will be presented with a screen of options as they are
currently defined (not all options are configurable - only those displayed) and you can
select options with the cursor keys and invert them using the space bar. When you
have the options as you require them, pressing Enter will highlight the pathname of
the file to be written with the new options. By default, this is the pathname of the
FTN77 command itself. You can simply press Enter again to modify the FTN77
command itself, or use backspace and other keys to alter the pathname as desired.

Chapter 4 Compiling with FTN77

33

When Enter is pressed the file is created (if neccessary) and set up as an FTN77
command with the options you have selected.

Notes:
� The pathname you choose must have the .EXE suffix.

� If at any time you receive a fresh version of FTN77 you must recreate any
configured versions of the FTN77 command.

� If at any point you decide to abandon the configuration process press Esc.

Under Win32, you are presented with a dialog box with a menu of options. Select
Compiler Options or Display Configuration and click on the Config button.
Make your changes and then click on the End button. From the menu box, click on
the Save button in order to create a new version of FTN77.OPT. It is possible to
maintain alternative sets of default configurations by using the compiler option called
/OPTIONS as below.

Reading compiler options from a file
Compiler options can also be read from a file. The contents of the file can then be
used as a set of options that will be combined with the command line. For example,
suppose you create a file called F77.OPT in the current directory containing the
following:

�0=B8 �;8BC

The FTN77 command

5C=&& <H?A>6 �>?C8>=B 5&&�>?C

will compile MYPROG.FOR using the given options. You can use more than one
option file, but an option file must not itself contain the /OPTIONS compiler option.
Also the options file must not contain options that will be passed to the program using
/PARAMS.

It is possible to maintain various sets of default configurations by creating a batch file
(F77.BAT say) of the form:

5C=&& � �>?C8>=B 5&&�>?C �! �" �# �$ �% �& �' �(

for each configuration. You could then create a .BAT file for each .OPT file in use
and your command line would then take the form:

5&& <H?A>6

FTN77 User’s Guide

34

Compiler directives
FTN77 will successfully process simple programs which contain only Fortran source
statements. Such usage of the compiler implies that, for many options such as run-
time diagnostics, either the system default will operate or a FTN77 compiler option
must be used to change this default for the whole program source. Clearly, in the case
of large or complex programs, this is not satisfactory. FTN77 therefore provides a
number of compiler directives which can be used to give fine control over the facilities
that are available.

The following table provides a list of compiler directives that can be inserted into the
FTN77 source code. Further information is available via the given cross reference.

Directives Purpose Page

OPTIONS To specify one or more compiler options in a
source file

35

NOLIST & LIST To suppress and re-enable a source listing 35

INCLUDE ’<pathname>’ To insert the contents of the specified file at the
current point in the compilation. Useful for
frequently used common blocks etc..

36

LIBRARY ’<pathname>’ Used with /LINK and /LGO to access a specified
library.

41

CIF, CELSE, CELSEIF
& CENDIF

For conditional compilation 190

IMPLICIT NONE Forces the programmer to give every variable an
explicit type.

191

CODE & EDOC To start and terminate a 32-bit assembler
sequence. These directives are only allowed if an
/ANSI compiler option has not been selected

193

The following notes apply to all compiler directives:

� Each directive must start in column 7 or beyond.

� Unless otherwise stated, a compiler directive may appear anywhere in a source
program.

� Spaces have no significance except in file names which appear as character
constants within quotation marks.

� Compiler directives other than CODE and EDOC must not be labelled. (CODE
and EDOC can be treated as executable statements should this be desired.)

Chapter 4 Compiling with FTN77

35

The OPTIONS directive
The OPTIONS compiler directive provides a means of specifying many but not all of
the compiler options within a source file. For example:

>?C8>=B �B8;4=C�3A40;�

could appear in a file instead of using the command line options /SILENT and
/DREAL.

� There are three methods of specifying the current compiler characteristics and
their order of precedence is significant. Default compiler options, configured by

using the command 5C=&& �2>=586, are read first and are superseded by any
command line compiler options (including those presented via a /OPTIONS file).
These in turn are superseded by any compiler directives given in the program.

� An OPTIONS directive can only appear before the first program unit, or between
program units, in a source file.

� There is no limit to the number of OPTIONS directives that can appear in the
source file.

� Many of the command line options are available as OPTIONS directives. For
example: CHECK, DCLVAR, DEBUG, DOCHECK, DREAL, EXTREFS,
FULLCHECK, FULLMAP, FULLXREF, INTL, INTS, LOGL, LOGS, MAP,
UNDEF, XREF, ZEROISE.

� Although the compiler option /LIST is superfluous in the presence of /MAP,
/FULLMAP, /XREF, or /FULLXREF, it is nevertheless required if any of the
options MAP, FULLMAP, XREF or FULLXREF are specified in an OPTIONS
directive in the program source.

The NOLIST directive
It is possible to suppress all or part of the listing by means of the directives:

=>;8BC

;8BC

which may appear anywhere in the source program or in an INCLUDE file. However,
note that the /LIST option must have been specified on the command line to cause a
listing file to be opened. If the compilation listing is suppressed, error, warning and
comment messages are output on the screen.

The NOLIST directive does not suppress the listing of INCLUDE files. The way to
do this is described in the next subsection.

FTN77 User’s Guide

36

The INCLUDE directive
It is possible to include source statements and compiler directives from another file by
means of an INCLUDE directive which may appear anywhere in the current source
file. This directive takes one of the forms:

8=2;D34 ´+_PcW]P\T-´

8=2;D34 ´+_PcW]P\T-´� =>;8BC

where <pathname> is the name of a file containing Fortran 77 source statements and
compiler directives. If the pathname includes a suffix then this suffix must appear in
the directive. For example:

8=2;D34 ´2>;>DAB�8=B´

includes the given file from the current directory.

An alternative form of the INCLUDE directive is available, illustrated by the example:

8=2;D34 +2>;>DAB�8=B-

which includes the given file from the Salford directory which under DOS/Win16 is
typically C:\DBOS.DIR\INCLUDE whilst under Win32 is typically
C:\WIN32APP\SALFORD.

The use of NOLIST means that the contents of the INCLUDEd file are not output to
the compilation listing file. This facility is most often useful when a COMMON
block is repeated a number of times in a program. Note that a source program may
contain any number of INCLUDE directives each of which can, optionally, specify a
different file. INCLUDE directives can be “nested” to a depth of 10. Thus one
INCLUDEd file can itself contain other INCLUDE directives.

The PROFILE facility †

It is often useful to know how many times each statement in a program has been
executed. Such information may reveal logical errors and can often help in tracing
the execution path in the event of a run-time failure. It will also indicate which parts
of a program are most heavily used so that those parts can be examined and recoded to
improve execution speed should this be considered worthwhile. Profile has a further
use in ensuring that test data exercises all parts of a program. The two directives

† For Win32, this is available from FTN77 version 2.1 onwards

Chapter 4 Compiling with FTN77

37

>?C8>=B�?A>58;4�

>?C8>=B�=>?A>58;4�

or the FTN77 compiler option

/PROFILE

are used to control the facility. The directives may appear anywhere in the program
source. Once profiling is enabled either by option or by directive, each subsequent
executable statement is compiled so that a count is kept at run-time of the number of
times that statement is executed. The profiling facility is switched off when a

>?C8>=B�=>?A>58;4� directive appears in the source file or when the end of the
source file is reached.

To obtain a profile listing you should compile and execute your program using the
/BREAK compiler option together with /PROFILE (or the corresponding directives

>?C8>=B�?A>58;4� and >?C8>=B�=>?A>58;4�). Run the program - either to
a breakpoint (using the cursor keys and F3) or to completion (using F6). Then press
F9 to obtain profile information on the screen, or issue the command

?A>58;4 +_PcW]P\T-

from the debugger command line to send the information to the specified file. See
chapter 7 for further details of using the symbolic debugger.

Note:
� The PROFILE facility can not be applied simultaneously to more than one source

file.

� /PROFILE implies /LIST. This means that /PROFILE generates a listing file and
any error messages will appear in the file rather than on the screen. It is therefore
better to deal with compile time (syntax) errors before using /PROFILE.

However, the directive >?C8>=B�?A>58;4� does not depend on /LIST in this
manner.

FTN77 User’s Guide

38

39

5.

Using /LGO and /LINK

Load and go
FTN77 provides a load-and-go facility via the /LGO compiler option so that programs
can be quickly compiled, loaded and executed. /LGO can be used with large and
complex programs, even those that require the use of libraries. No permanent object
or executable file is produced (although there must be enough disk space to accom-
modate a temporary object file). These features make this facility invaluable for
teaching, testing and development where repeated compilations and test runs are the
norm.

If you wish to keep a copy of the current executable file then the /LINK option should
be used. Under Win32 you can use this together with /LGO.

All the other compiler options summarised in chapter 6 are available (with the
exception of /BINARY and /APPEND_BINARY) together with a number of extra
options which allow the following:

� specification of relocatable binary library and input files,

� underflow trapping,

� interactive debugging.

The /LGO option
The load-and-go facility is invoked by the /LGO option. For example:

5C=&& <H?A>6 �2742: �;6>

FTN77 User’s Guide

40

would compile, load and execute the program held in the source file MYPROG.FOR.
The order of options on the command line is immaterial, except when an option
requires a name, in which case the name must follow it.

The options /BREAK and /DBREAK both imply /LGO†. These options also imply
either /DEBUG or /CHECK.

These options are summarised in the following table for easy reference.

Option Debug
code

planted

Check
code

planted

Immediate
entry to

debugger

/LGO
implied

/DEBUG 9

/CHECK 9 9

/BREAK 9 9 9 9

/DBREAK 9 9 9

The /LINK compiler option
When the compiler is invoked with the /LINK option, for example

5C=&& <H?A>6 �;8=:

the linker is automatically invoked after compilation is complete (assuming, of course,
that no compilation errors have occurred). The resultant object file is loaded and a
corresponding .EXE file is produced. The example above would create a run file
called MYPROG.EXE.

If you wish to load other relocatable binary files, in addition to that produced by
compilation of the named source file, the /LIBRARY compiler option (or the
corresponding directive) should be used (see below).

† Under Win32, /BREAK and /DBREAK are available from FTN77 version 2.1 onwards

Chapter 5 Using /LGO and /LINK

41

Relocatable binary libraries and input files
The use of the /LGO and /LINK options is not restricted to programs that require only
the FTN77 library. Other system or user relocatable binary (RLB) libraries and RLB
input files can be specified by using one or both of the following methods:

� By using the /LIBRARY option in the FTN77 command line. For example:

5C=&& <H?A>6 �;6> �;81A0AH 6:B;81

� By using a LIBRARY directive (which must commence at or beyond column 7) in
the source file.

;81A0AH +_PcW]P\T-

where <pathname> is the name of the file. For example:

;81A0AH ´2)K6A0?782BK6:B;81´

Use of a LIBRARY directive ensures that no RLB library or input file is forgotten
when loading a program as the directives are always present in the source file.

If a library filename does not include path information, the current directory is
searched, followed by the directory containing the FTN77 compiler.

Notes:
� The compiler will automatically search first for an RLB library or RLB input file

with a name suffixed by .OBJ, and then for the unsuffixed filename, even if the
library or input filename specified in the FTN77 command does not contain the
suffix.

� Under Win32, the option /MKLIB can be used to generate a static library
containing a separate COFF object for each function or subroutine (see page 46).

� Dynamic link libraries are not specified on the LIBRARY directive. Under
DOS/Win16 they are specified in the LIBRARIES.DIR file, see page 237 for
further details. Under Win32, DLLs are normally located either in the directory
for the executable or on the PATH.

The /HARDFAIL option
Under DOS/Win16, the use of the /HARDFAIL option causes run time errors to
produce a machine level message and return to the operating system, rather than
entering the symbolic debugger. This is sometimes useful if the program contains
assembler code.

FTN77 User’s Guide

42

The /UNDERFLOW option
Under DOS/Win16, the use of the /UNDERFLOW option ensures that the first
occurrence of underflow in an arithmetical computation is treated as a failure and is
not ignored as would otherwise be the case. A large number of occurrences of
underflow during execution can result in long execution times because of the way in
which the underflow condition is treated. If an underflow is trapped, the message

4AA>A) 5[^PcX]V _^X]c PaXcW\TcXR d]STaU[^f

is output and the interactive debugger is entered, see chapter 7. If underflows occur
during program execution and the /UNDERFLOW option is not used, RUN77
outputs a message at the end of the run specifying the number of underflows that have
occurred.

The /PARAMS option
The /PARAMS option is provided to specify command line information for the
program. This option is necessary in order to stop FTN77 from scanning the whole
command line before the user’s program is executed.

For example, suppose that NEWPROG.FOR obtains two filenames FILE1 and
FILE2 by means of calls to the system routine CMNAM. These filenames could be
specified as follows:

5C=&& =4F?A>6 �;6> �?0A0<B 58;4 58;4!

An illustrative program appears with the description of the CMNAM routine (see the
FTN77 Library Reference).

Opening input/output files
Under DOS/Win16, /LGO can be used with a /READ option in the form:

/READ <unit> <pathname>

This opens the given file for formatted sequential read access on the given unit.
/WRITE is similarly used to assign an output file from the command line. /READU
and /WRITEU are correspondingly used for unformatted sequential access files. For
example:

5C=&& <H?A>6 �;6> �A403 & <H?A>6�30C

43

6.

Compiler options

Quick reference
Compiler options are specified as part of the FTN77 command line, for example:

5C=&& <H?A>6 �0=B8 �;8BC

Note that options may be abbreviated, but care should be exercised to ensure that the
abbreviated form is unique.

The object code produced can be loaded and executed automatically by means of the
FTN77 option /LGO, see chapter 5 for details. The interactive source level
debugging system (see chapter 7) is entered automatically in the event of an error.

There follows a summary of the options available at the time of publication. /HELP
can be used to obtain an up-to-date summary. Further information is usually available
elsewhere in the manual. Please refer to the index for a cross reference.

Some of the options described in this section can be adopted as compiler defaults. The
default options can be listed and changed by using the /CONFIG compiler option.

/ANSI
Checks that the source conforms to the ANSI Standard.

/APPEND <pathname>
Synonym for /APPEND_BINARY (DOS/Win16 only).

/APPEND_BINARY <pathname>
Append the compiler output to the given relocatable binary file. Thus, several
compilations can contribute to one binary file (DOS/Win16 only).

/APPEND_LIST <pathname>
Append the compilation listing to the given file.

FTN77 User’s Guide

44

/BINARY <pathname>
Use the given file in place of the default .OBJ file name. Under DOS/Win16, you
can use a wildecard form for the pathname.

/BREAK†

Implies both /CHECK and /LGO and causes a break to the symbolic debugging
facility at the first executable statement.

/BRIEF†

Causes all errors, warnings and comments to be output in a form which is
compatible with the BRIEF text editor. Programs can then be compiled and then
edited whilst still within BRIEF.

/CHECK
Causes code to be planted in order to enable the run-time checking of array
bounds, overflow etc., and also to enable the use of the source-level debugging
facilities (i.e. /CHECK implies /DEBUG).

/CONFIG
Set-up installation compiler defaults.

/DBREAK†

Implies /LGO and causes a break to the symbolic debugging facility at the first
executable statement (i.e. like /BREAK, but /CHECK is not implied) (DOS/Win16
only).

/DCLVAR or /DCLVAR <n>
/DCLVAR (or /DCLVAR 2) causes the compiler to report an error for each
occurence of a name in a program unit that has not appeared either as an
argument, in a type statement, an EXTERNAL statement, an INTRINSIC
statement or a COMMON statement. Note that all external function and
subroutine names must appear in an EXTERNAL statement if /DCLVAR is used.
/DCLVAR 1 is similar but relaxes the requirement that intrinsics appear in an
INTRINSIC statement and that externals appear in an EXTERNAL statement.

/DEBUG
Causes the output of information to allow the use of the source-level debugging
facilities (does not imply the run-time checking associated with the /CHECK,
/FULLCHECK and /UNDEF options).

/DELOBJ_ON_ERROR
If /LINK or /LGO is used no permanent object module is created. Otherwise, by
default an object module will be generated even when errors are present.
/DELOBJ_ON_ERROR overrides the default.

† For Win32, this is available from FTN77 version 2.1 onwards.

Chapter 6 Compiler options

45

/DOCHECK
Causes a run-time fail if zero-trip DO-loop is executed.

/DREAL
Enables the automatic generation of DOUBLE PRECISION and DOUBLE
COMPLEX for all REAL and COMPLEX and intrinsic functions.

/DO1
Causes DO loops to be executed at least once.

/ERRFAIL
Causes a hard fail at the first error encountered in the file.

/ERROR_NUMBERS
Error messages are accompanied by their error number. This number can be used
with /IGNORE.

/EXPLIST
Expanded source listing.

/EXTREFS
As for /MAP except that the output is restricted to external references (subroutine,
function and common block names).

/FULLCHECK
Implies /CHECK and, in addition, array elements are checked individually.

/FULLDCLVAR
Synonym for /DCLVAR.

/FULLMAP
Implies /MAP but includes unreferenced variables.

/FULLXREF
Implies /XREF and, in addition, includes a cross-reference map of all
unreferenced COMMON variables.

/HARDFAIL
Suppresses entry into the debugger in the event of a run time error (DOS/Win16
only).

/HELP
Invoke the window based help system.

/IGNORE <error number>
Causes the compiler to disregard the error whose number follows /IGNORE (note
that if errors of severity greater than “warning” are ignored the code produced will
probably be invalid)

/IMPLICIT_NONE
Demands that all variables have an explicit type.

FTN77 User’s Guide

46

/INTL and /INTS
Change the default integer length.

/LGO
Compile, load and execute.

/LIBRARY<name>
Specification of relocatable binary library and input files when using /LGO or
/LINK.

/LINK
Compile and load.

/LIST <pathname> or /LIST
Produces a source listing file.

/LOGL and /LOGS
Change the default length for logical values.

/MAP
Compile-time map option (see also /FULLMAP).

/MKLIB <filename.LIB>
Generates a static library containing a separate COFF object for each function or
subroutine. This option is useful, when a user wants to link in only a few routines,
from a file containing a large number of routines (Win32 only).

/NO_BINARY
Suppresses the creation of an object module.

/NO_COMMENTS
Suppresses comment messages (equivalent to /SILENT 1).

/NO_CR
Treat line feed as end-of-line (rather than carriage return) in source files. Allows
direct compilation of either MS-DOS or UNIX-style source files (DOS/Win16
only).

/NO_FAIL
Synonym for /PERSIST.

/NO_FLOATING_TRACKING
Turns off register tracking for floating point values. Register tracking is one of the
optimisation processes that is carried out by default (even when the /OPTIMISE
option is not used). Register tracking enables a register value to be re-used in
preference to a redundant recall of a stored value. Using a register can also
increase the precision of this intermediate value.

/NO_OFFSET
Suppresses the output of address offsets on the source listing.

Chapter 6 Compiler options

47

/NO_PEEP_HOLE
Turns off the peep-hole optimiser. This is only effective with the /OPTIMISE
option.

/NO_RETYPES
By default FTN77 produces a warning when variables are declared more than
once in the same program unit with the same type on each occasion. This option
causes this situation to produce an error rather than a warning.

/NO_WARN73
Suppresses warnings for characters appearing in columns 73 and beyond in the
source file.

/NO_WARNINGS
Suppresses warning and comment messages (equivalent to /SILENT).

/NOLINK
If /CONFIG has been used to make /LINK the default, /NOLINK restores the
default (Win32 only).

/NOTRACKING
Turns off register tracking for all variables (see /NO_FLOATING_TRACKING).

/OLDARRAYS
Allows array subscript checking to be used with array arguments whose
corresponding dummy argument is declared with a last subscript of 1. This option
is only effective when used with /FULLCHECK.

/ONLY_UNDEF
Implies /UNDEF without /CHECK. It can be useful with programs that do not
strictly follow the Fortran rules but want undefined variable checking.

/OPTIMISE
Enables global optimisation. In the default state, local optimisation is in force
unless checking is enabled.

/OPTIONS <pathname>
Specifies a file containing additional compiler options.

/PAGETHROW
Causes each program unit in the compilation listing to be printed at the top of a
new page.

/PARAMS
Enables the object program to read filenames from the command line.

/PERSIST
By default compilations with errors will terminate as if control break had been
pressed. When the command appears in a batch file, the batch process will then be

FTN77 User’s Guide

48

interrupted. If /PERSIST is used, the control break is suppressed and processing
of the batch file will continue even when compilation errors have occurred.

/PROFILE†

Enables the run-time profile facility.

/SAVE
Do not use the stack for storage of local variables and arrays. Otherwise dynamic
storage is used for all local variables and arrays. This has the effect of a blank
Fortran SAVE statement in each subprogram. Its use should normally be avoided.

/SILENT or /SILENT <n>
Suppress warning and comment messages. /SILENT 1 suppresses only comments,
while /SILENT 2 (or /SILENT) suppresses both comments and warnings. When
the /SILENT option is not used, the message that is output on the screen at the end
of the compilation of a program unit includes the numbers of warning and
comment messages.

/SPARAM <n>
Used in conjunction with the CIF, CELSE and CENDIF statements to facilitate
conditional compilation.

/STACK <n>
n is the size of the program stack in bytes used by the linker. The default value is
usally more than adequate (Win32 only).

/STATISTICS
Print the number of lines compiled and the compilation speed on the screen.

/UNDEF
Implies /CHECK and also causes code to be planted in order to do run-time
checking of any undefined variables or array elements.

/UNDERFLOW
Used in conjunction with the load-and-go facility to trap underflow (DOS/Win16
only).

/UNSAFE
Unsed in conjunction with /OPTIMISE in order to improve the execution speed of
certain programs by using code re-arrangement techniques (see page 89).

/WEITEK
Under DOS, causes the compiler to generate code that will use the Weitek 1167,
3167 and 4167 coprocessors. /WEITEK is also required on the DBOS command
line before the resulting executable can be run.

† For Win32, this is available from FTN77 version 2.1 onwards.

Chapter 6 Compiler options

49

/XREF
Causes the generation cross-reference listing.

/ZEROISE
All static variables and arrays set to zero at start of execution.

Default compiler options
Many of the above options have a corresponding opposite. For example /INTL is the
opposite of /INTS. If the default setting is changed by using the /CONFIG option,
then there are occasions when you may wish to use the opposite option in order to
temporarily restore the original default. The configuration screen that appears when
using /CONFIG indicates the name of the opposite when one exists.

FTN77 User’s Guide

50

51

7.

Using SDBG

Introduction
In order to improve user efficiency and the usability of Salford products a new set of
debuggers, collectively known as SDBG, has been designed and implemented. There
are three editions in the range:

� one for MS-DOS based applications,

� one for Windows version 3.1 and above (including Windows for Workgroups
and Win16 based Windows 95 applications)

� and one for Windows NT version 3.1 and above and Win32 based Windows 95
applications.

All three debuggers have been designed to function consistently. The debugger for
MS-DOS based applications uses a DOS screen but emulates a Windows
environment. Some of the detail in this chapter, describing this emulation, can be
ignored by Win16 and Win32 programmers.

Like other Salford compilers, FTN77 also incorporates another feature to facilitate
debugging, namely the checking options. The checking options, which ensure that a
program does not corrupt itself and does not give inconsistent results, are described in
chapter 4.

SDBG may be used either:

� in conjunction with the checking facilities, by compiling with one of the
/CHECK or /UNDEF compiler options, or

� without the checking facilities by compiling using the /DEBUG compiler
option.

SDBG allows you to view your source file(s) whilst controlling the execution of your
program using function keys and debugger commands. These keys and commands
control the following facilities:

FTN77 User’s Guide

52

� Program breakpoints

� Single stepping

� Display of variables

� Source and data file inspection

� Evaluation of expression values

� Program status display

� Write/use data breakpoints (using hardware)

� Machine code debugging

� Profiling (statement execution count)

� Input/output stream information

� Display of the contents of virtual memory

� Control of screen size

Invoking SDBG
SDBG may be invoked in one of several ways.

� By compiling a program for immediate execution with the /BREAK option, for
example:

5C=&& <H?A>6 �1A40:

Used in this way /BREAK implies the /CHECK and /LGO options.

� By compiling the program with the /DBREAK option. This option is similar to
the /BREAK option except that it does not imply the /CHECK option which
causes the compiler to plant checking code.

� By linking together one or more .OBJ files produced with /CHECK or /DEBUG
options and executing the resultant .EXE file as follows.

For DOS programs under DBOS use LINK77 and then type,

AD=&& <H?A>6 �1A40:

For Win16 executables use LINK77 and then type,

F8=316 <H?A>6

For Win32 executables use SLINK and then type,

B316 <H?A>6

Chapter 7 Using SDBG

53

The source file for each section of the code to be debugged should be available exactly
as it was compiled (i.e. you must not edit these source files prior to using the
debugger).

Assuming that no compile-time error is encountered, each of these commands will
cause your program to be suspended at the first executable statement in a module
compiled with /DEBUG.

The /DEBUG and /DBREAK options cause the compiler to plant sufficient
information to enable SDBG to operate, but specify that no checking code is to be
planted.

In general, it is better to debug a program compiled with checks, but /DBREAK and
/DEBUG are very useful in the following cases:

� When a problem does not manifest itself when the checks are enabled. Often this
is a consequence of a calculation being performed with undefined variables or
array elements and you are advised to compile the program using the /UNDEF
option before using SDBG.

� When the program is just too large to fit in memory when compiled with checks.

� When the program runs too slowly when compiled with checks.

Programs which are not checked may well overwrite themselves and/or the tables
which SDBG uses to interpret their behaviour. This can produce unpredictable
results.

Location of source files
By default the debugger will look for the source files in the directories they occupied at
compile time. If the source files have been moved, there are two methods for
specifying alternative directories to for the debugger to search.

Firstly you can specify the environment variable SOURCEPATH in your
AUTOEXEC.BAT or its equivalent. This can contain a list of paths. Semicolons are
used to separate the paths in the same way as the standard PATH variable. For
example:

B4C B>DA24?0C7,2)K2><<>=KB>DA24*2)KDB4ABK?A>9*F)KBA2

Secondly, the Windows debuggers can take an optional command line parameter that
specifies a source path. This path will replace any path brought in by the
SOURCEPATH environment variable. For example

B316 B8<D; �B>DA24?0C7

2)K2><<>=KB>DA24*2)KDB4ABK?A>9*F)KBA2

FTN77 User’s Guide

54

/SOURCEPATH can be abbreviated to /SP.

Using SDBG
The first task SDBG will carry out is to save the running program’s screen display
and replace it with the debugger screen, switching to text mode if required. SDBG
only displays information in text mode although you can debug programs that use
graphics modes supported by the Salford graphics library.

SDBG makes use of a windowed interface. In common with other user interfaces a
mouse is not absolutely necessary but is extremely useful. The mouse cursor will
appear as a one character block in the middle of the screen.

The window that appears on top of all the others is called the current window. The
current window will respond to any key-presses or mouse actions. It can be
distinguished by the double line border surrounding the window. All other windows
have a single line border. You can change the current window by pointing at another
window and pressing and then releasing the left mouse button. In this case the
window you pointed to will be brought to the front and you will see the border change.

You can cycle through the currently open windows by pressing Alt+N. The current
window can be moved by pointing to its title bar and pressing the left mouse button.
While the button is depressed you can ‘drag’ the window to its new location.

At the bottom right hand corner of a window you will see that the border thins from a
double line to a single line. The single line denotes the fact that you can resize the
window. This is achieved by moving the mouse to this area and pressing and holding
the left mouse button. You can then drag the window corner to its new size.

At the top left corner of most windows you will see a box character (shown as [�]).
By moving the mouse over this area and pressing the left mouse button the window
will close. You can also close a window by pressing Alt+F4. Some windows will
close when the Esc key is pressed.

When the SDBG screen initially appears it will contain three windows that sit on top
of the so called desktop window. Namely

� a stack/status window,

� a source code window,

� a variables window.

If SDBG was invoked because of a run-time error, a description of the problem is
displayed in the stack/status window. Otherwise the stack/status window will initially
be hidden behind the source window which will show the current execution point.

Chapter 7 Using SDBG

55

Other windows called data view windows can be opened by the user when required.
These five differing types of window are described in the following sections.

Desktop window
All visible windows sit on top of the desktop. This is a blue and white hatch with the
bottom line displaying help and status information. The status line is mostly made up
of a line of white text on a blue background. This gives a list of the most common key
presses for the current window. This status line is sensitive to the Alt and Ctrl keys
being depressed. You can also click the left mouse button over a key description and
the key press will be simulated. The rightmost six characters show the current
debugger mode. The alternatives are:

Status Meaning

PAUSE The program has stopped because of a breakpoint and is awaiting commands.

STOP The program has stopped because of a runtime error (which will be displayed
in the stack/status window). You will not be able to continue, step or run the
program from this point.

END The program has terminated.

RUN The program is running and can be paused by pressing Ctrl+Break. SDBG
does not automatically switch to the program screen because most switches
would be unnecessary and waste time. The screen is switched as required.

The stack/status window
The stack/status window can be brought to the top by pressing Alt+C in any other
window. The stack/status window provides two uses:

� to display the reason why SDBG has been entered.

� to display the current call stack,

FTN77 User’s Guide

56

Figure 1. An screen shot from the DOS version of the debugger.

The status part of this window gives the reason that SDBG has been entered.

The stack part gives a trace back through the active call stack. This is a list of the
active subroutines and functions. Routines that have debugging information, and
therefore can be debugged at the source code level, are displayed in black text.
Routines having no debugging information are shown in grey text. You can view the
source code and variables for any routine in the call stack with debugging information
by either:

� moving the bar in the status window to the line containing the routine name
and pressing Enter,

� or by double-clicking the left mouse button over the routine name.

If you try to open a routine with no debugging information a machine code window
will appear. This may appear confusing if you are not familiar with programming at
this low level. If one appears, simply click the close button or press Alt+F4 and it will
disappear.

The stack/status window does not have a close button and cannot be closed by pressing
Alt+F4. This is because the current call stack and status are always relevant.

There are some key presses that apply to every window.

They are as follows:

Key Action

F1 Help

Alt+F4 Close window

Chapter 7 Using SDBG

57

F5 Display user screen

F6 Run or continue the program

F7 Single step the program

F8 Single step over

Alt+C Display call stack window

Alt+N Next window

Alt+X Exit SDBG

Source code window
At a basic level a source window is just a window that shows the contents of a source
file. When SDBG is first entered the source window will display the source code for
the current execution point. A red bar denotes the first line that caused SDBG to be
entered. You can display the source code for any routine in the call stack (assuming
the routine was compiled with debugging information) by selecting the routine from
the call stack window as described above. Each routine is displayed in a separate
window. The routines that are not at the top of the call stack will have their execution
point marked with a brown bar.

You can move around in a source window in a manner that is very similar to a text
editor or word processor. However, the text cannot be changed. The current position
is marked by a cursor, which will initially be on the same line as the execution bar.
You can move the cursor around the source window with the mouse or using the
keyboard.

The right most edge of the source code window contains a scroll bar. You can move
this either by clicking the left mouse button whilst the mouse cursor is in the scroll bar
or by dragging the scroll bar (you drag the scroll bar by pressing the left mouse button
and moving the mouse whilst keeping the left mouse button pressed). To move the
source code up or down one line at a time, click on the arrows at the top and bottom of
the scroll bar. The source window now also contains a horizontal scroll bar.

You can also use the following key presses to navigate the window:

Key Meaning

Left arrow Left one character

Right arrow Right one character

Up arrow Up one line

FTN77 User’s Guide

58

Down arrow Down one Line

Page Up Up one page

Page Down Down one page

Ctrl+Home Start of file

Ctrl+End End of file

Ctrl+Page Up Move up the call stack

Ctrl+Page Down Move down the call stack

Home Start of current line

End End of current line

Ctrl+O Go to instruction point (Origin)

Ctrl+G Go to line number

Ctrl+S Search for text (case insensitive)

Ctrl+A Search for text specified by the last Ctrl+S command

The Win16 and Win32 debuggers have buttons on the toolbar to move up and down
the call stack. They also have a bookmark facility. This is accessed by selecting
Bookmarks from the Window menu. Bookmarks can be set, used or deleted.

The most common actions performed on source code in a debugger are usually 1)
setting breakpoints, 2) single stepping and 3) running the program. Several key
strokes are available to help you do this.

These are summarised in the table below:

Key Meaning

F2 Set or reset breakpoint

Shift+F2 Set or reset a conditional breakpoint

F3 Get to current line

F6 Run program

F7 Step to next source line

F8 Step to next source line and step over any routine calls

Setting breakpoints
The F2 key acts as a toggle. It will set a breakpoint on a line that has no existing
break point. Alternatively, it will remove a breakpoint if one already exists on the
highlighted line. This only works if the line is an executable statement. So pressing

Chapter 7 Using SDBG

59

F2 when the cursor is over a comment line will have no effect. It will also have no
effect when the cursor is over a declaration. Breakpoints are marked by a white bar.
Once you have set the breakpoints required you can continue the program by pressing
F6. A message box appears if the line is can not be used as a breakpoint.

You should take care when using breakpoints. If the line of code is never executed,
due to an IF condition, the program will not stop.

Setting conditional breakpoints
In most circumstances programs can be successfully debugged by setting breakpoints,
running the program and examining data. There are some problems which are
difficult to debug using simple breakpoints. For example an iterative loop which goes
wrong on the 1563th iteration would be very time consuming to debug. You could
add extra code to the program to allow SDBG to activate a breakpoint on the 1562nd
loop. However, a quicker method is to use a conditional breakpoint. A conditional
breakpoint is one which only activates when a given condition is satisfied.

A conditional breakpoint is formed in three parts. Firstly there is an initial delay.
This is the number of times the breakpoint has to be executed before it will activate.
Secondly there is a repeated delay. This allows you to activate a breakpoint at
predetermined intervals. Thirdly, there is an optional expression. When a breakpoint
is about to activate, the expression will be evaluated. The breakpoint will only activate
if the result of the expression is non-zero.

When you press Shift+F2 an input box will be displayed. You should type into this
box the number of times the breakpoint can be executed before it is activated.
Entering ‘5’ will cause the breakpoint to activated the 5th time this line is executed.
You will then be asked for the number of executions between subsequent breakpoints.
You will finally be given an input box into which you can type an expression that will
control whether a breakpoint activates or not. You can leave this expression blank if
it is not required.

The following table gives examples for the three settings:

Requirement Initial
number

Repeat
number

Expression

Stop after the 198th iteration 198 1

Stop after the 7th iteration and every subsequent
11th

7 11

Stop when eps is greater than 1 1 1 eps>1

Stop when eps is greater than 1 and I know this is
after the 654th iteration

654 1 eps>1

FTN77 User’s Guide

60

You should note that there is a speed penalty if SDBG has to calculate the result of an
expression. Indeed a small speed penalty will result from setting any breakpoint.
This is in direct proportion to the number of breakpoints encountered.

You can set the initial delay to zero. This implies that the breakpoint will never
activate which can be useful when trying to establish how many times a certain point
is reached. You can cancel a conditional breakpoint by moving the cursor to the line
and pressing either F2 or Shift+F2. In fact the standard breakpoint is a conditional
breakpoint with the delays set to one. You can display the status of all system
breakpoints with the ‘breakpoints’ command (see page 72).

Run to line
One important variation on the ‘set breakpoints and run’ idea is that of ‘get to here’.
This is achieved by placing the cursor on the line you would like the breakpoint to
appear and pressing F3. SDBG will set a temporary breakpoint at that line, run the
program and then reset the breakpoint. This works in a similar manner to the key
sequence F2, F6, F2. Again you should be aware that your program may not stop if
the code is never executed due to say an IF statement.

Single stepping
Single stepping offers an alternative to setting breakpoints. It allows you to trace the
flow of execution a single line at a time. There are two possible methods of single
stepping, step into and step over.

The first method (step into) will enter any function or subroutine which contains
debugging information. This is useful when you want to follow the logical flow
through several routines. You can use the step into method by pressing F7. If you
step into a new subroutine or function a new source window will be opened. This will
display the code for the new subroutine/function. Alternatively, if you execute a
return statement, the current source window will be closed and the window with the
calling line will be made the current window.

The second method (step over) will execute the current line but will not enter a
subroutine or function even if debugging information is present. This latter case is
useful when you are sure that a subroutine or function is working correctly and you do
not want to trace the call through the routine. Whilst a new window will never be
opened with the step over method, it is possible for the current source window to close
due to the execution of a return statement. The step over method is performed by
pressing F8.

Chapter 7 Using SDBG

61

Examining variables
The simplest method for examining any of the current active variables is to use the
variables window. This window presents a list of all variables that are accessible from
the current scope. This list is sorted into scope order and then ascending alphabetical
order. The variables window is made the current window by pressing F4.

If you want to examine a particular variable, you can do this by opening a data view
window. Once opened, a data view window will remain open until the variable goes
out of scope or you choose to close it. The contents of the window will be updated
each time a break point (or single step action) is encountered.

The source window provides the user with four methods of examining the contents of
a variable in a data view window.

1. Press the right mouse button over a variable name in a declaration or executable
statement.

2. Move the cursor to a variable name in a declaration or executable statement and
press Ctrl+P.

3. Mark a block over an expression and either press the right mouse button over the
block or press Ctrl+P (this allows the expression to be displayed).

4. Use the ‘print’ command from the command line (this allows complete freedom in
the choice of data shown, see page 70).

Methods 1 and 2 provide a very quick way to access simple variables. Methods 3 and
4 can be used to access more complex information like the current array element in a
loop. Method 3 has the disadvantage that the expression must be present in the
source code. Using the command line (method 4) allows greater flexibility.

To mark a block you can either drag the mouse pointer over the text whilst keeping
the left hand mouse button depressed. Alternatively, you can use the arrow keys with
the shift key held down. The block is shown as blue text on a cyan background.
Pressing an arrow key without holding down the shift key will cancel the block mark.

In addition to the above methods for examining variables, the Win16 and Win32
debuggers provide ‘tooltips’ which appear when the mouse cursor passes over a
variable in the source window. This tooltip takes the form of a small volatile window
containing the value of the given variable.

Profiling information
You can display profiling information (i.e. information on how many times each line
has been executed) for a source file by pressing the F9 key. You must have compiled
the source file with /PROFILE. The numbers displayed down the right hand column
give the number of times each line has been executed. You can also display profile
information with the ‘profile’ command (see page 70).

FTN77 User’s Guide

62

Only one source file can be compiled with /PROFILE. In addition the profile counts
can be written to a file.

Miscellaneous information
The following table summarises the miscellaneous actions available with SDBG

Key Meaning

F10 Displays assembler output for this source code

F1 Help

Ctrl+F1 Context help. SDBG will examine the text under the cursor and look in
the help index. If the word exists that topic is displayed

Right mouse
button or Insert

Displays context menu-alternatives to some keystrokes

Variables window
The variables window displays a variables list for the current source window (i.e. the
one nearest the top). If the source window is not in the call stack the variables
window will be empty. You can switch back to the source window by pressing F4.
The window contains a highlight bar that shows the currently selected variable. The
type of the variable is displayed in the bottom left corner of the window border.

In addition to using the scroll bar, you can move the highlight bar by using the
following keystrokes:

Key Meaning

Up Bar up one

Down Bar down one

Page Up Bar up one page

Page Down Bar down one page

Home Start of list

End End of list

Right Scroll the window to the right

Left Scroll the window to the left

Chapter 7 Using SDBG

63

The variables window displays the contents of all the variables in the current scope.
This is usually more than adequate for simple variables. It is often useful to have
commonly accessed variables or more complex variables (such as C structures or
Fortran 90 types) displayed in a separate data view window (see below). From a
variables window this can be achieved by one of two methods:

1. Press Enter with the variable highlighted.

2. Double-click the left mouse button over the variable name.

Data viewing windows
The variables window is always available and allows you to quickly see the current
state of variables in a routine. A data view window is a window dedicated to one
particular variable (or part of a variable) allowing you to see its contents in isolation.
There are four different types of data view: simple expression, array, structure and
memory dump. In addition, from one data view window you can also open other.
These five types of data view are described below. You do not have to worry about
which view should be displayed. It is all handled by SDBG.

The method used to display a data view window depends upon the current window.
Details are given on page 61 for a source code window, immediately above for a
variables window, and on page 68 for an existing data view window.

Simple expression
A simple expression window is displayed in one of two situations:

1. when the result of the variable or expression is a simple data type that can be
displayed in one line, these data types include: integer, logical, real, complex,
string and pointers to pointers;

2. when the variable or expression is in error, in which case an error message will be
displayed.

If the data type is a pointer then you can display another window (that is the result of
dereferencing the pointer) by pressing the Enter key. If the data is too long to fit into
the window you can scroll the window to the left or right by pressing the left and right
arrow keys. If you press the right mouse button with the mouse cursor over an
expression window then a menu will appear.

FTN77 User’s Guide

64

This menu contains the following items:

Menu item Action

Print value Same as pressing Enter.

Memory dump at variable Opens a memory dump window located at the address of the
result. For example if the window displayed the value of a
variable called ptr, this would produce a memory dump
showing the physical memory used to store ptr.

Memory dump using
contents

Opens a memory dump window located at the address
pointed to by the result of this expression. The result does
not have to be a pointer for this to work.

Set write break on variable Places a write data break on the variable (see page 71).

Set use break on variable Places a use (read or write) break on the variable.

You can close any data view by pressing the Esc key.

Array
An array view window will be displayed if the variable or expression results in an
array. The array elements are displayed in a column. The window contains a
highlight bar that shows the currently selected element. This can be expanded into its
own data view window by either pressing Enter or double-clicking with the left mouse
button. You can move the highlight bar by dragging the scroll bar. In addition you
can also move the highlight bar by using the following key presses:

Key Action

Up Bar up one

Down Bar down one

Page Up Bar up one page

Page Down Bar down one page

Home Start of array

End End of array

If you press the right mouse button with the mouse cursor over an expression window
you will see a menu appear.

Chapter 7 Using SDBG

65

The items on the menu are as follows:

Menu item Action

Print value Same as pressing Enter.

Set visible range This opens up a dialog that allows the visible range of
subscripts to be set. This means that you need only display
the array section that you are interested in.

Memory dump at variable Opens a memory dump window located at the address of the
result. In this case this would be a memory dump showing
the physical portion of memory used by this array element
(and those around it).

Memory dump using
contents

Opens a memory dump window located at the address
pointed to by the result of this expression. The result does
not have to be a pointer for this to work.

Set write break on variable Places a write data break on the variable (see page 71).

Set use break on variable Places a use (read or write) break on the variable.

You can close any data view by pressing the Esc key.

Structure
A structure view window lists the elements of a type (Fortran 90/95), structure (C),
union (C), or class (C++) and their values. Each element resides on its own line in a
manner similar to the array view and variables list.

The window contains a highlight bar that shows the currently selected element. This
can be expanded into its own data view window by either pressing Enter or double-
clicking with the left mouse button.

In addition to moving the highlight bar by dragging the scroll bar you can use the
following key presses:

Key Action

Up Bar up one

Down Bar down one

Page Up Bar up one page

Page Down Bar down one page

Home Start of structure

End End of structure

FTN77 User’s Guide

66

If you press the right mouse button with the mouse cursor over an expression window
a menu will appear.

The items on the menu are as follows:

Menu item Action

Print value Same as pressing Enter.

Memory dump at variable Opens a memory dump variable located at the address of the
result. In this case showing the memory taken by this
structure member.

Memory dump using
contents

Opens a memory dump window located at the address
pointed to by the result of this expression. The result does
not have to be a pointer for this to work.

Set write break on variable Places a write data break on the variable (see page 71).

Set use break on variable Places a use (read or write) break on the variable.

You can close any data view by pressing the Esc key.

Memory dump
A memory dump window shows the individual bytes of memory with no formatting.
The data in this window is displayed in three columns. The first column contains the
start address of a strip of memory. The second column shows the bytes of memory
that are contained in the memory starting at that address. The third and final column
contains the ASCII representation of the same strip of memory.

The width of the strip depends on the window size and will automatically be scaled to
the size of the window. In addition you can quickly change the size by pressing one of
the following keys:

Key Width

6 16 bytes wide

8 8 bytes wide

4 4 bytes wide

2 2 bytes wide

1 1 byte wide

Data values that read ‘XX’ constitute an invalid address.

One of the data values is highlighted. This is the current address. This is initially set
to the address that you requested to display. The highlighted address is mirrored in
the ASCII representation.

Chapter 7 Using SDBG

67

You can move the highlight using the following keys:

Key Action

Left One byte to the left

Right One byte to the right

Up Up one line

Down Down one line

Page Up Up one window height

Page Down Down one window height

Pressing Alt+P will take the byte under the highlight and the following three bytes to
form an address. The window will then be refreshed using this new address. This
allows a pointer to be followed. You can go back to the address at which you pressed
Alt+P by pressing Alt+B. You can nest Alt+P key presses to a depth of 20 and still be
able to return to the starting point using Alt+B.

The expression, structure and array view windows all update to show any new values
whenever the program is stepped or run to a new point. Because you may be looking
at a specific area of memory, the memory dump window does not do this automatically
even if the value of the expression used to set the window changes. You can force the
window to reposition itself in memory by pressing Ctrl+O.

If you press the right mouse button with the mouse cursor over a memory dump
window you will see a menu appear.

The items on the menu are as follows:

Menu item Action

16 bytes per line 16 bytes per memory strip

8 bytes per line 8 bytes per memory strip

4 bytes per line 4 bytes per memory strip

2 bytes per line 2 bytes per memory strip

1 byte per line 1 byte per memory strip

Set write break Places a write data break on the address

Set use break Places a use (read or write) break on the address

FTN77 User’s Guide

68

Data view window
It is possible to open a data view window from a previous data view. This is used
when following pointers etc.. To open one data view from another:

1. press Enter with the item highlighted or

2. double-click the left mouse button over the item name.

You can close any data view by pressing the Esc key.

Machine code windows
A machine code window displays the instructions that the CPU uses to execute your
program and should only be used by people who understand assembler. A machine
code window will be displayed on the following occasions:

� if you select a routine in the call stack that has no debugging information; these
routines have grey lettering rather than black,

� if you select a routine in a Find window that has no debugging information; these
routines have the words ‘(no debugger information)’ following the routine name,

� if you press F10 from a source window (F11 for the Win16 and Win32
debuggers).

As with source windows the current execution point is shown by a red bar. An
execution point that is not at the top of the call stack is shown in brown.

The window is split into three distinct columns. The first column shows the start
address that the instruction is located at. The second column shows the assembler
instruction at that location and the third column shows the offset of the instruction
into the routine. The following key presses can be used within this window:

Key Action

Up Move up one instruction.

Down Move down one instruction.

Page Up Move up one page of instructions.

Page Down Move up one page of instructions.

Ctrl+Home Move to first instruction in routine.

F7 Step one instruction.

F3 Get to the instruction the cursor is indicating.

F2 Set a machine level breakpoint at the instruction the cursor is
indicating.

Chapter 7 Using SDBG

69

F10 Display source code if debugging information is available.

Alt+R Display registers window.

Command line
To provide greater flexibility within SDBG a simple command line facility is
available. The command line is accessed from the source window. It can be displayed
by pressing Alt+P in the source window. Alternatively, you can display the command
line by pressing any alphanumeric key (without holding down Alt or Ctrl). In this
case the key press will appear on the command line. You can hide the command line
by pressing Alt+P again. It is also possible to edit the command line.

The following key presses are permitted when editing a command line:

Key Action

Left Cursor left

Right Cursor right

Home Start of line

End End of line

Backspace Delete character to left

Delete Delete character under cursor

Up Recalls last command line (up to 20 are stored)

Down Recalls next command line (up to 20 are stored)

Enter Execute command line

Esc Clear command line. If the command line is already clear it will be hidden.

Commands
This section contains a list of the valid commands that may be entered on the
command line.

L/text/ or /text
This command performs a search forward within the source window for text and
repositions the cursor if the text is found. The search is case insensitive.

FTN77 User’s Guide

70

BL/text/ or ?text
This command performs a search backward within the source window for text and
repositions the cursor if the text is found. The search is case insensitive.

MOVETO n
Moves the cursor to line n. If n is greater than the number of lines within the file then
the command is ignored.

PROFILE
Toggles profile information and has exactly the same effect as pressing F9.

PROFILE filename
This will write the source window, together with any profile counts, into the file
filename. The profile information must already be displayed.

PRINT expr or P expr
Produce a data view window for the expression expr. The type of data view displayed
is dependent on the expression given and will be automatically adjusted. This
command provides a more general mechanism than displaying individual variables or
marked expressions.

Examples

_aX]c \PRWX]TNSPcPJXL - C syntax

_aX]c \PRWX]TNSPcP�X� - Fortran syntax

_aX]c _W� �%

_aX]c �_ca�bcad�-T[T\T]c - C syntax

PRINTMEM expr or PM expr
Produce a memory dump window centred about the value of expr. The given
expression does not have to be a pointer type. It can be an integer or even a
calculation.

VIEW filename
This command opens a new source window and displays the file filename in it. If the
file is not an object file that makes up the current program or the relevant object file
does not have debugging information then you will not be able to display expressions
or set breakpoints from it. Any ASCII file can be displayed with this command.

FIND routine
This command will search for routines whose names contain the text routine. If one
match is found that routine will be displayed. If more than one routine name matches
the text given then a Find window will appear displaying all the matches.

Chapter 7 Using SDBG

71

The window will respond to the following key presses:

Key Action

Up Move the highlight bar up one line

Down Move the highlight bar down one line

Home Move the highlight bar to the top of the list

End Move the highlight bar to the end of the list

Page Up Move the highlight bar up one page

Page Up Move the highlight bar down one page

Enter Display the routine. If the words ‘(no debugging information)’ appear
after the routine name then a machine code window will be displayed.
Otherwise the file appearing in brackets after the routine name will be
displayed.

Esc Close the window

The Find window will be kept open to allow further selections to be made, although it
will probably be initially hidden by the new source (or machine code) window. You
can easily cycle through all open windows by pressing Alt+N.

Example

UX]S X]Xc

Could find the routines X]XcXP[XbTN\^Sd[T, 0]bfTa8]8cTaPcX^] and 3>8=8C

WRITE_BREAK expr or WB expr
Places a write data break on the address indicated by evaluating expr. The break point
will be set on the address of the result. For example:

faXcTNQaTPZ R^d]c breakpoint placed on address of count

faXcTNQaTPZ �_ca breakpoint placed on value of pointer ptr

faXcTNQaTPZ Paa�(� breakpoint placed on ninth element of arr

faXcTNQaTPZ �g&'%#&!(! breakpoint placed on address 0x78647292

USE_BREAK expr or UB expr
Places a use (i.e. read or write) data break on the address indicated by evaluating expr.
The break point will be set on the address of the result as is the case with
WRITE_BREAK.

FTN77 User’s Guide

72

REGS
Displays a window that shows the current values of the CPU registers. The values are
in hexadecimal. The floating point stack is also shown.

BREAKPOINTS or BPS
Displays a window which contains the status of currently active breakpoints.

STREAMS
Opens a window that lists the currently open Fortran units.

STREAM n
Opens a window showing the status of Fortran unit n.

LET expr1=expr2
This command allows you to make changes to data without having to recompile. The
value of expr2 is assigned to the item indicated by expr1. expr1 must be an expression
to which a value can be assigned, for example [Tc !,%�P is invalid. If the two
expressions refer to different data types a conversion will be applied to the result of
expr2 to allow it to be used. You should, however, exercise caution when using
differing types.

Examples

[Tc X, � Simple variable assignment

[Tc Paa�Y�,Paa�R^d]c� Array element assignment

[Tc bWP_T�R^[^da,�g�U"!!(Structures

DOS cmdline or EXECUTE cmdline or X cmdline (DOS debugger only, not
Win16/Win32)
This will load the command processor and execute the command cmdline, which may
be a standard ‘.COM’, ‘.EXE’ or ‘.BAT’ file. The command line may be omitted in
which case the command shell will be started into which you can type commands.
You should type the command 4G8C to return to SDBG. You should not execute
commands which:

� Modify (or attempt to modify) any open files. This includes removing disks
from the floppy drive that your program is using.

� Try to execute Microsoft Windows or DosShell.

� Execute any TSR program, including network shells.

� Run any DBOS application. This includes Salford compilers and linkers.

Chapter 7 Using SDBG

73

Customising the debugger
The debugger can be customised in order to change its look and feel. Under DOS the
keystroke Alt+O will display the options. The Win16/Win32 debuggers use an
Options entry in the Tools menu. The options available are:

Automatically open variables window – When checked the variables window will
open automatically when the debugger is entered. When debugging programs with
large numbers of variables it can sometimes be better to not open the variables
window and just use the data view windows or tooltips. Default is on.

Sort variables window alphabetically – When checked the variables window is
sorted into alphabetical order. When not checked the variables are listed in scope
order, that is, local variables will be listed first followed by globals. Default is off.

Show PARAMETERs in variables window – When checked PARAMETERs will be
shown in the variables window. When debugging programs with large numbers of
parameters (Windows applications in particular) the parameters can clutter up the
variables window, obscuring the variables. Default is on.

Only use one source window – With this option turned on the debugger will only use
one window for displaying source files. When turned off the debugger will use a new
window for each routine in the call stack that is shown. Default is off.

Show Tips at Startup – When checked the debugger will show the ‘Tip of the day’
window at startup. Default is on.

Debugger is MDI – When checked the debugger windows will be enclosed within a
MDI (multi document interface) window. When not checked the windows will appear
directly on the desktop. Win16/Win32 only, default is on.

Display bubble help – When checked the toolbar buttons will show tooltips when
required. Win16/Win32 only, default is on.

Display variable values in source – When checked popup tooltip help will appear
when the mouse cursor is over a variable name. The tooltip help will contain the
variable’s name and value. Win16/Win32 only, default is on.

FTN77 User’s Guide

74

75

8.

Program development

Diagnostic facilities
FTN77 provides extensive diagnostic facilities which enable programs to be speedily
developed and debugged. Diagnostics can be output

� during compilation,

� during loading,

� at run-time.

These three types of diagnostics are described separately below.

Compilation diagnostics
During compilation, three types of messages can be output:

1) ERROR MESSAGES which indicate that the rules of Fortran 77 have not been
obeyed, for example, that a label has been referenced but not defined. Error
messages are preceded by ∗∗∗ (three asterisks).

It is possible (but not recommended) to load and execute a program that contains
compilation errors (if the /PERSIST option was used) but unpredictable results
will occur if the parts that are executed contain compilation errors. If /PERSIST
is not used, the compiler will cease code generation once an error has been
reported and the relocatable binary file will be marked to make it unloadable.

Note that certain error conditions become fatal when the /ANSI option is used
otherwise they are classed as warnings.

FTN77 User’s Guide

76

2) WARNINGS are output for one of two reasons:

� If the program is correct Fortran 77 but probably contains a logic error. For
example, the following statement is legal but will cause an infinite loop:

 � 6>C> �

In the following example, the compiler will warn that the second statement will
never be executed.

A4CDA=

0 , 1

2 , 3

� � �

� Each time the program uses those extensions to Fortran 77 (see chapter 13)
which have been included in order to allow compatibility with Fortran 66.

For example, users converting programs containing Hollerith data will find
their listings annotated with the message:

FPa]X]V) CWT dbT ^U 7^[[TaXcW SPcP Xb P] TgcT]bX^] c^

5^acaP] &&�

It is always possible to load and execute a program whose compilation produces
only warnings.

3) COMMENTS are informative messages. They serve to remind the programmer
that there might be a better way of writing a particular statement. As an example,
the statement

0 , 5;>0C�8�

would cause the compiler to output the message:

2><<4=C) 5;>0C R^d[S QT aT_[PRTS Qh Xcb VT]TaXR

T`dXeP[T]c �A40;� cWa^dVW^dc cWXb _a^VaP\ d]Xc

Most messages are output immediately after the statement to which they refer.

If it is necessary to delay the output of a message or the source listing option (see
page 23) has not been chosen, the message is followed by a line number which refers
to the source file. Certain error messages referring to EQUIVALENCE statements
are always output (with a line number reference) immediately after the first executable
statement in a program unit has been listed.

Some messages, notably those referring to undefined or unused labels, are not output
until the END statement of a program unit has been processed.

Each diagnostic message has an associated error number. It is possible to instruct the
compiler to ignore every occurrence of the error associated with a particular error
number by using the /IGNORE compiler option as follows:

Chapter 8 Program development

77

5C=&& <H58;4 �86=>A4 +Taa^a]d\QTa-

where <error number> is the number of the error that is to be ignored. This number
can be obtained by using the /ERROR_NUMBERS compiler option in an earlier
compilation that exhibits the error. More than one /IGNORE option can be specified,
if it is desired, in order to ignore several errors.

Note:
If messages other than warnings or comments are ignored, the compiler may generate
incorrect code.

An example of a source listing containing errors, warnings and comments appears in
Figure 8-1.

B0;5>A3 D=8E4AB8CH 5C=&&�E4A� g�gg 2)K?A>942CK<H?A>6�5>A

2><?8;4A >?C8>=B) ;8BC8=6 8=CB =><0? =>2742: ;>6B 3H=< >55B4C

=>0=B8 ?064C7A>F =>B8;4=C =>N>?C8<8B4

��� >?C8>=B�=>2742:�

���! 6>C>

���" 3> � 8, �% 0C ��!!

F0A=8=6 � CWXb bcPcT\T]c fX[[]TeTa QT TgTRdcTS

���#�� 9 , " 0C ��"&

���$�� 8 , 9 � 0C ��"3

��� 8 Xb RdaaT]c[h X] dbT Pb P 3> ^a X_[XTS 3> ePaXPQ[T

���%�� # : , % 0C ��"3

���&�� � 2>=C8=D4 0C ��"3

���' 85�8�4@�"�C74= 0C ��"5

���(�� ? , @ � A 0C ��"5

�� ��� ; , & 0C ��"5

�� �� 4=385 0C ��"5

��� ;PQT[WPb QTT] aTUTaT]RTS Ua^\ ^dcbXST cWT 3>�[^^_�

85� 4;B485 ^a 4;B4 Q[^RZ X] fWXRW Xc P__TPab

�� ! 85�8�4@�#�C74= 0C ��"5

�� "�� 3> !� :,"�& 0C ��"5

�� #��! 0 , 5;>0C�8��1 0C ��"5

�� $��! 4=3 0C ��"5

��� D]cTa\X]PcTS 3> bcPcT\T]c�bTT [X]T "�

��� D]cTa\X]PcTS Q[^RZ�85 bcPcT\T]c�bTT [X]T !�

��� ;PQT[!� WPb]^c QTT] STUX]TS

Figure 8-1 Error and warning messages

FTN77 User’s Guide

78

Linker diagnostics
During the loading of a program, the relocatable binary code that has been output by
the compiler is linked with routines from the Fortran 77 library and from other
relocatable binary files and libraries specified by the user. There are a number of error
and warning messages that can be output by the linker, most of which are self-
explanatory.

A commonly occurring message is one that reports that a routine is missing. A name
can appear as “missing” for either of the following reasons:

1) A routine of the specified name is not available to the loader because:

� an appropriate LIBRARY directive (see page 41) has not appeared in the
source program or

� the name of a library routine has been misspelt. A commonly occurring error
is the use of the letter O instead of the digit 0 in calls to library routines, for
example, the use of MO1ANF instead of M01ANF.

2) The name was intended to be an array element name but has not been
dimensioned. It has then been used only in a function reference, a CALL
statement or on the right hand side of an assignment statement, for example:

1 , 0�"�

20;; BD1�0�8��G�

2 , 5�0�8�9��

Fortran is defined in such a way that each of the above would generate a reference
to a function called A. The name A would be output by the loader as “missing”.

Note:
If the “missing” name corresponded to a routine in a library compiled in CHECK
mode, a run-time error might occur saying that the routine had been called
inconsistently. In the worst case, an appropriate routine with consistent arguments
would be loaded and the program would run with unpredictable results!

Programs with missing routines can be executed up to the point at which a
missing routine is called.

Run-time diagnostics
Comprehensive run-time diagnostic facilities are provided by the system in such a way
that users can always choose the level of checks that are applied to any part of their
program.

Chapter 8 Program development

79

During the early stages of program development, it is useful to have all or most of
these checks performed by the system but later, when the program is thought to be
thoroughly tested, it is usual to remove checks in order to achieve the fastest possible
execution speed and smallest possible object program size. If new routines or lines of
code are added to an existing program, it is a simple matter to specify that checks
should be performed only on the program units that have been changed.

The available run-time diagnostic information is controlled by directives which may
appear before any program unit. Note that the default level of checks to be applied
can be set by one of the FTN77 compile-time options /CHECK, /FULLCHECK,
/UNDEF or /NO_CHECK. These keywords may also appear as part of an
OPTIONS directive.

For example:

>?C8>=B �2742:�

>?C8>=B �D=345�5D;;2742:�

Once an error has been detected by the checking mechanism, execution terminates and
the system enters the symbolic debugger to give diagnostic information.

The run-time checks are described more fully in the sections which follow.

Arithmetic overflow checking
No computer permits the storage and manipulation of arbitrarily large quantities. The
following limits apply when using FTN77:

INTEGER*1 -128 to +127

INTEGER*2 -32768 to +32767

INTEGER*4 -2147483648 to +2147483647

REAL (REAL*4) ±(1E-37 to 1e+39) (approx.)

DOUBLE PRECISON (REAL*8) ±(1D-307 to 1D+309) (approx.)

If a calculation is performed whose result exceeds these limits arithmetic overflow
occurs.

If a CHECK or FULLCHECK directive appears in the source program, then runtime
checking for overflow is enabled.

If a checked statement does set overflow then execution is terminated and the
interactive debugger is entered (see chapter 7). If a statement sets overflow and is not
checked, then execution continues with an incorrect result in the case of integers, but
terminates in the floating point case.

FTN77 User’s Guide

80

When a program is loaded, all numeric variables (except those which have appeared
in a DATA statement) are initialised to an “undefined” value unless the /ZEROISE
compile-time option is used (see chapter 6).

In the case of integer variables, the undefined value chosen is -32640 which will not
result in overflow being set as the result of an assignment and, furthermore, overflow
will not always occur when an expression is evaluated which involves an undefined
value.

Undefined variables can be trapped by use of the /UNDEF option (see below).

Note:
Variables and array elements in otherwise uninitialised common blocks are not
initialised to the undefined value.

Argument consistency checking
There are a number of run-time checks associated with the calling of routines. A
subroutine or function compiled with a checking option will produce a run-time error
if one of the following occurs:

1) Arrays used as actual arguments are too small for the declared size.

2) An actual argument which is a constant or a local variable that is in use as a DO-
variable is altered by the called routine. For example:

20;; 5A43� ���

� � �

3> � 8, � ��

20;; 5A43�8�

� � �

 � 2>=C8=D4

� � �

4=3

BD1A>DC8=4 5A43�=�

� � �

= , 6

� � �

4=3

Either of the calls to FRED in the above example would cause a run-time error.

3) A simple character argument is not large enough for its declared size.

In the absence of checking these conditions result in program corruption with
unpredictable results.

Chapter 8 Program development

81

Array subscript checking
The /CHECK option ensures that every array reference lies within the storage
allocated to the array. Each individual subscript expression is only checked if
/FULLCHECK is specified. Consider the following coding:

38<4=B8>= 0� �� ��

8 ,

9 , &

0�8�9� , ���

The storage element referenced by the subscripts lies within the declared storage for
the array even though the first subscript is outside its corresponding bound. This is
not valid Fortran 77 (although it is valid Fortran 66). In this example, a run-time
error would only be produced by the use of /FULLCHECK. /CHECK would not
produce a run-time error.

Using the above DIMENSION statement for A, it is apparent that the statement

8 ,

9 , �

0�8�9� , ���

would cause a run-time error if either of the compiler options were used.

In general, array bound checking incurs a run-time overhead of both store and
execution speed. Full array bound checking for multi-dimensional arrays is very
costly. The simpler array bound check is less so.

Array bound checking is available for arrays of any type. The array may have explicit
dimensions, for example:

?0A0<4C4A �=, ��<,%�

38<4=B8>= 0�=�<��1� ��!��

or may be passed as arguments with variable bounds, for example:

BD1A>DC8=4 5A43 �0�1�2�=�

2><<>=�012�<

38<4=B8>= 0�<��1�=��2���

The checks will work in all cases for both upper and lower bounds.

If checking is not in use, unpredictable effects may occur at run-time. An attempt to
transfer a value from an element outside the bounds of an array can either:

1) assign or use an arbitrary value which might cause overflow, or

2) cause the program to fail with general protection fault which means that the
program has tried to access storage outside the limits available to it, or

3) overwrite a pointer and cause a fault in a different part of the program.

FTN77 User’s Guide

82

If an attempt is made to transfer data to an element outside the defined bounds of an
array without specifying the checks, the effects are totally unpredictable and will
frequently result in a spurious error when some unrelated part of the program is
executed.

The /OLDARRAYS compiler option allows Fortran 66 programs that contain
constructs such as

BD1A>DC8=4 5A43�0�1�=�

38<4=B8>= 0� ��1�=� �

� � �

to be treated as

BD1A>DC8=4 5A43�0�1�=�

38<4=B8>= 0����1�=���

� � �

Use of this option allows array subscript checking to work according to the size of the
actual argument array.

Checking for undefined variables (/UNDEF)
/UNDEF (which implies /CHECK) causes FTN77 to plant code to check that a
variable or array element used in the circumstances described below has been
previously given a value.

/UNDEF causes extra code to be planted for a name or array element appearing in the
following circumstances:

� as the right hand side of a non-character assignment,

� in arithmetic expressions involving + - / * or ∗∗,

� in relational expressions involving .NE. .EQ. etc.,

� in logical expressions involving .AND. .OR. etc.,

� as an array subscript,

� as a substring expression,

� as the argument to an ANSI standard intrinsic function such as SIN, COS etc.,

� as the expression used within a logical or arithmetic IF statement.

/UNDEF currently has no effect on character assignments or concatenations.

All local static variables are predefined to an undefined value. This value has HEX
80 in every byte. Routines compiled with /CHECK also clear their dynamic variables
to this value on entry to the routine. This value is treated as undefined by the

Chapter 8 Program development

83

symbolic debugger, see page 49. An undefined integer has one of the following
values:

INTEGER*1 -128

INTEGER*2 -32640

INTEGER*4 Z’80808080’

In rare cases, most likely when using integer data, the undefined integer value may be
intended by the programmer and the use of /UNDEF will cause a spurious error to be
reported. In this case, all that can be done is to compile the program unit(s) in
question without /UNDEF. Note that:

� The use of /UNDEF causes a significant run-time execution speed penalty.

� It is necessary to compile the main program with this option if uninitialised
common blocks are to be set appropriately.

ASSIGNED GOTO statement checks
FTN77 ensures that if a local variable is used in an assigned GOTO statement there
is at least one ASSIGN statement for the variable in the program unit. Thus, for
example

2742:

9 , "

� � �

6>C> 9

would cause a compile-time error. Run-time checks are provided to ensure that:

1) if a label list is present, the integer variable is currently ASSIGNed to a label in
the list and

2) if no label list has been specified, the transfer of control is within the current
program unit.

Note that this check is not watertight and that a program which attempts to GOTO an
integer whose value happens to lie within the range of the routine will go out of
control even in CHECK mode.

Character data
The checking mechanism provides the following diagnostic checks for character data:

1) That an argument of type character is of sufficient length for its declared dummy
size. For example, in CHECK mode, the following program would cause a run-
time error:

FTN77 User’s Guide

84

270A02C4A�!� 0

� � �

20;; 27BD1�0�

� � �

4=3

BD1A>DC8=4 27BD1�G�

270A02C4A�"� G

� � �

4=3

The error could be prevented in this case by declaring X in the subroutine as
follows:

270A02C4A���� G

so that X would assume the character length of the actual argument.

2) That substring expressions are valid. There are two possible sources of error that
may arise when using a substring reference of the form A(I:J):

� either the value of I is greater than the value of J or

� the value of I is less than 1 or the value of J is greater than the declared or
assumed length of the character variable or array element.

All of the character assignment statements in the following program would cause a
run-time error:

270A02C4A�!� 0�1�!��

� � �

8 , �

9 , !

: , #

; , "

0�8)� , ´G´

0�)9� , ´GGG´

1�"��:);� , ´GGG´

4=3

85

9.

Optimisation and efficient
 use of Fortran

Introduction
This chapter describes the FTN77 local and global optimisation features and indicates
some of the ways in which a programmer can write Fortran programs that will make
the best use of these features.

Optimisation

The /OPTIMISE compiler option
/OPTIMISE selects the optimisation facility described below. For those installations
where /OPTIMISE is the chosen default /NO_OPTIMISE is provided.

The alternative spellings, /OPTIMIZE and /NO_OPTIMIZE, are provided for those
who use a well-known alternative version of the English language!

The /OPTIMISE option causes the compiler to make a second pass through the source
code image in order to perform improvements to the object code that will result in
faster execution times for typical programs.

Under DOS, /OPTIMISE may be used together with the /WEITEK compiler option.

Using a coprocessor
The compiler will automatically generate correct code for an Intel compatible numeric
coprocessor. Under DOS, the compiler will also generate code for a WEITEK

FTN77 User’s Guide

86

numeric coprocessor when the /WEITEK compiler command line option is used.
Support for the 80287 coprocessor has been discontinued.

DBOS will support both an Intel compatible coprocessor and the WEITEK
coprocessor. However, if you wish to enable DBOS's ability to use the WEITEK
coprocessor you must add the /WEITEK DBOS command line option. No version of
Windows supports WEITEK numeric coprocessors.

Optimisation processes
The improvements in execution speed that are obtained depend upon the style and
content of the source program, for example, whether one- or multi-dimensioned arrays
are used, whether nested loops appear, and so on.

As optimisation can involve source code re-arrangement and a change in the way that
registers and store locations are used, it is possible that numerical results produced by
an optimised program may differ in some way from those produced by the
unoptimised version of the same program. This effect may be more noticeable with
iterative algorithms and is due to the fact that a more accurate value can be held in a
coprocessor floating point register than can be held in the corresponding store
location.

Some programs may actually execute more slowly when optimised due to non-
executed loops that cannot be detected by the compiler, for example:

3> � 8, �=

where N is zero or negative at run time. In this case code that is moved out of the
loop will be executed once, rather than not at all as would happen if this optimisation
had not been made.

When the compiler option /OPTIMISE is used, the compiler performs code
optimisation based on rearranging the order of execution of statements which
constitute a program unit (see below). If /OPTIMISE is not used, the following
optimisations are typical of those performed by default.

� Constant ‘folding’ and conversion of Fortran type at compile time. Constant
folding is the process of taking a statement such as:

0 , 8 � " � &

and producing code which is the same as for the statement:

0 , 8 � �

This might not appear to be of much use at first glance, since you might not think
that you would write expressions with multiple constants in this way. However,

consider the expression !�?8�A where ?8 is a parameter - the !�?8 part would
be evaluated at compile time. In addition to this however, a number of situations
arise for the implicit arithmetic which the compiler plants code for (chiefly array

Chapter 9 Optimisation and efficient use of Fortran

87

subscript calculation) where this technique results in considerable reduction in the
amount of arithmetic done at run time.

Related to this is the conversion of the type of constants where appropriate. For
example, the statement:

G , #

is compiled as:

G , #��

thus the need for a type conversion at run time is obviated.

� Elimination of common subexpressions within a statement. Again, this applies
equally to expressions which form subscript calculations. Consider the following
assignment:

0�8�9�:� , 0�8�9�:� � "

The code necessary to calculate the offset represented by (I,J+K) is only performed
once.

� The contents of registers are “remembered” between statements so that redundant
load and store operations are avoided. For example, consider the following
sequence of statements:

: , 8 � 9

; , : � 8

For the second statement, the compiler recognises that it has the value of K in a
register, so it does not need to load K from store.

Note, however, that it will probably need to reference the value of I from memory,
since the calculation of I + J will have resulted in the loss of the value of I from a
register.

Even if there were some statements interspersed between the statements above, this
optimisation could still take place, so long as:

� the register in question was not used for another purpose in the interim, and

� none of the interim statements were GOTOs, and

� none of the executable statements were labelled (a good reason to dispense with
unused labels in your code).

The compiler tries to avoid using registers which might contain something useful
in a subsequent calculation.

A related technique is used for the coprocessor floating point registers, although
due to the limited size of the hardware register stack, it is not possible to leave a
value in a register just in case it might be useful. Instead, if a recently calculated

FTN77 User’s Guide

88

floating point value proves to be useful for a subsequent calculation, the instruction
which places the result in the corresponding memory location is converted from
“store and pop” to “store and don’t pop”. The value is then available somewhere
in the register stack for the susequent calculation.

Note that this floating point register tracking is not performed when the /DEBUG
compiler option is used or implied. Furthermore, the compiler option
/NO_FLOATING_TRACKING can be used to disable this process (see page 94).

� Full use is made of the instruction set. For example, an integer addition or
subtraction of 1 is performed by the appropriate increment or decrement
instruction. Also, some optimisations can be used to perform certain arithmetic

operations a little quicker. For example, evaluation of 8�$, where 8 is of integer
type, can be performed with the instruction sequence:

<>E 40G��8

;40 40G��J40G��40G��#L

which is faster than the corresponding integer multiply. Note however, that this
optimisation is not done in CHECK mode, since any overflow would go
undetected.

When the /OPTIMISE option is used, optimisations performed include the following:

1) Loop invariant motion. This means that any calculations which are constant with
respect to the loop variable may be moved, so that they are performed once and for
all on entry to the loop. This leads to the actual degradation in performance
mentioned earlier, for the case where the loop is not executed at all. However, in
most cases, particularly when the loop is executed a large number of times,
considerable savings can result.

2) Loop induction weakening. This means that, instead of using multiples of the loop
index, a constant is added to a pseudo variable each time round the loop. For
example, consider the following loop:

3> 8 , � =

0� �8� , �

4=3 3>

The offset into the array A will be a constant multiple of the loop variable I. The
constant is related to the size of the first dimension of the array A. Induction
weakening will replace multiplication by this constant to produce the array offset
at each iteration of the loop by a faster addition of the constant at each iteration.

3) Elimination of common subexpressions across statements. This is often a
consequence of the optimisations in (1) and (2) : expressions which are taken out
of the loop as either loop invariant, or as candidates for induction weakening, can
themselves be sub-parts of larger expressions.

Chapter 9 Optimisation and efficient use of Fortran

89

4) In some loops, particularly useful quantities can be “locked” into registers.
“Locking” means that, for the duration of a loop, the value of a program variable,
or perhaps a derived quantity such as an offset into an array, is kept in a register,
and is not stored into its associated store location (if indeed it has one) until exit
from the loop.

Obviously, this requires that exit from the loop cannot be by means of a GOTO
from within itself, and that no subroutine or function is called from within the
loop, as these statements could destroy any value held in the register.

Also, there is some trade-off involved in tying up a register in this way, so
generally locking will only occur for relatively short loops.

Optimisation of the loop in the example given in 2) above involves induction
weakening and locking the array offset in a register.

5) Some additional optimisations based on the 80486 and Pentium instruction set. In
some cases integer instructions are used instead of floating point instructions. This
often results in different behaviour where the operands are invalid (for example
where they should cause an overflow), but it is assumed that, if optimisation is
being employed, problems such as this have been eliminated.

6) Many cases of a “dot-product” construction are spotted and replaced with faster
code, for example:

3> 8 , � =

BD< , BD< � 0�8��1�8�

4=3 3>

This is particularly efficient when optimisation is used in conjunction with the
/WEITEK option - the Weitek “multiply and accumulate” instruction is used.

7) Many cases of redundant combinations of instructions are eliminated, for example,
jumps to the next line, loads from a register to itself which sometimes are
generated as a result of register locking (see 4 above).

The above list is not exhaustive, and new optimisations will be added during the
course of compiler development.

It is possible to further improve the execution speed of certain programs by using the
/UNSAFE option in conjunction with /OPTIMISE. /UNSAFE allows the compiler to
assume that the following classes of variable and array names can be subjected to code
re-arrangement techniques:

� Equivalenced variables and arrays.

� COMMON variables and arrays.

� Argument variables and arrays.

With each of these categories of objects, there may be more than one way to access the
storage represented by the object. Thus, in the most general case, it is necessary to

FTN77 User’s Guide

90

assume that the register from which such a value was recently saved is not necessarily
valid, since the storage in question might have been changed via another route.
Similarly, any quantity calculated from an object in these classes may not be induction
weakened, locked into a register, and so on. The /UNSAFE option allows the
compiler to assume that such objects will not be changed by their alternate routes (and
thus requires some care from the programmer).

Helping the optimiser
The success which the optimiser has with your code depends to a large extent on the
code itself. In order to ensure that the object code is correct in all cases, the optimiser
takes a conservative approach which can sometimes mean that potential optimisations
are ignored. As a rule of thumb, the more structured the code appears to the
optimiser, the more optimisations it can apply. It is difficult to give hard and fast
rules as to how best to maximise the optimisation which can take place, but a number
of general points should be noted:

� GOTOs can often inhibit optimisation. This is particularly the case in tight loops.
You may be able to achieve the effect you want by using a logical variable.

� Function and subroutine calls within loops prevent many optimisations from
occuring. Apart from the fact that no register tracking can take place across CALL
statements and function references (the called routine does not save the register
set), many of the loop optimisations cannot take place.

Even if the CALL statement or function reference appears to be “loop invariant” in
some sense (for example, all of its arguments are themselves loop invariant), the
CALL statement or function reference cannot be moved because of side effects
which the routine may have, or common variables which it uses which are not loop
invariant.

Thus, it is up to you to remove CALLs and function references which are genuinely
loop invariant from out of your loops.

� It is a good idea to remove all redundant labels (these are automatically indicated
by FTN77’s compilation diagnostics). See below.

Efficient use of Fortran 77
Labels

The compiler outputs a warning message if a label has been set but never used.
Redundant labels should be removed as their presence inhibits optimisation in many
cases. Labels can also often be removed by making small changes to the structure of
the program, for example:

Chapter 9 Optimisation and efficient use of Fortran

91

85�8�=4���6>C> �

0 , 1

2 , 3

 � 9 , 8

If label 10 had not been referenced from elsewhere in the program unit, this could be
rewritten more efficiently (and legibly) using a block-IF statement as follows:

85�8�4@���C74=

0 , 1

2 , 3

4=385

9 , 8

The extra efficiency would derive from the fact that the compiler ‘remembers’ that it

has 8 in a register when it compiles the statement 9,8.

Labels may also often be removed from a program by removing arithmetic IF
statements, especially when two of the labels are the same, for example:

85�8�9� �!�!

 1 , "

would be better written:

85�8�64�9� 6>C> !

1 , "

Intrinsic functions
The following intrinsic functions are compiled as in-line code:

� Type conversion functions such as INT, REAL, DBLE, CMPLX, CHAR, ICHAR,
CONJG and DIMAG.

� BITS, AND, OR, XOR, NOT, LS, RS, LR, RR, SHFT, LT, RT, LOC,
CCORE1, CORE1, CORE2, CORE4, FCORE4 and DCORE8.
Note: these functions are FTN77 extensions.

� The MAX and MIN functions.

� ABS and its non-generic variants, except CABS and CDABS.

� LEN and LENG.

� LGE, LGT, LLE and LLT.

� The long to short conversion functions INTB, INTS, INTL, LGCB, LGCS and
LGCL.

� Under DOS/Win16, SQRT (unless you have a 386 with a Weitek 1167
coprocessor, then SQRT is not performed in-line).

FTN77 User’s Guide

92

� Under DOS/Win16, SIN, COS and TAN (unless a Weitek coprocessor is used).

� INDEX, if the second argument is of length 1, for example:

:,8=34G�<4BB064�´ ´�

Statement functions
Statement functions are always expanded as in-line code. Efficient execution is
therefore guaranteed and is to be preferred to the supplying of a one line external
function.

Common subexpressions
In most cases, common subexpressions are evaluated only once. Thus the following
code could not be improved by the prior assignment TEMP=X*Y:

I , �G�H��� ���G�H�

Common subexpressions may sometimes be evaluated more than once in character
expressions and in arithmetic expressions contained in logical IF statements.

Constants
The constant parts of expressions are evaluated at compile-time so that
PARAMETER statements can be used in many cases to make programs more
readable without increasing execution time. For example, consider the following:

?0A0<4C4A �?8,"� # $(�

� � �

20;; 5A43�?8�!���

The expression ?8�!�� is constant and is therefore evaluated at compile-time and
nothing would be gained by replacing the expression with its calculated value.

Dummy array dimensions
It is more efficient to dimension a dummy array A(*) rather than A(N) if the value of
N implies the whole of array A.

Character variables
The manipulation of long character data has hidden overheads. In particular, consider
the following:

270A02C4A� �� 0

� � �

0 , ´5A43´

Chapter 9 Optimisation and efficient use of Fortran

93

The execution of the assignment statement involves the insertion of 96 blanks to pad
out the variable A to its declared length of 100. Note, however, that

0 , ´ ´

is far more efficient than for example:

� � �

3> 8, � ��

 0�8)8� , ´ ´

� � �

Format statements
Unlike many Fortran implementations, FTN77 preprocesses ‘constant’ formats at
compile-time. These ‘constant’ formats are as follows:

� A FORMAT statement.
� A format expression that is a character constant or a character constant expression.
� A format expression that is a parameter name.
All formats which include character arrays, array elements or variables are decoded at
run-time. Such non-constant formats require more extensive decoding which leads to
longer execution times.

For example, the following should be avoided wherever possible:

270A02C4A� � 5

5 , ´�"5 ��#�´

� � �

FA8C4 �!�5�G�H�I

It could be rewritten as follows:

270A02C4A� � 5

?0A0<4C4A �5,´�"5 ��#�´�

� � �

FA8C4 �!�5�G�H�I

so that the format specifier would be decoded at compile-time.

Note also that the colon (:) edit descriptor and tab facilities can often be used instead
of a run-time format.

FTN77 User’s Guide

94

Switching off variable tracking
On page 85 it was noted that by default (even when the compiler option /OPTIMISE
is not used), the use of coprocessor floating point registers is tracked in order to
eliminate unnecessary register reloading instructions. However, in certain very
unusual circumstances, the use of variable tracking could have undesirable side
effects. For this reason, the compiler option /NO_FLOATING_TRACKING has been
made available to turn off register tracking for floating point values.

For example in extreme circumstances a problem may arise because a register value is
stored with greater precision. The following code illustrates this feature.

G, ��

H,G� 4�'

2 =^a\P[[h h^d f^d[S]^c Tg_TRc c^ QT PQ[T c^ W^[S]X]T

2 bXV]XUXRP]c UXVdaTb dbX]V cWT X_[XTS A40;�#�

85�H�6C�G�C74=

FA8C4����� ´CWT aTVXbcTa eP[dT WPb QTT] dbTS U^a H´

4;B4

FA8C4����� ´CWT bc^aTS eP[dT WPb QTT] dbTS U^a H´

2 �=>N5;>0C8=6NCA02:8=6 ^a �2742: WPb QTT] dbTS�

4=385

4=3

95

10.

Fortran input/output

Overview
The FTN77 input/output statements allow ANSI standard-conforming programs to be
written which can:

� open and close files,

� make inquiries about the type and mode of access of a file,

� access data using any combination of formatted or unformatted and sequential or
direct access data transfer statements.

There are nine input/output statements:

OPEN

CLOSE

INQUIRE

BACKSPACE

ENDFILE

REWIND

READ

WRITE

PRINT

(

)

K
K

*

K
K

File
positioning
statements

(

)

K
K
K

*

K
K
K

(

)
K

*
K

Auxiliary
input/output
statements

Data
transfer
statements

Each of these statements has a list of specifiers associated, for example:

102:B?024 �D=8C,&�

FA8C4 � ��A42,(� 1�2

FTN77 User’s Guide

96

>?4= �D=8C,"�58;4,´5A43´�

A403 �D=8C,#�4=3,!�� 0

The general form of these specifiers will be obvious from these examples.

A full list of specifiers and the input/output statement(s) to which each applies appears
in Table 10-1. Specifiers marked by an asterisk are extensions to the ANSI Standard.
Note that the PRINT statement has been omitted from this table as specifiers are not
permitted.

The input/output statements are described in detail in the remainder of this chapter
after the FTN77 definitions of records, files and methods of access have been
explained.

Records
A record is a sequence of characters (for example, a line of text) or a sequence of
values (for example, 3 0 4).

There are three kinds of records:

� Unformatted

� Formatted

� Endfile

They are described separately below.

Unformatted record
An unformatted record consists of a series of values in binary form and may contain
any combination of numeric, logical or character data or indeed no data at all.

The length of an unformatted record is measured by FTN77 in bytes and depends on
the output list used when it was written. For unformatted sequential files, each record
also contains a small amount (usually 2 bytes) of “red tape” which delimit one record
from the next (see also page 100).

This means that a file containing (say) 10000 numbers, one per record, will not be as
efficient as one composed of 100 records each holding 100 numbers. The size of the
individual data items in an unformatted record is shown in Table 10-2.

Chapter 10 Fortran input/output

97

WRITE READ REWIND OPEN INQUIRE ENDFILE CLOSE BACKSPACE

ACCESS • •

BLANK • •

DIRECT •

* DRIVER •

END •

ERR • • • • • • • •

EXIST •

FILE • •

FMT • •

FORM • •

FORMATTED •

NAME •

NAMED •

NEXTREC •

NUMBER •

OPENED •

REC • •

RECL • •

* RENAME •

SEQUENTIAL •

SHARE •

STATUS • •

UNFORMATTED •

UNIT • • • • • • •

* NML • •

Table 10-1 Input/output statements and specifiers - allowed combinations are
denoted by •

FTN77 User’s Guide

98

Type Number of Bytes

INTEGER*1

INTEGER*2

INTEGER*4

1

2

4

REAL*4 4

DOUBLE PRECISION

REAL*8

8

COMPLEX*8 8

DOUBLE COMPLEX

COMPLEX*16

16

LOGICAL*1

LOGICAL*2

LOGICAL*4

1

2

4

CHARACTER*n n

 Table 10-2 length in bytes of unformatted data according to type.

Note:
The length in bytes of a numeric or logical variable depends on the chosen default
(/INTS, /INTL, /LOGS, /LOGL and/or /DREAL) for the compilation and also the
type statements used for declaration (see page 178).

Formatted record
A formatted record consists of a sequence of characters chosen from the ASCII
character set. The length of a formatted record is the number of ASCII characters in
that record. This length may be zero. The end of the record is indicated by the ASCII
character LF (decimal 10).

Endfile record
An endfile record is written by an ENDFILE statement. Such a record may occur only
as the last record of a sequential file. In the case of disc files, this record is only a
conceptual entity and does not actually exist.

Chapter 10 Fortran input/output

99

Files
A file is a sequence of records. There are two kinds of files:

� External

� Internal

Internal files are described on page 101.

File existence
At any given time there is a set of files that are said to exist for a given program. A
file that is known to the operating system may not necessarily exist for a program, for
example, because it has been given the “hidden” attribute.

A file may exist for a program and contain no records; an example is a newly created
file not yet written.

File names
A file may have a name; if so it is referred to as a named file. Any name, including a
pathname, acceptable to the operating sytem can be used as a file name.

File properties
A file which has been written using formatted, direct access may subsequently be read
sequentially and/or examined with a text editor. A special command, MAKEDA77, is
provided to convert formatted, sequential files into formatted, direct access files, see
page 129.

If it is necessary to alter the contents of a direct access formatted file this is possible
using an editor, provided MAKEDA77 is used to reconstruct the result, (remember
that editors usually compress files by means of tabs and sometimes do not retain
trailing spaces).

Data transferred to or from the screen must be accessed sequentially.

File structure

1. Formatted sequential files
A formatted sequential file consists of zero or more records of the form described on
page 98.

FTN77 User’s Guide

100

2. Formatted direct access files
A formatted direct access file written by FTN77 contains records of the form
described on page 98. All records in the file are of the length specified in bytes by the
RECL= specifier when the file is opened.

A formatted file created by direct access output may be read by sequential input if
desired.

3. Unformatted sequential files
The structure of a record in an unformatted sequential file written by FTN77 is as fol-
lows:

� For the first record or any subsequent record of more than 240 bytes in length:

1-byte 4-bytes n-bytes 4-bytes 1-byte

FF nn xx....xx nn FF

indicator
byte

record
size

record
data

record
size

indicator
byte

� For other records:

1-byte n-bytes 1-byte

n xx....xx n

record
size

record
data

record
size

This structure is designed to:

1) Facilitate very long records

2) Minimise the overheads for small records

3) Enable backward repositioning (BACKSPACE) without rereading the file.

4. Unformatted direct access files
Each record in an unformatted direct access file contains only the raw data written to
it, with no extra “housekeeping” information. All records in the file are of precisely
the length specified in bytes by the RECL= specifier when the file is opened.

An attempt to write to a record an amount of data less than the specified record length
results in the remainder of the record being undefined. An attempt to write more data
than the record can hold results in a run-time error.

File position
A file that is connected to a unit (see page 106) has a position property. The execution
of certain input/output statements affects the position of a file. Circumstances such as
an error condition can cause the file position to become indeterminate.

Chapter 10 Fortran input/output

101

The initial point of a file is the position immediately before the first record. The
terminal point is the position immediately after the last record. If a file is positioned
within a record, that record is the current record otherwise there is no current record.

The terms preceding record and next record are defined formally in the ANSI
Standard; their meanings are self-explanatory for practical purposes.

File access
The two methods of file access are sequential and direct. The method of access is
determined when the file is connected to a unit (see page 106).

An internal file (see below) must be accessed sequentially. Sequential access means
that the n’th record can only be accessed after the preceding (n-1) records have been
accessed. Direct access means that the records in a file can be accessed in any order;
thus, for example, it is possible to write record 10 even though records 1 to 9 have not
been written.

A file that is connected for formatted access may not be accessed by non-formatted
data transfer statements for the duration of the connection, and vice-versa.

A file that is connected for direct access may not be accessed by the sequential forms
of the data transfer statements for the duration of the connection, and vice-versa.

All records of a direct access file have the same length. Each record in a direct access
file is uniquely identified by a positive integer called the record number which is
specified in the WRITE statement when the record is written. This record number is
not stored in the file but once established can never be changed. A direct access
record may not be deleted but may be changed by being rewritten.

Internal files
Internal files provide a means of transferring and converting data from internal binary
format to character format. Internal files have the following properties:

1) The file is a character variable, character array element, character array or
character substring.

2) A record of an internal file is a character variable, character array element or
character substring.

3) If the file is not a character array, that is, it is one of the data items in 2) above, it
consists of a single record whose length is the same as the length of the character
variable, character array element or character substring.

4) An internal file record becomes defined:

� when it is written (if the number of characters written in the record is less than
the length of the record, the remaining portion of the record is blank-filled),

FTN77 User’s Guide

102

� by means other than by a WRITE statement, for example, by a character
assignment or DATA statement.

5) An internal file is always positioned at the start of its first record prior to data
transfer. This means that only sequential access is available with internal files.

6) List-directed formatting (free format) is not available with internal files according
to the ANSI Standard. However, FTN77 does permit this as an extension
providing the /ANSI compile-time option is not used. For example:

270A02C4A�!� =D<

)

)

FA8C4�=D<���8�9

7) An auxiliary input/output statement (i.e. BACKSPACE, REWIND, or ENDFILE)
can not be used on an internal file.

Units
A unit specifier is a means of referring to a screen or a disc file. Units within the
range 1 to 100 may exist for a FTN77 program. All input/output statements (except
CLOSE and INQUIRE) must refer to one of these units.

A unit has the property of being connected or not connected. Once connected, it refers
to a file or to a slow peripheral. A unit specifier may become connected in one of the
following ways:

� by execution of the Fortran 77 OPEN statement,

� by preconnection; the standard input and output are preconnected to units 1 and 2
respectively (units 5 and 6 are respective alternatives).

The ANSI Standard states that a unit cannot be connected to more than one file at the
same time and a file must not be connected to more than one unit at the same time.
However, the OPEN statement allows the user to change the status of a unit and to
connect a unit to a different file. As an extension, FTN77 allows a file to be opened
more than once provided this is done with STATUS=’READONLY’.

After a unit has been disconnected from a file by the execution of a CLOSE statement
it may be connected again to the same file or to a different file. After a file has been
disconnected from a unit it may be connected to the same unit or to a different unit.

A preconnected unit can be opened in order to redefine its use. Subsequent closing
does not re-establish the preconnection.

Chapter 10 Fortran input/output

103

Unit specifier
All the input/output statements (with the exception of the forms PRINT*, and
READ*) use a unit specifier to refer to a unit. It takes one of the forms

UNIT=<unit>

<unit>

where <unit> is known as an external unit identifier and is a constant, name or
expression of type INTEGER*4, INTEGER*2 or INTEGER*1. (PRINT* refers to
list-directed output on unit 2, which by default is preconnected to the standard output
but which may have been reconnected to some other file. Similarly READ* refers to
list-directed input on unit 1.) The value of <unit> must be in the range 1 to 100 for all
input/output statements except CLOSE and INQUIRE. A special form of <unit> (an
asterisk) is available with the READ and WRITE statements (see page 122).

If the second form is used, <unit> must be the first item in the input/output statement
specifier list, for example:

FA8C4 �%� 0�1�2

This is equivalent to,

FA8C4 �D=8C,%� 0�1�2

Internal file identifier
An internal file identifier is a character variable, character array element, character
array or character substring. It is used in place of an external unit identifier in READ
or WRITE statements when transferring data to or from an internal file, for example:

270A02C4A�!� A42>A3

� � �

FA8C4�A42>A3� ��� 0�1�8

 �� 5>A<0C�! 5'�"�8#�

Error and end-of-file conditions
An input/output statement can execute normally or can result in an error condition.
The error conditions that can occur are listed in chapter 27 They may also be
identified by a suitable call to the RUNERR@ routine. A READ statement can also
result in an end-of-file condition. An end-of-file condition (IOSTAT value -1) exists
if either of the following events occur:

FTN77 User’s Guide

104

� an endfile record is encountered during the reading of a file connected for
sequential access (in this case the file is positioned after the endfile record),

� an attempt is made to read a record beyond the end of an internal file.

If an error condition occurs during the execution of an input/output statement,
execution of the statement terminates and the position of the file becomes
indeterminate. It is possible for a program to continue execution after an input/output
error has occurred if the ERR= and/or IOSTAT= specifiers are used (see below).

If an error or end-of-file condition occurs in a READ statement, the entities specified
in the input list and any implied-DO variables become undefined (according to the
ANSI Standard), but variables appearing only in subscripts, in substring expressions
and in implied-DO parameters do not become undefined.

In programs compiled with FTN77, items read in before the error will be available in
accordance with the ANSI standard. Similarly, any subscript will have the value it
had at the point of the error.

If an error condition occurs during execution of a WRITE or PRINT statement, any
implied-DO variables in the output list become undefined.

It is possible to recover from all input/output execution errors by means of the optional
ERR= and IOSTAT= specifiers. Similarly, end-of-file conditions can be dealt with
using the END= specifier.

The error specifier has the form:

ERR=<errlab>

where <errlab> is the statement label of an executable statement that appears in the
same program unit as the ERR= specifier. In the example which follows, control is
transferred to the statement labelled 10 if an input error occurs on unit 7:

A403 �&�´�" 8$�´�4AA, �� 8�9�:

� � �

 � ?A8=C ��´SPcP Taa^a´

4=3

The IOSTAT specifier has the form:

IOSTAT=<ios>

where <ios> is an integer variable or integer array element. When an input/output
statement containing an IOSTAT specifier is executed, the value returned to <ios> is
as follows:

� zero if neither an error condition nor an end-of-file condition is encountered,

Chapter 10 Fortran input/output

105

� a positive integer if an error condition is encountered (a library routine,
RUNERR@, is provided to enable the run-time error corresponding to a given
IOSTAT value, to be printed on the screen),

� -1 if an end-of-file but no error condition is encountered.

The following program fragment shows the use of IOSTAT:

A403 �&� ���8>BC0C,8� 0�1�G

85 �8� �"�!

 BC>? ´T]S�^U�UX[T aTPRWTS´

! 85 �8�4@�'#� C74=

?A8=C ��´=^ UX[T ^_T] ^] d]Xc &´

4;B4

?A8=C ��´8�> Taa^a ´�8

4=385

BC>?

" H , �0�1��G

� � �

Note that the statement following the READ statement is obeyed in this case no
matter what condition is encountered.

The IOSTAT specifier can be used in conjunction with the ERR= specifier as in the
following example:

102:B?024 �D=8C, ��8>BC0C,8�4AA,$��

� � �

$� 85 �8�64�!��� BC>?

In this example, if there is an error, the IOSTAT variable I is given a positive (non-
zero) value and control is transferred to the statement labelled 50.

The end-of-file specifier has the form:

END=<endlab>

where <endlab> is the label of an executable statement that appears in the same
program unit as the END= specifier. For example:

A403 �&� ��4=3,!�� 0�1�2

 � 5>A<0C �"5%�!�

� � �

!� 4=3

Once the end-of-file is reached on unit 7, control is transferred to the statement
labelled 20 which in this case is the end of the program. Note the comments on page
98 concerning the form of an endfile record.

FTN77 User’s Guide

106

Under DOS/Win16, an end-of-file condition is raised when inputing data from the
screen by the ASCII character ETX (octal code 203).

Under Win32, an end-of-file condition is raised when inputing data from the screen by
the ASCII character Ctrl-Z (decimal 26).

Connecting files
A file may be connected during program execution by means of the OPEN statement.
It is possible to use the OPEN statement to connect a device, such as a standard
printer to a unit.

Previously OPENed files can be disconnected by means of the CLOSE statement.
The properties of a file (connected or otherwise) can be found by using the INQUIRE
statement.

The OPEN statement
It is possible to open a file dynamically (that is, at run-time) by means of the Fortran
77 OPEN statement.

The OPEN statement will cause a file to become connected. It is used to describe the
properties of a connection in addition to performing the connection itself. For
example, in order to open a text file for input, the following statement might appear in
a program:

>?4=�D=8C,$�58;4,´5A43´�

It will be apparent that the name of the file and a unit number are used together with
some defaults provided by the system in order to open the file. FTN77 implements
OPEN by calling standard file manipulation routines provided by the operating
system.

The general form of the OPEN statement is

OPEN (<olist>)

where <olist> is a list of specifiers:

 UNIT=<unit>
 IOSTAT=<ios>
 ERR=<errlab>
 FILE=<filename>
 STATUS=<status>
 ACCESS=<access>

Chapter 10 Fortran input/output

107

 FORM=<form>
 RECL=<recl>
 BLANK=<blank>
* DRIVER=<driver>
* FILETYPE=<filetype>
* SHARE=<access mode>

Note that the specifiers marked * are not in the ANSI Standard and are specific to the
FTN77 implementation. As their use is never mandatory, standard-conforming
programs can always be compiled and executed.

<olist> must contain exactly one external unit specifier <unit> and may contain, at
most, one of each of the other specifiers.

Note that any keyword target (an item enclosed in diamond brackets in the above list
of specifiers) of type CHARACTER may be in any combination of upper and lower
case characters.

UNIT=<unit>
<unit> is an integer expression (typically a constant or variable) used as an
external unit identifier (see page 103).

IOSTAT=<ios>
<ios> is an integer variable or array element which is used as an input/output
status specifier (see page 103).

ERR=<errlab>
<errlab> is the label of an executable statement in the current program unit to
which control will be transferred in the event of an error (see page 103).

FILE=<filename>
<filename> is a character expression (typically a constant) whose value is a
filename or pathname acceptable to the operating sytem. Note that if the filename
part is greater in length than eight characters, then it is truncated. The name may
include a suffix, but none is added automatically.

STATUS=<status>
<status> is a character expression (typically a constant), whose value when any
trailing blanks are removed is one of the following with the effect described:

’OLD’
A FILE= specifier must also be used and <filename> must exist.

’NEW’
A FILE= specifier must also be used and <filename> must not exist. The file
is connected for writing. A sequential file can subsequently be rewound and
used for reading.

’SCRATCH’
A FILE= specifier must not be used. A temporary file with the name

FTN77 User’s Guide

108

(F$XXXX) will be created where XXXX is a unique 4-digit decimal number
between 0000 and 9999 inclusive. When a STOP or END statement is
executed, the file is erased.

’UNKNOWN’
If a FILE= specifier is present and <filename> exists, ’UNKNOWN’ is
equivalent to ’MODIFY’. If FILE= is absent, ’UNKNOWN’ is equivalent to
’SCRATCH’. If <filename> does not exist ’UNKNOWN’ is equivalent to
’NEW’. If STATUS= is omitted, ’UNKNOWN’ is assumed. Thus, normally,
no STATUS specifier will be required.

The following options for <status> are not in the ANSI Standard and have been
added to the FTN77 implementation:

’APPEND’
A FILE= specifier must also be used. ’APPEND’ is allowed for both
formatted and unformatted files opened for sequential access. Output is
appended to <filename> if it exists - if <filename> does not exist, it will be
created.

’MODIFY’
A FILE= specifier must also be used - <filename> need not exist. If
<filename> does not exist, ’MODIFY’ is equivalent to ’NEW’. If <filename>
exists, ’MODIFY’ causes the existing file to be truncated and overwritten (see
page 117).

’READONLY’
A FILE= specifier must also be used and <filename> must exist.
READONLY status ensures that any attempt to write a record to <filename>
causes a run-time error. It also enables a file to be opened for reading more
than once.

ACCESS=<access>
<access> is a character expression (typically a constant), whose value (when any
trailing blanks are removed) is either ’SEQUENTIAL’ , ’ DIRECT’ or
’TRANSPARENT’ (see the FORM specifier below).

ACCESS specifies the method of access for the connection of the file. If the
specifier is omitted, ’SEQUENTIAL’ is assumed.

FILETYPE=<filetype>
This specifier has been added in the FTN77 implementation in order to give users
access to various devices. <filetype> can take the following value with the effect
shown:

Chapter 10 Fortran input/output

109

’TTY’
Input and output is read from the keyboard and written to the screen via the
appropriate unit number.

Other devices such as LPT1 may be available by simply opening ‘files’ of the
corresponding name. For example, to write directly to the printer from unit 6 it is
often possible to execute:

>?4=�D=8C,%� 58;4,´;?C ´�

DRIVER=<driver>
 <driver> is the name of a subroutine which has been previously declared in an
EXTERNAL statement. If DRIVER= appears, then FILE=, FILETYPE= and
STATUS= must not appear. DRIVER= is an extension to the ANSI Standard.
Its use is described on page 113.

FORM=<form>
<form> is a character expression (typically a constant), whose value is
’FORMATTED’, ’ UNFORMATTED’ or ’PRINTER’ when any trailing blanks
are removed.

FORM specifies whether the data transfer to and from the program will be
formatted, unformatted or in line printer format.

If the specifier is omitted, ’FORMATTED’ is assumed if the file is being
connected for sequential access and ’UNFORMATTED’ is assumed if the file is
being connected for direct or transparent access (see the ACCESS specifier
above).

FORM=’PRINTER’ is an extension to the ANSI Standard, and specifies that the
first column of any output record is taken as a Fortran carriage control character.
The Fortran carriage control characters are as follows:

Character Vertical Spacing before printing

Blank One line

0 Two lines

1 To first line of next page

+ No advance

Carriage return, linefeed, and form feed control characters are output as necessary
to give the effects above.

Note that FORM=’PRINTER’ is only appropriate for files on which output only is
performed

FTN77 User’s Guide

110

For ACCESS = ’TRANSPARENT’ and FORM= ’FORMATTED’, no carriage
returns are output at the end of record on output (the user can output carriage
returns with the “/” editing descriptor), and on input precisely the field widths
specified in the input format are read, with no attempt to align to record
boundaries (i.e. after carriage returns).

For ACCESS = ’TRANSPARENT’ and FORM = ’UNFORMATTED’, on output
the values in the I/O list are output to file in their internal format, with no
surrounding record structure (unlike sequential unformatted). Similarly, on input,
the values in the input list are read in direct from file, without any record structure.
This gives a Fortran binding for applications which would previously have called
the I/O primitive subroutines OPENR@, OPENW@, READF@, WRITEF@
etc. directly.

RECL=<recl>
This specifier is used when a file is connected for direct access.

As an extension to the standard, RECL may also be specified for a file opened for
sequential access. This causes fixed length records to be read from or written to
file and allows a BACKSPACE to be followed by a WRITE.

<recl> is an integer expression (typically a constant). It specifies the length of
each record in a file being connected for direct access. RECL is always measured
in bytes.

BLANK=<blank>
BLANK must only appear for a file being connected for formatted input/output.

<blank> is a character expression (typically a constant), whose value when any
trailing blanks are removed is either ’NULL’ or ’ZERO’.

If the specifier is omitted, a value of ’NULL’ is assumed.

If ’ NULL’ is specified, all blank characters in numeric formatted input fields on
the specified unit are ignored except that a field consisting of all blanks has a value
of zero. If ’ZERO’ is specified, all blanks, other than leading blanks, are treated
as zeros.

SHARE=<access mode>
The operating sytem provides a means whereby a program, when opening a file,
can define the access that other programs are allowed to a file for the period that
the first program has the file open. This mechanism is implemented by
SHARE.EXE, which keeps a track of open files and permits or denies access as
appropriate. Thus, in order to use this keyword, you should ensure that
SHARE.EXE is loaded.

This file sharing mechanism applies for multiple instances of the same file opened
by a particular program, for two or more programs running on the same machine

Chapter 10 Fortran input/output

111

(e.g. in different “DOS boxes” under Windows 3.1 and Windows 95 and different
“console windows” under Windows NT), or by two or more programs running on
different machines (e.g. access via a shared disk on a network).

When a program opens a file, it can specify that it requires read access, write
access, or read and write access. In addition to this, it can specify the <access
mode> that other programs are permitted while it still has the file open.

<access mode> is a character expression whose value is one of the following:

’COMPAT’ Compatibility mode - equivalent to opening the file with no
sharing attributes. No other program will be able to access the
file while this program has it open.

’DENYRW’ Exclusive - no other program can access the file while it is
open.

’DENYWR’ Other programs cannot access the file for write or read/write
access, but can open the file for read only access.

’DENYRD’ Other programs cannot access the file for read or read/write
access, but can open the file for write only access.

’DENYNONE’ Other programs can access the file for read, write or read/write
access.

Note that a second or subsequent program attempting to open the file will be
denied access in all cases if it attempts to open the file in compatibility mode. All
attempts to open a file that may be in use by another program must use one of the
other modes, and thereby must specify the access to be granted to other programs
trying to access the file subsequently.

It will be seen from the above specification of OPEN that there is a large number of
possible combinations of specifiers (and defaults). The OPEN statement can be used:

� in order to connect an existing file (scratch files or non-existent files are
automatically created by OPEN),

� in order to connect a user specified device driver (see page 113).

Examples of the use of OPEN:

1) A file may be connected from within the program as follows:

>?4=�$� 58;4,´30C058;4´� BC0CDB,´>;3´�

The above statement could be written to include the UNIT= specifier thus:

>?4=�D=8C,$� 58;4,´30C058;4´� BC0CDB,´>;3´�

In this example the file ’DATAFILE’ must exist.

FTN77 User’s Guide

112

2) If blanks in numeric fields were to be treated as zeros, the OPEN statement in
Example 1 would be written as follows:

>?4=�$�58;4,´30C058;4´�1;0=:,´I4A>´�BC0CDB ,´>;3´�

Note: The BLANK= specifier must specify ’ZERO’ when running a Fortran 66
program whose data contains significant blanks in numeric fields.

3) As a result of the following OPEN statement:

>?4=�#�58;4,´>DC?DC´�BC0CDB,´=4F´�

unit 4 would be connected to a previously non-existent file called OUTPUT. The
details of the connection would be as follows:

BC0CDB , ´=4F´

0224BB , ´B4@D4=C80;´

5>A< , ´5>A<0CC43´

4) If a program containing the OPEN statement from example 3) were subsequently
rerun without first deleting OUTPUT, a run-time failure would result as the use of
STATUS=’NEW’ means that the file must not exist.

The STATUS=’UNKNOWN’ keyword avoids this problem, as in the following
example:

>?4=�#� 58;4,´>DC?DC´� BC0CDB,´D=:=>F=´�

If OUTPUT does not exist, the above OPEN statement is identical to that in
example 3). If, however, OUTPUT exists (perhaps as the result of a previous
run), it will be emptied if the first operation is a WRITE. If STATUS is omitted
completely, the default value ’UNKNOWN’ is assumed.

5) If OUTPUT does not exist, the following statement is equivalent to the OPEN
statement in example 3):

>?4=�#� 58;4,´>DC?DC´� BC0CDB,´0??4=3´�

If OUTPUT does exist, any output will be appended and its previously existing
contents left unchanged.

Notes:
� STATUS=’APPEND’ is an FTN77 extension to the ANSI standard.

� If the specified file is subsequently rewound it will be positioned at record 1,
that is, all the records in the file will be available for reading.

6) The following OPEN statement would create a scratch file for use only during the
program run:

>?4=�"� BC0CDB,´B2A0C27´�

Chapter 10 Fortran input/output

113

A temporary file would be created and erased at the end of the program run. The
properties of the connection would be those listed in example 3).

7) In order to open a file called RANDOM for direct access, the following OPEN
statement should be used:

>?4=�$�58;4,´A0=3><´�0224BB,´38A42C´�

� BC0CDB,´>;3´� A42;,!��

Notice the default for FORM is ’UNFORMATTED’ when the statement
ACCESS=’DIRECT’ is specified. The connection would establish the following
properties:

BC0CDB,´>;3´

0224BB,´38A42C´

5>A<,´D=5>A<0CC43´

A42;, !� �QhcTb�

In other words, the file would be used for direct access without any compression of
blanks taking place.

8) In order to open a file called MIXUP for formatted direct access, the following
OPEN statement should be used:

>?4=�%� 58;4,´<8GD?´� 0224BB,´38A42C´�

� BC0CDB,´<>385H´� 5>A<,´5>A<0CC43´� A42;,'��

The record length for a formatted direct access file is specified in characters. The
properties established by the connection would be as follows:

BC0CDB,´<>385H´

0224BB,´38A42C´

5>A<,´5>A<0CC43´

A42;, '� �QhcTb�

9) In order to open a scratch file for unformatted, sequential access:

>?4=�"� BC0CDB,´B2A0C27´�

� 5>A<, ´D=5>A<0CC43´� 0224BB,´B4@D4=C80;´�

A scratch direct access file could be OPENed as follows:

>?4=�#�BC0CDB,´B2A0C27´�0224BB,´38A42C´�A42;,%#�

User-supplied input/output device drivers
The DRIVER= keyword has been provided for use with the OPEN statement in order
to allow the use of user-supplied device drivers. This facility means that all the
Fortran 77 input/output statements can be used to refer to a “device” such as a non-

FTN77 User’s Guide

114

standard printer, plotter etc., as well as providing facilities such as output to the screen
and file simultaneously.

The facility can be used with any combination of formatted or unformatted, sequential
or direct access input and output. Any Fortran unit can be connected to a device
driver as in the following example:

4GC4A=0; <H34E

>?4=�$� 3A8E4A,<H34E�

Here MYDEV is a user supplied subroutine which will handle formatted, sequential
input or output on unit 5. In general, the target of the DRIVER= keyword is the name
of a subroutine with the following specification:

BD1A>DC8=4 SaXeTaN]P\T�1D55� 1B8I4� 1;4=� 02C8>=�

� 8508;�

8=C464A�! 1B8I4� 1D55�1B8I4�� 1;4=� 02C8>=� 8508;

ACTION is specified in Table 10-3.

IFAIL is set to zero when the user-supplied routine is called by the input/output
system. If IFAIL is given a non-zero value by the driver routine, the FTN77 error
trapping mechanism will be invoked on exit from that routine. (Thus, depending on
whether the IOSTAT= keyword has been used in the corresponding Fortran
input/output statement, the run-time traceback mechanism will be invoked or the
program can take action for a non-zero IOSTAT value.)

Value of
ACTION

Corresponding Fortran statement

1 FORMATTED SEQUENTIAL READ

2 FORMATTED SEQUENTIAL WRITE

3 ENDFILE

4 REWIND

5 BACKSPACE

6 OPEN

7 CLOSE

8 INQUIRE

9 UNFORMATTED SEQUENTIAL READ

10 UNFORMATTED SEQUENTIAL WRITE

11 FORMATTED DIRECT ACCESS READ

12 FORMATTED DIRECT ACCESS WRITE

13 UNFORMATTED DIRECT ACCESS READ

14 UNFORMATTED DIRECT ACCESS WRITE

 Table 10-3, Effect of ACTION in User-supplied input/output, device drivers

Chapter 10 Fortran input/output

115

The IOSTAT value returned for a non-zero IFAIL value is always 155. In order to
obtain a more specific error message on error exit from a driver routine, a common
block variable should be used to return an appropriate error code to the calling
program unit.

Note that it is not possible to perform Fortran input/output in a driver routine.

BUFF, BSIZE and BLEN are only relevant for values of ACTION corresponding to
the READ and WRITE statements. BUFF(BSIZE) is an array which is used as a
buffer. It holds either two characters per INTEGER*2 word for formatted
input/output or is used to hold binary information for unformatted input/output.

The value of BLEN depends on whether the driver routine is being used for input or
for output as follows:

� READ statement (ACTION = 1). The driver routine must set BLEN as follows:

Formatted input: BLEN is the number of characters that have been input.

Unformatted input: BLEN is the number of bytes that have been input.

� WRITE statement (ACTION = 2). The value of BLEN is set on entry to the driver
routine as follows:

Formatted output: BLEN is the number of characters to be output. Note that a CR
or LF character is not added by the input/output system prior to entry to the driver
routine.

Unformatted output: BLEN is the number of bytes to be output.

It is recommended that driver routines are written in the following manner to ensure
that all possible values of ACTION are catered for in a program:

BD1A>DC8=4 <H3A8E�1�=1�=27�02C8>=�8508;�

8=C464A�! 1�=1��=27�02C8>=�8508;

2

2 DbT P R^_dcTS 6>C> c^ P[[^f U^a P[[eP[dTb ^U

2 02C8>= TeT] cW^dVW fT ^][h Tg_TRc cWT a^dcX]T c^

2 QT T]cTaTS U^a cWT >?4=� A403 P]S FA8C4 bcPcT\T]cb

2

6>C> � �!�"�"�"�#�"�"�"�"�"�"�"�"��02C8>=

2 4aa^a TgXc

" 8508; , (((

A4CDA=

2 A403

 � � � � �

A4CDA=

2 FA8C4

! � � � � �

A4CDA=

FTN77 User’s Guide

116

2 >?4= �=44343 0B C74 3A8E4A A>DC8=4 8B 20;;43

2 8<<4380C4;H 5A>< C74 5^acaP] && >?4= BC0C4<4=C F74=

2 3A8E4A, 8B DB43�

A4CDA=

4=3

The CLOSE statement
The general form of the CLOSE statement is:

CLOSE (<clist>)

where <clist> is a list of specifiers:

UNIT=<unit>
IOSTAT=<ios>
ERR=<errlab>
STATUS=<status>
RENAME=<newname>

Note:
The RENAME specifier is not in the ANSI Standard and has been added to the
FTN77 implementation.

The variables or array elements represented by <unit>, <ios> and <status> may be of
type INTEGER*4, INTEGER*2 or INTEGER*1.

Notes:
� It is possible to execute a CLOSE statement that specifies a unit that neither exists

nor has a file connected to it. Use of such a CLOSE statement has no effect.

� All files are automatically closed by the input/output system when a program
terminates.

UNIT=<unit>
<unit> is an external unit identifier (see page 103). If the value of <unit> is less
than or equal to zero, CLOSE produces a run-time error.

IOSTAT=<ios>
<ios> is an input/output status specifier (see page 103) which must be an integer
variable or array element.

ERR=<errlab>
<errlab> is the label of an executable statement in the current program unit to
which control will be transferred in the event of an error (see page 103).

STATUS=<status>
<status> is a character expression (typically a constant) whose value when any
trailing spaces are removed is ’KEEP’ or ’DELETE’. The character expression
may comprise any combination of upper and lower case characters.

Chapter 10 Fortran input/output

117

If the STATUS specifier is omitted, the assumed value is ’KEEP’ for a named file
or ’DELETE’ for a scratch file.

If ’ KEEP’ is specified or assumed, the file continues to exist after the CLOSE
statement has been executed.

If ’ DELETE’ is specified or assumed, the file is erased by the CLOSE statement.

RENAME=<newname>
<newname> is a character expression (typically a constant) which must represent a
pathname. This specifier permits the file opened on <unit> (which may be a
scratch file) to be renamed on being closed. No error is issued if
STATUS=’DELETE’.

Example:

2;>B4 �D=8C,#� BC0CDB,´34;4C4´�

would close the file currently connected to unit 4. All trace of the file would be
removed from the system.

The INQUIRE statement
INQUIRE allows the user to find out the properties of a particular named file or of the
connection or availability of a particular unit. The INQUIRE statement may be
executed before, while or after a file is connected to a unit. All values assigned by the
INQUIRE statement are those that are current at the time the statement is executed.

Note that all value assignments are done in accordance with the rules for assignment
statements so in the case of character information, truncation or padding with blanks
will occur. This can be used to advantage, for example:

270A02C4A� 5

8=@D8A4 �D=8C,%� 5>A<,5�

would return F with either the value ’FORMATTED’ or the value
’UNFORMATTED’. If F were declared as

270A02C4A 5

its value would be returned as either ‘F’ or ‘U’.

The INQUIRE statement takes one of the following forms:

Inquire by file: INQUIRE (FILE=<filename>, <inqlist>)

Inquire by unit: INQUIRE (UNIT=<unit>, <inqlist>)

FTN77 User’s Guide

118

where <filename> is a character expression whose value when trailing blanks are
removed is a filename (acceptable to the operating sytem) which is the subject of the
inquiry. The named file need not exist or be connected to a unit. Note that a file may
be referred to by pathname.

<unit> is an external unit identifier (see page 103) of type either INTEGER*1,
INTEGER*2 or INTEGER*4. The specified unit need not exist or be connected to a
file. If it is connected to a file, the inquiry is being made about the connection and the
file connected. <inqlist> is a list of specifiers chosen from:

IOSTAT=<ios>
ERR=<errlab>
EXIST=<exist>
OPENED=<opened>
NUMBER=<number>
NAMED=<named>
NAME=<pname>
ACCESS=<access>
SEQUENTIAL=<seq>
DIRECT=<dir>
FORM=<form>
FORMATTED=<fmtd>
UNFORMATTED=<unf>
RECL=<recl>
NEXTREC=<next>
BLANK=<blank>
FUINT=<filehandle>

A variable or array element that may become defined or undefined as a result of its use
as a specifier in an INQUIRE statement must not be referenced by any other specifier
in the same INQUIRE statement.

If no error condition occurs in either an INQUIRE by file or INQUIRE by unit
statement, <exist> and <opened> always become defined. If an error condition occurs
during the execution of either type of INQUIRE statement, all of the specifier
variables and array elements except <ios> become undefined.

Execution of an INQUIRE by file statement causes the specified variables or array
elements <named>, <pname>, <seq>, <dir>, <fmtd> and <unf> to be assigned values
only if the value of <filename> is acceptable to the operating sytem as a file name and
if the specified file exists. The specified variables <number>, <access>, <form>,
<recl>, <next>, <funit> and <blank> become defined only if <opened> becomes de-
fined with the value .TRUE.

Execution of the INQUIRE by unit statement causes the specified variables or array
elements <number>, <named>, <pname>, <access>, <seq>, <dir>, <form>, <fmtd>,

Chapter 10 Fortran input/output

119

<unf>, <recl>, <next>, <blank> and <funit> to be assigned values only if the specified
unit exists and is connected to a file.

The variables or array elements represented by <ios>, <number>, <recl>, <next> may
be of type INTEGER*4, INTEGER*2 or INTEGER*1. Similarly, the variables or
array elements represented by <exist>, <opened> and <named> may be of type
LOGICAL*4, LOGICAL*2 or LOGICAL*1.

A full description of the list of specifiers follows below:

IOSTAT=<ios>
<ios> is an input/output status specifier (see page 103).

ERR=<errlab>
<errlab> is the label of a statement to which control is to be transferred in the
event of an error (see page 103).

EXIST=<exist>
<exist> is a logical variable or logical array element.

Execution of an INQUIRE by file statement causes <exist> to be assigned the
value .TRUE. if there exists a file with the specified name; if not, <exist> is
assigned the value .FALSE.

Execution of an INQUIRE by unit statement causes <exist> to be assigned the
value .TRUE. if the specified unit exists; if not, <exist> is assigned the value
.FALSE.

OPENED=<opened>
<opened> is a logical variable or logical array element.

Execution of an INQUIRE by file statement causes <opened> to be assigned the
value .TRUE. if the file specified is connected to a unit; if not, <opened> is
assigned the value .FALSE.

Execution of an INQUIRE by unit statement causes <opened> to be assigned the
value .TRUE. if the specified unit is connected to a file; if not, <opened> is
assigned the value .FALSE.

NUMBER=<number>
<number> is an integer variable or integer array element that is assigned the value
of the external unit identifier of the unit that is currently connected to the file. If
there is no unit connected to the file, <number> becomes undefined.

NAMED=<named>
<named> is a logical variable or logical array element that is assigned the value
.TRUE. if the file has a name and .FALSE. otherwise.

NAME=<pname>
<pname> is either a character variable or character array element that is assigned
the value of the (path)name of the file, if the file has a name; if not, it becomes

FTN77 User’s Guide

120

undefined. If this specifier appears in an INQUIRE by file statement, its value
need not be the same as the name given in the FILE= specifier.

ACCESS=<access>
<access> is a character variable or character array element that is assigned the
value ’SEQUENTIAL’, ’ DIRECT’ or ’TRANSPARENT’ depending on the
current mode of access. If there is no connection, <access> becomes undefined.

SEQUENTIAL=<seq>
<seq> is a character variable or character array element that is assigned the value
’YES’ if SEQUENTIAL is included in the set of allowed access methods for the
file, ’NO’ if SEQUENTIAL is not included in the set of allowed access methods
for the file, and ’UNKNOWN’ if the processor is unable to determine whether or
not SEQUENTIAL is included in the set of allowed access methods for the file.

DIRECT=<dir>
<dir> is a character variable or character array element that is assigned the value
’YES’ if DIRECT is included in the set of allowed access methods for the file,
’NO’ if DIRECT is not included in the set of allowed access methods for the file,
and ’UNKNOWN’ if the processor is unable to determine whether or not DIRECT
is included in the set of allowed access methods for the file.

FORM=<form>
<form> is a character variable or character array element that is assigned the value
’FORMATTED’ if the file is connected for formatted input/output, and is assigned
the value ’UNFORMATTED’ if the file is connected for unformatted input/output.
If there is no connection, <form> becomes undefined.

FORMATTED=<fmtd>
<fmtd> is a character variable or character array element that is assigned the value
’YES’ if FORMATTED is included in the set of allowed forms for the file, ’NO’
if FORMATTED is not included in the set of allowed forms for the file, and
’UNKNOWN’ if the processor is unable to determine whether or not
FORMATTED is included in the set of allowed forms for the file.

UNFORMATTED=<unf>
<unf> is a character variable or character array element that is assigned the value
’YES’ if UNFORMATTED is included in the set of allowed forms for the file,
’NO’ if UNFORMATTED is not included in the set of allowed forms for the file,
and ’UNKNOWN’ if the processor is unable to determine whether or not
UNFORMATTED is included in the set of allowed forms for the file.

RECL=<recl>
<recl> is an integer variable or integer array element that is assigned the value of
the record length of the file connected for direct access. The length is measured in
bytes. If there is no connection or if the connection is not for direct access, <recl>
becomes undefined.

Chapter 10 Fortran input/output

121

NEXTREC=<next>
<next> is an integer variable or integer array element that is assigned the value
n+1, where n is the record number of the last record read or written on the file
connected for direct access. If the file is connected but no records have been read
or written since the connection, <next> is assigned the value 1. If the file is not
connected for direct access or if the position of the file is indeterminate because of
a previous error condition, <next> becomes undefined.

BLANK=<blank>
<blank> is a character variable or character array element that is assigned the
value ’NULL’ if null blank control is in effect for the file connected for formatted
input/output, and is assigned the value ’ZERO’ if zero blank control is in effect for
the file connected for formatted input/output. If there is no connection, or if the
connection is not for formatted input/output, <blank> becomes undefined.

FUINT=<filehandle>
<filehandle> is an integer variable that is assigned to the internal file handle of an
already opened file (for DBOS and Win16 ClearWin+ applications this is also the
system file handle). This value can be used in calls to the Salford library routines
READF@, WRITEF@, WRITEFA@, FPOS@ and RFPOS@ but should not
be used with CLOSEF@.

Examples:

� INQUIRE by file. In order to find out if a file called HISFILE exists:

270A02C4A� B4@�5<C

;>6820; 4G�>?=3

� � �

8=@D8A4 �58;4,´78B58;4´�=D<14A,=�4G8BC,4G�

� >?4=43,>?=3�B4@D4=C80;,B4@�5>A<0CC43,5<C�

2 T]bdaT cWT UX[T TgXbcb P]S WPb]^c QTT] ^_T]TS

85 �4G�0=3��=>C�>?=3� C74=

2 XU Xc S^Tb� P]S Xc WPb]^c QTT] ^_T]TS�

2 P]S Xcb _a^_TacXTb PaT bdXcPQ[T� ^_T] Xc

2 U^a U^a\PccTS� bT`dT]cXP[PRRTbb �dbX]V STUPd[cb�

85 �B4@�4@�´H´�0=3�5<C�4@�´H´� C74=

>?4= �D=8C,#�58;4,´78B58;4´�

4=385

4=385

� � �

� INQUIRE by unit. To find the name of a file connected to a unit:

270A02C4A�!� 5=0<4

;>6820; >?=3�=0<43

� � �

FTN77 User’s Guide

122

= , #

� � �

8=@D8A4 �D=8C,=�=0<4,5=0<4�=0<43,=0<43�>?4=43,>?=3�

85 �>?=3� C74=

85 �=0<43� C74=

?A8=C ��5=0<4�´ R^]]TRcTS c^ d]Xc ´�=

4;B4

?A8=C ��´d]]P\TS UX[T R^]]TRcTS c^ d]Xc ´�=

4=385

4;B4

?A8=C ��´D=8C ´�=�´]^c R^]]TRcTS´

4=385

� � �

Data transfer statements
This section gives the formal definitions of the data transfer statements READ,
WRITE and PRINT. Their use is explained more fully on pages 128 to 130. The
statements have the following general form, where items in square brackets are
optional :

READ (<cilist>) [<iolist>]
READ <fmt> [, <iolist>]
WRITE (<cilist>) [<iolist>]
PRINT <fmt> [, <iolist>]

where

<iolist> is an input/output list (not described further).

<fmt> is a format identifier (see FMT=<fmt> in the description of <cilist> below).

<cilist> is a control information list chosen from the following:

UNIT=<unit>
FMT=<fmt>
NML=<nlist>
IOSTAT=<ios>
ERR=<errlab>
END=<endlab> (only allowed with READ)
REC=<recno>

A control information list must contain a UNIT specifier. The remaining specifiers
are optional.

Chapter 10 Fortran input/output

123

UNIT=<unit>
<unit> is one of the following:

� An integer constant, variable or expression with a value that is an external unit
identifier (see page 103).

� A character variable, array name or array element name, or a substring that is
an internal file identifier (see page 103).

� An asterisk, denoting an external unit provided by the system. The FTN77
implementation uses 1 or 5 for input and 2 or 6 for output.

If the optional characters UNIT= are omitted, the specifier must be the first one in
<cilist>.

FMT=<fmt>
<fmt> is format identifier and must be one of the following:

� The statement label of a FORMAT statement that appears in the same program
unit as the format identifier.

� An integer variable name that has been ASSIGNed the statement label of a
FORMAT statement that appears in the same program unit as the format
identifier.

� An asterisk, specifying list-directed formatting. The default edit descriptors for
list-directed output for the different variable types are as follows:

Integer Logical Real Double Precision

I12 L3 1PG16.6 1PD27.12

Note that complex and double complex variables are equivalent to a pair of
variables of type real or double precision respectively and are output, separated by
a comma, and enclosed in parentheses.

� A variable, array name, constant or expression of type character.

� A non-character array name (only if the compile-time option /ANSI is not in
use).

In cases where the format specification is decoded at run-time, inner format
specifications may not be nested beyond a depth of 10. In other cases, FTN77
imposes a nesting limit of 20.

If the optional characters FMT= are omitted from this specifier, the format
identifier must be the second item in <cilist> and the first item must be the unit
specifier without the optional characters UNIT=. In other words, the statement:

FA8C4 �"� ��� G

is valid Fortran 77.

FTN77 User’s Guide

124

NML=<nlist>
Namelist-directed I/O is a common Fortran 77 extension which is implemented in
FTN77. It provides a powerful mechanism for input and output of variables,
associating values directly with variable names. Namelist-directed I/O can be
performed for any file connected for formatted sequential access. Formatted, list-
directed, and namelist-directed I/O can be freely mixed for a file connected for
formatted sequential access, although the syntax of the input record must always be
suitable for the intended operation.

The first element in using namelist-directed I/O is to define a namelist. This is
done by a statement syntactically similar to a COMMON statement, associating a
group of variables with a particular namelist name:

NAMELIST / <namelist-name> / <variable-list>

for example:

=0<4;8BC � 38<4=B8>=B � 74867C� F83C7� 34?C7

A particular variable may belong to more than one namelist within a program unit.
The namelist name is local to the program unit in which the NAMELIST
statement appears. The name used for the namelist must not be used for any other
object in the program unit in question.

A NAMELIST statement specifying a namelist which has already appeared in an
earlier namelist statement specifies that the variables specified therein are to be
appended to the namelist in question. In this respect the behaviour of the namelist
statement is analogous to that of the COMMON statement, where subsequent
COMMON statements for the same common block append the specified variables
to the common block.

Namelist-directed input is accomplished by specifing the namelist name as part of
the control list for the read statement. No I/O list is either required or permitted.
Thus, a namelist-directed READ for the example above could be:

A403�&�=<;,38<4=B8>=B�

or

A403�&�38<4=B8>=B�4=3,((�

Note in the second case that the namelist name can be used in the position that a
format specifier would be used for a formatted I/O transfer. The “END=” and
“IOSTAT=” specifiers can be used as normal.

The rules for the form of the input record are as follows:

� The record must begin with the namelist name preceded by an ampersand
(“&”)

Chapter 10 Fortran input/output

125

� Input is then taken in the form “<variable> = <value>” for variables specified
as members of the namelist in question in the corresponding NAMELIST
statement.

� The record is terminated by a slash character (“/”).

� Variables do not have to appear in the same order within the input record as
they appear in the NAMELIST statement.

� Every variable in the NAMELIST statement does not have to appear in the
input record. Variables which do not appear in the input record are left with
their values unmodified.

� Variables can appear more than once in the input record. Value assignments
take place in the order they appear in the input record, so that assignments
appearing later in the record take precedence.

� Values for character variables must by delimited by apostrophes, as for list-
directed I/O.

� The form of the input record is quite flexible, with spaces allowed where they
do not break up the namelist name, variable names etc. The record itself can
be split across several lines, so the term “record” here is used somewhat
differently from the case for standard formatted sequential I/O.

Thus, a suitable input record for the READ statement above could be:

�38<4=B8>=B

34?C7 , !�#

74867C , %�$

�

Note that WIDTH does not appear in the above, and would be left unmodified.

When a namelist-directed READ statement is executed, the input file is scanned
for a suitable input record, and all input is discarded until one is found. Thus, if
you mis-spell the namelist name in the input record, the likely symptom of this
will be that the namelist-directed READ will encounter end-of-file as it reads past
the intended record.

Arrays can be read either by specifing a particular element, or by supplying values
for all the elements in the array. Assigment to arrays is performed in row-major
order. Multiple values can be specified by means of a repeat count, for example
“10*3”, and values can be skipped over by specifying a “null” value in that
particular position in the list of values. A repeat count can also be applied to a null
value.

For example, consider:

8=C464A 80AA� ��

=0<4;8BC � 4G0<?;4 � 80AA

FTN77 User’s Guide

126

30C0 80AA � ��� �

� � �

A403 �'� 4G0<?;4�

with the input record:

�4G0<?;4

80AA , � !� � #� "�$� !�� �

80AA�&� , &

�

This would result in the array IARR taking the values:

 � !� �� #� $� $� &� �� �� �

Note that the initial assignment to IARR(7) is overridden by a later assignment
specifically to that element.

The usual substring notation can be applied to character variables in the input
record. For example:

�4G0<?;4!

27�!)"� , ´GG´

�

Where CH is a member of the namelist EXAMPLE2.

For namelist-directed output, a record is output in a syntax similar to that
described above, with the values of all variables in the namelist output in the order
the variables appear in the namelist declaration. For example, for the namelist
DIMENSIONS given above, the namelist-directed output statement:

FA8C4 �(�38<4=B8>=B�

might produce the output record:

�38<4=B8>=B

74867C , !�"���

F83C7 , %�!���

34?C7 , "�"���

�

IOSTAT=<ios>
<ios> is either an integer variable or array element used as an input/output status
specifier (see page 103).

ERR=<errlab>
<errlab> is the label of a statement to which control is to be transferred in the
event of an input/output error (see page 103).

Chapter 10 Fortran input/output

127

END=<endlab>
(Only allowed with the READ statement.)

<endlab> is the label of a statement to which control is to be transferred in the
event of an end-of-file condition (see page 103). <endlab> can, of course, be the
same as <errlab>.

REC=<recno>
 <recno> is an integer variable, constant or expression which specifies the number
of a record that is to be read or written in a file connected for direct access.

If <cilist> contains a format specifier (FMT=), the statement is a formatted input
output statement; if not, it is an unformatted input/output statement.

If <cilist> contains a record specifier (REC=), the statement is a direct access
input/output statement; if not, it is a sequential input/output statement.

It is important to note that the first WRITE statement for a file opened for sequential
access will remove any previous contents unless STATUS= ’APPEND’ was used
when the file was opened.

Clearly, there are four combinations of file access that are specified by the standard:

1) FORMATTED, SEQUENTIAL
This is available for all disc files and sequentially accessed peripherals. It is the
method of access used for example to read a text file and to print lines of text.

It is the only file access method allowed by the PRINT statement and the simple
form of the READ statement (i.e. READ*,). Files are written without the DOS
end of file marker (Ctrl-Z). Files containing Ctrl-Z will be read correctly but the
marker will be ignored. On reading, tabs are replaced by spaces.

2) UNFORMATTED, SEQUENTIAL
This is the traditional means of intermediate output for large programs.

3) FORMATTED, DIRECT
It is possible to use direct access to read a file of text that could have been created,
for example, by typing at the keyboard using an editor.

Files are written without the DOS end of file marker (Ctrl-Z) and will cause an
error on reading if they contain this marker.

Files created other than by an FTN77 program must, however, be converted to
fixed length uncompressed records by means of the MAKEDA77 command (see
page 130).

4) UNFORMATTED, DIRECT
These files are created (written) without any ‘red tape’ information and should,
therefore, be readable by non-FTN77 programs. FTN77 can read any file created
in this ‘raw’ form, provided that the file length is an exact multiple of the record
length.

FTN77 User’s Guide

128

The remainder of this section describes the various forms of the data transfer
statements in more detail, together with examples where appropriate.

Formatted, sequential access
A file must be connected to a unit and/or OPENed before an input/output statement
can refer to that unit.

When the OPEN statement is used, the ACCESS and FORM specifiers must either
be omitted (defaults used) or specified as:

0224BB,´B4@D4=C80;´

5>A<,´5>A<0CC43´

Examples:

1) The following statements:

>?4=�#�58;4,´5A43´�BC0CDB,´=4F´�

� � �

FA8C4�#�´�5 !�"�´� G

would write the value of X to file FRED opened on unit 4.

2) The statements:

>?4=�&�58;4,´>;358;4´�

� � �

A403�&� ��� 0�1�2

 �� 5>A<0C�" 5 ��!�

would read three values from an existing file opened on unit 7.

3) The program fragment:

= , &

0BB86= � C> 85>A<

 � 5>A<0C �" 8"�

� � �

A403�=�85>A<� 8�9�:

would read three values from unit 7 using the FORMAT statement labelled 10.

4) The statement:

?A8=C �� G�H�I

would use list-directed formatting to output three real values to unit 2 (the external
unit used by PRINT). The statement:

FA8C4 ����� G�H�I

Chapter 10 Fortran input/output

129

would have the identical effect. The first asterisk is the unit number provided by
the system for formatted output (unit 2) and the second asterisk implies list-
directed formatting.

The statements:

270A02C4A�!� G

� � �

H , #�"! # &

FA8C4�G�´�5!��%�´� H

would use X as an internal file. The value of Y would be converted to character
form in X which could then be used, for example, in a character assignment.

Unformatted, sequential access
Files are made available to the program by the OPEN statement.

The OPEN statement should specify ACCESS= ’SEQUENTIAL’ (or use this default)
and FORM=’UNFORMATTED’.

Example:

Unformatted output to file may be achieved as follows:

38<4=B8>= 0�"��

>?4= �"�58;4,´D=58;4´�BC0CDB,´=4F´�5>A<,´D=5>A<0CC43´�

� � �

FA8C4 �"� 0

As a result, array A would be written to the disc file UNFILE.

Formatted, direct access
Files created in this way may be listed in the ordinary way. A file required for direct
access can be OPENed.

If the OPEN statement is used, ACCESS=’DIRECT’ and FORM=’FORMATTED’
must be specified. For example:

8=C464A ?0AC=>

270A02C4A�'� A42>A3�0=B�

>?4=� �58;4CH?4,´CCH´�

2 ^_T] UX[T ^U RPaS X\PVTb)

>?4=�D=8C,"�58;4,´BC>2:;8BC´�0224BB,´38A42C´�

� 5>A<,´5>A<0CC43´�A42;,'��

2 aTPS _Pac]d\QTa)

 A403 � �´�8"�´� ?0AC=>

85 �?0AC=>�;4��� BC>?

2 aTPS STcPX[b Ua^\ bc^RZ[Xbc P]S _aX]c)

FTN77 User’s Guide

130

A403�"�´�0�´�A42,?0AC=>�4AA,"� A42>A3

FA8C4�!�´�´´?0AC´´�8"� G�0�´� ?0AC=>�A42>A3

?A8=C ��´d_SPcT aT`dXaTS. P]bfTa H ^a =´

! A403� �´�0�´� 0=B

85 �0=B�4@�´H´� C74=

?A8=C ��´ch_T d_SPcTS aTR^aS´

A403� �´�0�´� A42>A3

2 faXcT d_SPcTS aTR^aS c^ SXaTRc PRRTbb UX[T)

FA8C4�"�´�0�´�A42,?0AC=>� A42>A3

4;B485�0=B�4@�´=´� C74=

BC>?

4;B4

?A8=C ��´P]bfTa H ^a =´

6>C> !

4=385

6>C>

" FA8C4 �!�´�´´ 8=E0;83 ?0AC =D<14A ´´�8"�´� ?0AC=>

6>C>

4=3

This simple program would read a part number from the keyboard (unit 1) and use it
to access a record of a direct access file opened on unit 3. This record would then be
printed and the user would be asked whether the record was to be updated. If the
answer were yes, the updated record would be typed and it would be written to the
direct access file. This file could be listed after the program run was complete.

Note that the MAKEDA77 command should be used if a user wishes to change a
formatted file accessed sequentially into one capable of being used for direct access.
The following sequence indicates the interactive nature of the command (user
responses are printed in italic type):

<0:430&&

4]cTa STbXaTS aTR^aS [T]VcW) +]-

4]cTa bT`dT]cXP[b^daRT _PcW]P\T) +X]_dc _PcW]P\T-

4]cTa SXaTRc PRRTbb ^dc_dc _PcW]P\T)+^dc_dc _PcW]P\T-

The record length in characters, <n> , must be a positive integer less than 2001. The
input and output pathnames are truncated to the first 100 characters (filenames may,
of course, be specified instead of pathnames).

Unformatted, direct access
An unformatted direct access file can be made available to a program by the OPEN
statement.

If the OPEN statement is used, the statement ACCESS=’DIRECT’ must be specified
(note that FORM=’UNFORMATTED’ is the default for direct file access).

Chapter 10 Fortran input/output

131

Example:

38<4=B8>= 0�%��

>?4=�D=8C,&�58;4,´8=?DC´�BC0CDB,´>;3´�

� 5>A<,´D=5>A<0CC43´�

>?4=�D=8C,'�58;4,´>DC?DC´�BC0CDB,´<>385H´�

� 0224BB,´38A42C´�A42;, !'�

= ,

 A403 �&�4=3,"�0

FA8C4�'�A42,=�4AA,!�0

= , = �

6>C>

! ?A8=C ��´Taa^a faXcX]V UX[T´

" 4=3

The above program would read records from a sequentially written file in order to
create a direct access file.

File positioning statements
The forms of the file positioning statements are:

BACKSPACE <unit>
BACKSPACE (<list>)
ENDFILE <unit>
ENDFILE (<list>)
REWIND < unit>
REWIND (<list>)

where <unit> is an external unit identifier (see page 103). <list> is a list of specifiers
as follows:

UNIT=<unit>
IOSTAT=<ios>
ERR=<errlab>

where <unit>, <ios> and <errlab> are as described previously. Note that a UNIT=
specifier must be present.

A BACKSPACE, ENDFILE or REWIND statement may refer to any disc file open
for sequential access. These statements may also refer to sequential input/output read
from the keyboard or written to the screen.

FTN77 User’s Guide

132

BACKSPACE statement
Execution of a BACKSPACE statement causes the disc file connected to the specified
unit to be positioned before the preceding record. If there is no preceding record, the
position of the file is unchanged. If the preceding record is an endfile record, the file
becomes positioned before the endfile record.

Backspacing over records written using list-directed formatting is prohibited.

ENDFILE statement
Execution of an ENDFILE statement writes an endfile record as the next record of an
disc file.

The file is then positioned after the endfile record. After execution of an ENDFILE
statement, either a BACKSPACE or REWIND statement, as appropriate, must be
used to reposition the file prior to execution of any data transfer input/output
statement.

An endfile record for a file is in fact a ‘dummy’ record which enables the Fortran 77
input/output system to detect that a file is positioned at end-of-file so that a run-time
error can be produced if an attempt is made to write to that file before it has been
backspaced or rewound. Nothing is actually written to the file as a result of an
ENDFILE statement (except that file truncation may occur if the file is currently posi-
tioned somewhere other than at the end) and thus the statement is only of use when
writing portable Fortran programs which might run on a system where endfile records
are physically read and written.

REWIND statement
Execution of a REWIND statement causes the specified disc file pointer to be
positioned at its initial point. If STATUS=’APPEND’ is used in the OPEN
statement which connected the file, the initial point is not the point at which data had
been added should the file not originally have been empty.

If a file is already positioned at its initial point, the REWIND statement has no effect.

Extensions to the standard
This section summarises the FTN77 input/output extensions. They are all available
by default but some extensions may cause a compile-time warning. Use of the /ANSI
compile-time option will cause all the extensions described here to cause either a
compile-time or a run-time error.

Chapter 10 Fortran input/output

133

Extensions to the OPEN Statement
The OPEN statement has three extra options to the STATUS= specifier,
’APPEND’, ’ MODIFY’ and ’READONLY’, together with the extra specifiers
FILETYPE= and DRIVER=.

The DRIVER= keyword is provided for use with the OPEN statement in order to
allow the specification of user-supplied device driver routines for both formatted and
unformatted input/output.

The RECL= specifier may be specified for files to be accessed sequentially. This
allows unrestricted use of the BACKSPACE statement in conjunction with WRITE.

These extensions are fully described on page 106.

Extensions to the CLOSE Statement
The CLOSE statement has an extra specifier, RENAME=. This extension is fully
described on page 116.

Input/output of binary, octal and hex. values
FTN77 provides the extra edit descriptors Ow.m, Zw.m and Bw.m to facilitate the use
of octal, hexadecimal and binary values for input and output. These descriptors are
described on page 183.

The handling of list-directed input has been extended to support octal, hexadecimal
and binary values.

The following list indicates the various number formats for decimal -1 :

Octal Hexadecimal Binary

O’17777’ Z’FFFF’ B’1111111111111111’

In addition, character data may be read into non-character variables either in list-
directed or non list-directed input mode.

Business Editing
Business editing is intended for accounting programs in which the following features
are desirable:

� Filling of number fields, thus preventing subsequent modification, for example
when printing cheques.

� Suppression of leading zeros and plus signs.

� Printing of trailing minus signs (accounting convention).

� Conversion of trailing minus signs to CR to indicate credit entries.

FTN77 User’s Guide

134

Business editing is controlled by the B edit descriptor which has the form:

B’<string>’

where <string> can contain the following characters:

+ - $, * Z # . CR

The field width is indicated by the number of characters in <string>. If the field width
is too small for the number in question, then the output field will be filled with
asterisks.

The characters have the following significance:

PLUS (+)
’FIXED SIGN’: if the first character of <string> is a single plus (+), then the
actual sign of the number (+ or -) is printed as the first character on the left in the
output field.

’FLOATING SIGN’: if there are multiple plus (+) signs at the beginning of
<string>, then these will be replaced in the output field by printing characters and
the actual sign of the number (+ or -) will be printed on the extreme left in the
output field.

’TRAILING SIGN’: this is the plus (+) sign on the extreme right of <string>. The
actual sign (+ or -) of the number will be printed in that output field position.

MINUS (-)
This works in the same way as the PLUS sign. However, for a positive number a
blank is printed instead of ‘+’. This is PLUS sign suppression.

DOLLAR SIGN ($)
A DOLLAR SIGN sign may not be preceded by anything except a fixed sign.
’FIXED DOLLAR’ is a single dollar sign which will be printed in the
corresponding position in the output number.

’FLOATING DOLLAR’: these are multiple dollar signs which are replaced by
printing digits in the output number. A single dollar sign will be printed as the
first character on the left.

ASTERISK (*)
If the output number has a digit where there is an asterisk, this digit will be
printed. Otherwise, an asterisk (*) will be printed - this is field filling. An
asterisk may be preceded only by a fixed sign and/or a fixed dollar.

ZED (Z)
This indicates leading zero suppression. In other words, if the digit in the output
number is a leading zero, it will not be printed and a blank space will appear
instead.

Chapter 10 Fortran input/output

135

NUMBER SIGN (#)
Digit positions indicated by #’s are not subject to leading zero suppression.

COMMA (,)
If a comma occurs in the asterisk field, then a “*” will be printed. If a comma is
preceded by a significant character (which is not a sign or a dollar sign) then a “,”
will be printed in the output field. Otherwise, a blank space will be printed.
Commas must follow any leading characters and preceed decimal points.

CREDIT (CR)
The characters CR may only appear as the last two characters of <string>. In the
output “CR” will be printed following the number if it is negative, otherwise, two
blanks will be printed.

DECIMAL POINT (.)
decimal point in the output number. The only characters allowed to follow the
decimal point are #, CR or trailing signs.

The examples in Table 10-4 illustrate the use of the B edit descriptor.

FTN77 User’s Guide

136

Number B-Format Output

 #& 1´����´ � #&

 #&'(1´����´ ����

� 1´����´ ����

 #& 1´IIII´ #&

 #&' 1´IIII´ #&'

� 1´IIII´

� 1´III�´ �

%��'(1´����´ %��(

� 1´����´ ����

('&%�"# 1´III�III�II����´ (�'&%�"#

('&%$#�"# 1´III�III�II����´ ('&�%$#�"#

� 1´III�III�II����´ ����

' 1´����´ ���'

�' 1´����´ ���'

' 1´�II�´ '

�' 1´�II�´ � '

 !% 1´IIIII�´ !%�

� !% 1´IIIII�´ !%�

 !% 1´IIIII�´ !%

� !% 1´IIIII�´ !%�

#$%&' 1´III�II�2A´ #$�%&'

�#$%&' 1´III�II�2A´ #$�%&'2A

"�' 1´����������´ �"�'���

�"�' 1´����������´ �"�'���

((1´�IIIIII�´ � ((

((1´��������´ �((

"�' !% 1´���������������´ �����"�'� !%���

Table 10-4 Business editing examples

Chapter 10 Fortran input/output

137

Miscellaneous Input/Output Extensions
� A “$” or “\” edit descriptor is provided to facilitate the output of requests to the

screen for information, without generating a new line. The descriptor must
terminate the format specification. The comma preceeding “\” is optional (like it
is with the “/” descriptor). For example:

FA8C4��� �:

 5>A<0C�´>[S :,´�8$�´4]cTa]Tf eP[dT´���

� � �

� The use of list-directed input and output with internal files is permitted.

� The use of non-character arrays containing formats is permitted. It is not
recommended that this facility be used in new programs.

� The specification of those edit descriptors which involve integer constants has been
extended to permit the replacement of any integer by an expression (in diamond
brackets) involving integer constants and any PARAMETER names.

For example:

?0A0<4C4A �8A,"�8F,(�83,#�

� � �

FA8C4��� ��0�1�2

 � 5>A<0C�+8A-5+8F-�+83-�

� � �

FTN77 User’s Guide

138

139

11.

Intrinsic functions

Introduction
The ANSI Standard defines a wide variety of functions that operate on data of type
INTEGER, REAL, DOUBLE PRECISION, COMPLEX and CHARACTER.
FTN77 provides all the intrinsic functions defined in the ANSI Standard together
with functions that provide bit-by-bit logical operations, shifts, determination of the
storage address of a data item, accessing of integer data directly using its storage
address, and operations on the COMPLEX*16 data type.

Non-ANSI intrinsic functions
All the intrinsic functions provided by FTN77 can be used without declaration and
can be referenced at any point in any program unit, provided that the intrinsic
function name has not been used for some other purpose in that program unit. It is,
however, recommended that the name of each intrinsic function used in a program
unit should appear in an INTRINSIC statement for two reasons:

1) so that the programmer has a complete record of all intrinsic functions used in a
program unit,

2) so that a diagnostic should be output if the program is transferred to another
computer system whose Fortran compiler does not provide the name of any
FTN77-specific intrinsic function that has been used.

It is also recommended that the EXTERNAL statement is used for all functions that
are not intrinsic, for similar reasons.

Two further points should be noted regarding the FTN77-specific intrinsic functions:

FTN77 User’s Guide

140

1) If the /ANSI compile-time option is used, FTN77 outputs a warning message if
the name of an FTN77 intrinsic function appears in an INTRINSIC statement.

2) Other Fortran 77 compilers may provide non-ANSI intrinsic functions whose
names are the same as those provided by FTN77 but whose argument types and
results may be defined differently.

Generic and specific names
Many intrinsic functions can be referenced in two ways:

1) by using a specific name whose associated function definition requires a specific
type of argument and which will return a result of a specific type,

2) by using a generic name with a particular type of argument. FTN77 then
determines, from the argument type, which equivalent specific function is
required. This is possible because the arguments used with any reference to an
intrinsic function must be of the same general type, that is, all integer
(INTEGER*1, INTEGER*2 or INTEGER*4) or all real etc..

The following pairs of function references have the same effect:

8<0G , <0G��8�9�:�

8<0G , <0G�8�9�:�

Here MAX0 is a specific name whilst MAX is a generic name. In order to assist users
who wish to remove obsolete specific function names, FTN77 outputs comments such
as

<0G� R^d[S QT aT_[PRTS Qh Xcb VT]TaXR T`dXeP[T]c

�<0G� cWa^dVW^dc cWXb _a^VaP\ d]Xc

If this comment appeared at the end of a program unit, the programmer could safely
use the editor to replace the name MAX0 by the name MAX throughout that program
unit.

Intrinsic function names as actual arguments
In order to use an intrinsic function name as an argument, it must appear in an
INTRINSIC statement in the calling program unit. Only specific function names can

Chapter 11 Intrinsic functions

141

be used in this way. If the generic and specific function names are the same, the
specific function is passed as an actual argument. For example

8=CA8=B82 ;>6 >� B8=� 0;>6 >

A40; ;>6 >

2 eP[XS dbT ^U X]caX]bXR]P\T �B8= Xb b_TRXUXR�)

20;; 5A43�B8=�

2 X]eP[XS dbT ^U X]caX]bXR]P\T �;>6 > Xb VT]TaXR�)

20;; 5A43�;>6 >�

2 eP[XS dbT ^U X]caX]bXR]P\T �0;>6 � Xb b_TRXUXR�)

20;; 5A43�0;>6 ��

The following ANSI-specific intrinsic function names must not be used as an actual
argument:

INT IFIX IDINT FLOAT SNGL REAL CMPLX

LGE LGT LLE LLT MAX0 AMAX1 DMAX1

AMAX0 MAX1 MIN0 AMIN1 DMIN1 AMIN0 MIN1

In addition, the following FTN77-specific intrinsic function names must not be used
as an actual argument:

DFLOAT LENG LEQ LNE AND OR XOR

NOT INTB INTS INTL CCORE1 CORE1 CORE2

CORE4 FCORE4 DCORE8 LGCB LGCS LGCL RS

LS RR LR RT LT SHFT LOC

BITS DREAL DCMPLX DIMAG

Integer arguments and function results
The ANSI Standard does not define INTEGER*1, INTEGER*2 and INTEGER*4
data (only type INTEGER) and thus no ANSI intrinsic function definition refers to
either of these non-standard data types.

All INTEGER data should be INTEGER*4 data for full ANSI-conformity, and
programs should be written using the Fortran keyword INTEGER (not INTEGER*4)
and compiled with the /INTL option (this is the default under Win32). However, for
reasons of efficiency, storage, history and so on, many programs will contain
INTEGER*1, INTEGER*2 data and possibly INTEGER*4 data as well. All the
FTN77 intrinsic functions that require integer arguments will accept any combination
of INTEGER*1, INTEGER*2 and INTEGER*4 arguments.

FTN77 User’s Guide

142

The length of the result of an integer intrinsic function is determined as follows:

� For functions that have non-integer arguments (for example, REAL) the result is
INTEGER*2 when the compile-time option /INTS (the default under
DOS/Win16) is used and INTEGER*4 when the compile-time option /INTL is
used.

� For functions that have integer arguments (for example, MAX0) the result type is
INTEGER*2 unless one or more of the arguments is INTEGER*4 in which case
the result type is INTEGER*4.

Full details are given for each function in the table and notes on pages 143 and 148.

Logical arguments and function results
The ANSI Standard does not define LOGICAL*1, LOGICAL*2 and LOGICAL*4
data (only type LOGICAL) and thus no ANSI intrinsic function definition refers to
either of these non-standard data types.

All LOGICAL data should be LOGICAL*4 data for full ANSI-conformity, and
programs should be written using the Fortran keyword LOGICAL (not LOGICAL*4)
and compiled with the /LOGL option (the default under Win32). However, many
programs will contain LOGICAL*1 and LOGICAL*2 data possibly mixed with
LOGICAL*4 data.

The length of result of a logical function is determined as follows:

� The result is LOGICAL*2 when the compile-time option /LOGS (the defualt
under DOS/Win16) is used and LOGICAL*4 when the compile-time option
/LOGL is used.

Full details are given for each function in the table and notes on pages 143 and 148.

Intrinsic function descriptions
The table which follows, used in conjunction with its accompanying notes, give a full
description of each intrinsic function provided by FTN77. An FTN77-specific
function is indicated by an asterisk following its name in the table.

Chapter 11 Intrinsic functions

143

Definition
and notes

Generic
name

Specific
name

Type of
arguments

Type of
function

No. of
arguments

Conversion
from numeric
to integer
(1,32,34,35,38)

INT -
INT
IFIX

IDINT
-
-

Numeric
Integer
Real

Double
Complex

Complex*16

Integer
Integer
Integer
Integer
Integer
Integer

1

Conversion
from numeric
to byte
integer
(2,34,36,38)

INTB* - Numeric Integer*1 1

Conversion
from numeric
to short
integer
(2,34,36,38)

INTS* - Numeric Integer*2 1

Conversion
from
numeric to
long integer
(2,34,36,38)

INTL* - Numeric Integer*4 1

Conversion
from
numeric to
real
(3,34,35,38)

REAL -
FLOAT
SNGL

Numeric
Integer
Double

Real
Real
Real

1

Conversion
from
numeric to
double
(4,34,35,38)

DBLE -
DFLOAT*
DREAL*

Numeric
Integer

Complex*16

Double
Double
Double

1

Conversion
from
numeric to
complex
(5,34,35,38)

CMPLX - Numeric Complex 1 or 2

Conversion
from
numeric to
complex*16
(6,34,36,38)

DCMPLX* - Numeric Complex*16 1 or 2

FTN77 User’s Guide

144

Definition
and notes

Generic
name

Specific
name

Type of
arguments

Type of
function

No. of
arguments

Conversion
from logical
to logical*1
(36,43)

LGCB* - Logical Logical*1 1

Conversion
from logical
to logical*2
(36,43)

LGCS* - Logical Logical*2 1

Conversion
from logical
to logical*4
(36,43)

LGCL* - Logical Logical*4 1

Conversion
from character
to integer
(7,32,34)

ICHAR - Character Integer 1

Conversion
from
integer to
character
(7,34)

CHAR - Integer Character 1

Truncation
(39)

AINT AINT
DINT

Real
Double

Real
Double

1

Nearest
whole
number
(8)

ANINT ANINT
DNINT

Real
Double

Real
Double

1

Nearest
integer
(9,32)

NINT NINT
IDNINT

Real
Double

Integer
Integer

1

Absolute
value
(10,35,40)

ABS IABS
ABS

DABS
CABS

CDABS*

Integer
Real

Double
Complex

Complex*16

Integer
Real

Double
Real

Double

1

Modulus
(11,33)

MOD MOD
AMOD
DMOD

Integer
Real

Double

Integer
Real

Double

2

Transfer of
sign
(12,33)

SIGN ISIGN
SIGN

DSIGN

Integer
Real

Double

Integer
Real

Double

2

Chapter 11 Intrinsic functions

145

Definition
and notes

Generic
name

Specific
name

Type of
arguments

Type of
function

No. of
arguments

Positive
difference
(33,42)

DIM IDIM
DIM

DDIM

Integer
Real

Double

Integer
Real

Double

2

Double
precision
product

- DPROD Real Double 2

Choosing
largest value
(33,34)

MAX MAX0
AMAX1
DMAX1

Integer
Real

Double

Integer
Real

Double

≥2

(32,34)
- AMAX0

MAX1
Integer
Real

Real
integer

≥2

Choosing
smallest
value
(33,34)

MIN MIN0
AMIN1
DMIN1

Integer
Real

Double

Integer
Real

Double

≥2

(32,34)
- AMIN0

MIN1
Integer
Real

Real
Integer

≥2

Declared
length of
character
argument
(13,32)

- LEN Character Integer 1

Significant
length of
character
argument
(36,37)

- LENG* Character Integer 1

Location
of substring
(argument 2)
in string
(argument 1)
(14,32)

- INDEX Character Integer 2

Real part
of Complex
argument
(15,16,34,35)

- REAL
DREAL*

Complex
Complex*16

Real
Double

1

Imaginary
part of
Complex
argument
(16,34,35)

AIMAG AIMAG
DIMAG*

Complex
Complex*16

Real
Double

1

FTN77 User’s Guide

146

Definition
and notes

Generic
name

Specific
name

Type of
arguments

Type of
function

No. of
arguments

Conjugate of
Complex
argument
(16,35)

CONJG CONJG
DCONJG*

Complex
Complex*16

Complex
Complex*16

1

Square
root
(17,35)

SQRT SQRT
DSQRT
CSQRT

CDSQRT*

Real
Double

Complex
Complex*16

Real
Double

Complex
Complex*16

1

Exponential
(35)

EXP EXP
DEXP
CEXP

CDEXP*

Real
Double

Complex
Complex*16

Real
Double

Complex
Complex*16

1

Natural
logarithm
(18,35)

LOG ALOG
DLOG
CLOG

CDLOG*

Real
Double

Complex
Complex*16

Real
Double

Complex
Complex*16

1

Common
logarithm
(18)

LOG10 ALOG10
DLOG10

Real
Double

Real
Double

1

Logarithm
to base 2
(18,36,41)

LOG2* ALOG2*
DLOG2*

Real
Double

Real
Double

1
1

Sine
(19,21,35)

SIN SIN
DSIN
CSIN

CDSIN*

Real
Double

Complex
Complex*16

Real
Double

Complex
Complex*16

1

Cosine
(19,21,35)

COS COS
DCOS
CCOS

CDCOS*

Real
Double

Complex
Complex*16

Real
Double

Complex
Complex*16

1

Tangent
(19,21)

TAN TAN
DTAN

Real
Double

Real
Double

1

Arcsine
(20,22)

ASIN ASIN
DASIN

Real
Double

Real
Double

1

Arccosine
(20,23)

ACOS ACOS
DACOS

Real
Double

Real
Double

1

Arctangent
arctan(a1)
(20,24)

ATAN ATAN
DATAN

Real
Double

Real
Double

1

Arctan(a1/a2)
(20,24)

ATAN2 ATAN2
DATAN2

Real
Double

Real
Double

2

Chapter 11 Intrinsic functions

147

Definition
and notes

Generic
name

Specific
name

Type of
arguments

Type of
function

No. of
arguments

Hyperbolic
sine
(19)

SINH SINH
DSINH

Real
Double

Real
Double

1

Hyperbolic
cosine
(19)

COSH COSH
DCOSH

Real
Double

Real
Double

1

Hyperbolic
tangent
(19)

TANH TANH
DTANH

Real
Double

Real
Double

1

Lexically
greater than
or equal
(25,34)

- LGE Character Logical 2

Lexically
greater than
(25,34)

- LGT Character Logical 2

Lexically
less than
or equal
(25,34)

- LLE Character Logical 2

Lexically
less than
(25,34)

- LLT Character Logical 2

Lexically
equal
(25,34,36)

- LEQ* Character Logical 2

Lexically
not equal
(24,25,34,36)

- LNE* Character Logical 2

Extraction of
bit field
(34,36,44)

- BITS* Integer Integer 3

Bitwise AND
(26,34,36,46)

- AND*
IAND*

 Integer Integer ≥2

Bitwise OR
(26,34,36,46)

- OR*
IOR*

Integer Integer ≥2

Bitwise XOR
(26,34,36,46)

- XOR*
IEOR*

Integer Integer ≥2

Bitwise NOT
(27,34,36)

- NOT* Integer Integer 1

Left shift
(28,34,36)

- LS* Integer Integer 2

FTN77 User’s Guide

148

Definition
and notes

Generic
name

Specific
name

Type of
arguments

Type of
function

No. of
arguments

Right shift
(28,34,36)

- RS* Integer Integer 2

Left rotate
(28,34,36)

- LR* Integer Integer 2

Right rotate
(28,34,36)

- RR* Integer Integer 2

Shift
(29,34,36)

- SHFT* Integer Integer 2 or 3

Left truncate
(30,34,36)

- LT* Integer Integer 2

Right truncate
(30,34,36)

- RT* Integer Integer 2

Obtain
address
(31,36)

- LOC* Any Integer*4 1

Obtain
contents
of address
(34,36,45)

-

CCORE1*
CORE1*
CORE2*
CORE4*

FCORE4*
DCORE8*

Integer*4
Integer*4
Integer*4
Integer*4
Integer*4
Integer*4

Character*
Integer*1
Integer*2
Integer*4

Real
Double

1
1
1
1
1
1

Notes for the table of intrinsic functions
In the following notes the names of data types are given in lowercase; uppercase is
reserved for intrinsic function names.

1) The generic INT discards the fractional part of its argument, producing a truncated
(unrounded) integral value. The result will be INTEGER*2 in a program unit
compiled with /INTS, and INTEGER*4 in a program unit compiled with /INTL.

2) INTB, INTS and INTL are similar to INT, differing only in that the result-type is
determined by the function selected rather than the compiler option in effect.

3) For x of type real, REAL(x) is x. For x of type integer or double precision,
REAL(x) is as much precision of x as a real datum, can contain. For x of type
complex, REAL(x) is the real part of x.

4) For x of type double precision, DBLE(x) is x. For x of type integer or real,
DBLE(x) is the value of x in double precision form. For x of type complex,

Chapter 11 Intrinsic functions

149

DBLE(x) is the real part of x in double precision form.

5) CMPLX may have one or two arguments. If there is one argument, it may be of
type integer, real, double precision, or complex. If there are two arguments, they
must both be of the same type and may be of type integer, real, or double precision.

For x of type complex, CMPLX(x) is x. For x of type integer, real, or double
precision, CMPLX(x) is the complex value whose real part is REAL(x) and whose
imaginary part is zero. CMPLX(x1,x2) is the complex value whose real part is
REAL(x1) and whose imaginary part is REAL(x2).

6) DCMPLX is similar to CMPLX, except that a COMPLEX*16 number is
produced.

7) Every character is represented by FTN77 as a sequence of eight bits ranging from
00000000 - 11111111 (decimal 0 to 255). Any such sequence can be interpreted
either as a character or as an integer. CHAR and ICHAR provide a means for
converting between the two interpretations.

ICHAR operates on a single character. It returns an integer between 0 and 255,
representing the decimal equivalent of the bit pattern for that character.

CHAR operates on any integer. If the integer is between 0 and 255, it is used
directly. Otherwise, it is converted to the range 0 to 255 by truncating all but the
eight rightmost bits (the lowest order byte).

Following conversion, if required, CHAR returns the character whose bit pattern
corresponds to the binary equivalent of its argument.

The ASCII character set is used by FTN77 for formatted CHARACTER
input/output operations and for CHARACTER constants.

8) ANINT(x) is defined as:

REAL(INTL(x+.5)) if x ≥ 0
REAL(INTL(x-.5)) if x < 0

DNINT(x) is defined as:

DBLE(INTL(x+.5)) if x ≥ 0
DBLE(INTL(x-.5)) if x < 0

9) NINT(x) and IDNINT(x) are defined as:

INT(x + .5) if x ≥ 0
INT(x - .5) if x < 0

10)The argument to IABS may be INTEGER*1, INTEGER*2 or INTEGER*4. The
result will be of the same type as the argument.

FTN77 User’s Guide

150

11)MOD yields the remainder when its first argument is divided by its second
argument. Both arguments must be of the same type; the result will also be of that
type.

The three variants of MOD are defined as follows:

MOD(x1,x2) = x1 - (INTL(x1/x2) * x2)
MOD(x1,x2) = REAL(x1 - (INTL(x1/x2) * x2))
MOD(x1,x2) = DBLE(x1 - (INTL(x1/x2) * x2))

The result for MOD, AMOD, and DMOD is a “Division by Zero” error when the
value of the second argument is zero.

12)This function combines the magnitude of its first argument with the sign of the
second. If the value of the first argument is zero, the result is zero, which is
neither positive nor negative.

The variants of SIGN produce the following result:

|x1| if x2 ≥ 0 ; -|x1| if x2 < 0

where x1 and x2 are the two arguments.

13)The value of the argument of the function LEN need not be defined at the time the
function reference is executed.

14)INDEX(x1,x2) returns an integer value indicating the starting position within the
character string x1 of a substring identical to string x2. If x2 occurs more than
once in x1, the starting position of the first occurrence is returned.

If x2 does not occur in x1, the value zero is returned. Note that zero is returned if
LEN(x1) < LEN(x2).

15)The REAL function for real-part extraction is the same specific function that is
selected when the generic function REAL is given a COMPLEX*8 argument.

The DREAL function for real-part extraction is the same specific function that is
selected when the generic function DBLE is given a COMPLEX*16 argument.

REAL and DREAL for real-part extraction cannot be passed as arguments in
Fortran 77 because they are specific type-conversion functions. To provide
symmetry with AIMAG and DIMAG imaginary-part extraction, which can be
passed, FTN77 allows REAL and DREAL passed as arguments.

16)A complex value is expressed as an ordered pair of reals, (xr,xi), where xr is the
real part and xi is the imaginary part.

17)The value of the argument of SQRT and DSQRT must be greater than or equal to
zero. The result of CSQRT and CDSQRT is the principal value with the real
part greater than or equal to zero. When the real part of the result is zero, the
imaginary part is greater than or equal to zero.

Chapter 11 Intrinsic functions

151

18)The value of the argument of ALOG, DLOG, ALOG10, DLOG10 and DLOG2
must be greater than zero. The value of the argument of CLOG and CDLOG
must not be (0.,0.). The result of CLOG and CDLOG is the principal value, i.e.
the range of the imaginary part of the result is

- π < imaginary part ≤ π

The imaginary part of the result is π only when the real part of the argument is less
than zero and the imaginary part of the argument is zero.

19)All angles are expressed in radians.

20)The result will be expressed in radians.

21)The absolute value of the argument of SIN, DSIN, COS, DCOS, TAN, and
DTAN is not restricted to be less than 2π.

22)The absolute value of the argument of ASIN and DASIN must be less than or
equal to 1. The range of the result is:

- π 2 ≤ result ≤ π 2

23)The absolute value of the argument of ACOS and DACOS must be less than or
equal to 1. The range of the result is:

 0 ≤ result ≤ π

24)The range of the result for ATAN and DTAN is:

- π 2 ≤ result ≤ π 2

If the value of the first argument of ATAN2 or DTAN2, (the y coordinate in the
cartesian x,y pair) is positive, the result is positive. If the value of the first
argument is zero, the result is zero if the second argument is positive and π if the
second argument is negative. If the value of the first argument is negative, the
result is negative. If the value of the second argument is zero, the absolute value of

the result is π 2.

The arguments must not both have the value zero.

The range of the result for ATAN2 and DATAN2 is:

-π < result < π

25)LGE(x1,x2) returns the value .TRUE. if x1 = x2 or if x1 follows x2 in the collating
sequence described in American National Standard Code for Information Inter-
change, ANSI X3.4-1977 (ASCII), and otherwise returns the value .FALSE.

LGT(x1,x2) returns the value .TRUE. if x1 follows x2 in the collating sequence
described in ANSI X3.4-1977 (ASCII), and otherwise returns the value .FALSE.

FTN77 User’s Guide

152

LLE(x1,x2) returns the value .TRUE. if x1 = x2 or if x1 precedes x2 in the
collating sequence described in ANSI X3.4-1977 (ASCII), and otherwise returns
the value .FALSE.

LLT(x1,x2) returns the value .TRUE. if x1 precedes x2 in the collating sequence
described in ANSI X3.4-1977 (ASCII), and otherwise returns the value .FALSE.

LEQ(x1,x2) returns the value .TRUE. if x1 = x2 and otherwise returns the value
.FALSE. LEQ is an FTN77-specific intrinsic function.

LNE(x1,x2) returns the value .TRUE. if x1 is not equal to x2 and otherwise returns
the value .FALSE. LNE is an FTN77-specific intrinsic function.

If the operands for LGE, LGT, LLE, LLT, LEQ, and LNE are of unequal length,
the shorter operand is considered as if it were extended on the right with blanks to
the length of the longer operand.

The result-type for LGE, LGT, LLE, and LLT will be LOGICAL*4 in a program
unit compiled with /LOGL, and LOGICAL*2 in a program unit compiled with
/LOGS.

As FTN77 uses the ASCII collating sequence, the use of these functions produces
exactly the same result as a comparison of x1 and x2. Thus, for example,

LLE(C1,C2) and C1.LE.C2

are equivalent but the same may not be true for other Fortran implementations.
Thus LLE, LLT, LGE and LGT should always be used in portable programs where
the collating sequence used for comparisons must be known exactly.

26)AND, OR, and XOR perform the bitwise logical function named on a list of long,
short and byte integers. The result will be a long integer if any argument is long;
otherwise it will be a short integer. When byte, short and long integers are mixed,
the byte and short integers will be sign-extended, not zero-extended.

27)Performs a bitwise logical NOT function (ones complement) on a long, short or
byte integer. The result has the type of the argument.

28)LS, RS, LR and RR take two arguments; each argument may be either a long or a
short integer. These arguments are called ARG1 and ARG2 in the following.

LS shifts ARG1 to the left by the number of bits specified in ARG2. The result
has the type of ARG1, that is, no type change occurs. Vacated places are filled
with zeros. If ARG2 is zero, no shift occurs. If ARG2 is negative, the effects of
the operation are undefined.

RS is identical to LS, except that the shift is to the right.

LR rotates the bits in ARG1 by the number of bits specified in ARG2. The result
has the type of ARG1, that is, no type change occurs. Bits are removed from the
left hand end of ARG1 and replaced at the right hand end.

Chapter 11 Intrinsic functions

153

RR is similar to LR except that the rotation takes place in the opposite direction;
bits from the right hand end are replaced at the left hand end.

29)SHFT is similar to LS and RS, except that it can shift in either direction, and can
perform two shifts rather than one. The additional shift occurs if a third integer
argument, ARG3, is given.

If ARG2 is negative, the shift is to the left; if it is positive, the shift is to the right;
if it is zero, no shift occurs.

If ARG3 appears, the shift specified by it will be carried out after the shift
specified by ARG2 is complete. The rules are the same as for the ARG2 shift.

Note that the sense of the shift specified by a positive or negative value of ARG2
or ARG3 is not the same as that defined for the equivalent functions provided by
IBM and DEC Fortran (77) compilers.

30)LT takes two arguments; each argument may be either a long or a short integer.
These arguments are called ARG1 and ARG2 in the following.

LT preserves the left ARG2 bits of ARG1, and sets the rest to zero (left
truncation). The result has the type of ARG1 - that is, no type-change occurs. If
ARG2 ≤ 0, no bits are preserved.

RT is identical to LT, except that the right ARG2 bits are preserved.

31)LOC operates on an item of any data type. The result is an INTEGER*4 value
representing the memory address where the first byte of the data item is located.

32)An integer result produced by this function will be INTEGER*2 in a program unit
compiled with /INTS, and INTEGER*4 in a program unit compiled with /INTL.

33)When this function operates on integers, the arguments may be a mixture of
INTEGER*1, INTEGER*2 and INTEGER*4. The result will have the type of
the longest argument.

A special case arises when IABS, MOD for integers, ISIGN, or IDIM is passed as
an actual argument to a subprogram. In this case, the invoking program unit has
no opportunity to examine the argument list on which the function will operate.
Therefore it cannot select the version of the function that will implement the above
rule. For compatibility with the ANSI Standard, the following rule is used instead:

When IABS, MOD for integers, ISIGN, or IDIM is passed as an actual argument
to a subprogram, the function passed will accept and produce INTEGER*4 values
if the invoking program unit was compiled with /INTL, and INTEGER*2 values if
it was compiled with /INTS. This is the only case in which integer types cannot be
mixed in the argument list of an integer intrinsic function.

34)This function cannot be passed as an argument to a subprogram.

FTN77 User’s Guide

154

35)The specific function accepting the COMPLEX*16 data type is an FTN77
extension.

36)This function is an FTN77 extension.

37)LENG(x) returns an integer in the range 0 to LEN(x). It is the length of the
character argument x after any trailing blanks have been removed.

38)“Numeric” means any of REAL, INTEGER*1, INTEGER*2, INTEGER*4,
DOUBLE PRECISION, COMPLEX or COMPLEX*16.

39)AINT(x) is equivalent to REAL(INTL(x)). DINT(x) is equivalent to
DBLE(INTL(x)).

40)CABS and CDABS are defined as follows:

2 2xr xi+

where xr and xi are, respectively, the real and imaginary parts of the complex
number.

41)DLOG2 is an FTN77-specific intrinsic function.

42)The variants of DIM produce the following result:

x1 - x2 if x1 > x2

0 if x1 ≤ x2

where x1 and x2 are the two arguments.

43)The result of LGCB(x) is LOGICAL*1, the result of LGCS(x) is LOGICAL*2 and
the result of LGCL(x) is LOGICAL*4. These functions are provided so that
logical subroutine and function arguments can be converted to the correct length
(cf. INTB, INTS and INTL).

44)BITS(i,n,m) extracts a bit field from integer i which can be either INTEGER*2 or
INTEGER*4. The result of the function is an integer of the same length as i that
contains, as its least significant bits, bits n to m inclusive of i. The remaining bit
positions of the result are set to 0.

n and m should be in the range 1 to 8, 1 to 16 or 1 to 32, respectively, for i of type
INTEGER*1, INTEGER*2 or INTEGER*4. n should not be greater than m.
Values of n and m that do not conform to these rules will produce undefined
results. For example:

8=C464A�! 8!�0!

8=C464A�# 8#�0#

0! ,)"$ �� bP\T Pb >´"$´

8! , 18CB�0!� #� $�

Chapter 11 Intrinsic functions

155

0# ,) �� �� bP\T Pb >´ ��´

8# , 18CB�0#�!%�!%�

would result in I2 and I4 having the values 2 and 1 respectively. Wherever
possible, BITS is implemented by means of in-line code.

45)CCORE1, CORE1, CORE2, CORE4, FCORE4 and DCORE8 are used to
manipulate data using addresses that are known to the programmer (for example,
by using LOC). Each function takes one INTEGER*4 argument that is an
address.

The functions can appear on the right hand side of an assignment statement if they
are declared in an INTRINSIC statement. For example:

8=CA8=B82 2>A4!

8=C464A�# 8#

8# , ;>2�9�

2>A4!�8#� , 2>A4!�8#� �

The second assignment statement is equivalent to:

9 , 9 �

This trivial example illustrates how CORE1, CORE2 and CORE4 might be used
in software that involves data structures containing addresses.

46)An alternative name, which will have the correct implied type, is listed for this
function.

FTN77 User’s Guide

156

157

12.

Fortran 77 character
 handling facilities

The character handling facilities of Fortran 77 are a major feature of the language. It
is possible to manipulate data of type CHARACTER in a way which enables truly
portable programs to be written. Type CHARACTER is not the same as Hollerith
data but is intended to replace the many forms of Hollerith data manipulation that are
available in the various implementations of Fortran 66.

Character statements
The CHARACTER statement is used in the same way as any other type statement.
For example:

270A02C4A 0�1�2

declares variables A, B and C to be of type CHARACTER. Every variable of type
CHARACTER has associated with it a length (the variables in the above example
each have length 1) which must be specified explicitly or implicitly in the
CHARACTER statement. In general a CHARACTER statement consists of

� The keyword CHARACTER

� An optional length specification which takes the form *length

� A comma which is optional and therefore usually omitted

� A list of names and array declarators. A name may be that of a variable, an array,
a PARAMETER (symbolic name of a constant) or a function. Each name or array
declarator may be optionally followed by *length.

For example:

270A02C4A� � F�G�H�"�I� ���#

FTN77 User’s Guide

158

declares W, X, Y and Z to be of type CHARACTER. The length specification *10 is
applied to each name in the CHARACTER statement in the absence of further
specifications. Thus

W is of length 10

X is of length 10

Y is of length 3 (*3 overrides the statement default of *10)

Z each element of the array Z is of length 4

It is not possible to tell merely from the type statements whether W, X and Y are the
names of variables, arrays or functions (the same is true of the INTEGER, REAL etc.
type statements). In general, *length in a CHARACTER statement may be one of the
following:

� Omitted, for example:

270A02C4A 0�1�2�"

If *length does not follow the keyword CHARACTER a length of 1 is assumed for
each name in the list which does not have its own specification. Conversely, if
*length does not follow a particular name, the statement default is used.

� An unsigned, non-zero integer constant (as in the examples above).

� An integer constant expression which has a non-zero positive value. The
expression must be enclosed in parentheses, for example:

8=C464A ; �;!

?0A0<4C4A �; ,%� ;!,(�

270A02C4A��; �;!� 2 ��;!�� 2!��; �� 2"

� declares C1 to be of length 9, C2 to be of length 6 and C3 to be of length 15.

� An asterisk enclosed in parentheses (*). This length specification can only be used
with a name of one of the following types:

� Parameter name: In this case, the actual length of the name is determined by
the length of the defining character constant expression.

� Dummy argument name: In this case, the length assumed by the dummy
argument is that of the associated actual argument used whenever the
subroutine or function is invoked.

� Function subprogram name: In this case, the length assumed by the name is
that which has been specified in the calling program.

Chapter 12 Fortran 77 character handling facilities

159

Character constants
A character constant is written as a non-empty string of characters enclosed in

apostrophes. For example, �01234� is a character constant of length 5. The initial
and final apostrophes do not form part of the constant and are not stored. Space
characters occurring in a character constant are significant so that, for example:

´140A <>D=C08=´

is a character constant of length 13 but

´140A<>D=C08=´

is a character constant of length 12. The two constants clearly have different values.
If an apostrophe is required as part of a character constant, each significant
apostrophe should be represented by two consecutive apostrophes in the source
program. For example:

´C74 ;8>=´´B 34=´

is a character constant of length 14. The value of this constant is C74 ;8>=´B 34=

which shows that the way a constant is written and its value are not necessarily the
same thing. A final example shows the rather cumbersome notation required when
the value includes surrounding apostrophes:

´´´C74 <>DB4CA0?´´´

The value of this constant is ´C74 <>DB4CA0?´ - its length is 15.

Character expressions
A character expression is one of the following:

1) A character constant

2) The symbolic name of a character constant (PARAMETER)

3) A character variable name

4) A character array element reference

5) A character substring

6) A character function reference

7) An expression formed by combining two or more of items 1 to 6 by means of the
concatenation operator // as follows:

FTN77 User’s Guide

160

<first string> // <second string>

The value of this expression is <first string> concatenated on the right with <second
string>. For example:

Expression Value

´0;?70´��´14C´ 0;?7014C

´?40274B´��´ 0=3 ´��´2A40<´ ?40274B 0=3 2A40<

The second example above shows that any number of concatenations may appear in an
expression. Note that any combination of items 1 to 7 can be used to form an
expression and that brackets may be used freely so that the following are exactly
equivalent to the second example given above:

�´?40274B´��´ 0=3 ´���´2A40<´

´?40274B´���´ 0=3 ´��´2A40<´�

The brackets never have any effect.

Notes:
� The length of the expression resulting from a concatenation is the sum of lengths

of the character operands.

� Trailing spaces are not removed by concatenations.

Character expressions can appear in character assignment statements, relational
expressions and as actual arguments to subroutine and function calls.

Character assignments
A character assignment has the following form:

ch = character expression

where ch can be a character variable name, a character array element or a character
substring. The effect of this statement is to assign the value of character expression to
ch. If the length of character expression is less than the length of ch, the result in ch
is padded to the right with spaces. If the length of character expression is greater
than the length of ch, the result is truncated on the right. The following Fortran 77
fragment illustrates some simple character assignments:

270A02C4A A46=>�'�<0:4� ��<>34;� ��>F=4A�!��

� 20A�!$�34C08;B�"��8=34G�"

2

Chapter 12 Fortran 77 character handling facilities

161

2 PbbXV]\T]c ^U P R^]bcP]c eP[dT)

2

<0:4 , ´5>A3´

<>34; , ´2>AC8=0´

A46=> , ´GHI !"F´

>F=4A , ´902: C74 A8??4A´

2

2 R^]RPcT]PcX^] P]S PbbXV]\T]c

2

20A , <0:4��<>34;

34C08;B , A46=>��´ ´��>F=4A

8=34G , A46=>

After these assignment statements have been executed, CAR, DETAILS and INDEX
would have, respectively, the following values:

5>A3∇∇∇∇∇∇∇2>AC8=0∇∇∇∇∇∇∇∇
GHI∇ !"F∇902:∇C74∇A8??4A∇∇∇∇∇
GHI

The character ‘∇’ here, and in the examples which follow, denotes a space. Notice
that padding spaces have been used in the assignment to CAR and that the assignment
to INDEX has resulted in truncation.

Character expressions in parameter statements
The PARAMETER statement can be used to define a symbolic name for a constant of
type character. Any character constant expression (that is an expression involving
only character constants and symbolic names for character constants) may appear in
such a PARAMETER statement. For example:

270A02C4A�$ =0<4 � =0<4!� >?C8>=����

?0A0<4C4A �=0<4 ,´B<8C7´�=0<4!,´9>=4B´�

?0A0<4C4A �>?C8>=,=0<4 ��´ >A ´��=0<4!�

After these PARAMETER statements have been processed, NAME1, OPTION, and
NAME2 would be symbolic names for the following constants respectively:

B<8C7

9>=4B

B<8C7 >A 9>=4B

FTN77 User’s Guide

162

Note that the length of OPTION is now 14 as a result of the PARAMETER
statement. These symbolic names could be used anywhere in the remainder of the
program unit to represent the values listed above so, for example:

G , ´B<8C7´

G , =0<4

are identical assignment statements.

Character arrays
The reader is assumed to be familiar with the concept of an array. An array name is
just a collective name for a number of related items of storage, each of which holds a
value of the same type. A character array follows the general rules for arrays of other
types. A character array in Fortran 77 can have up to 7 dimensions. Character arrays
can either be defined by means of a CHARACTER statement or by means of
CHARACTER, DIMENSION and COMMON statements, for example:

270A02C4A 0� ���$� 1�!��!��

270A02C4A�"� =0<4B

38<4=B8>= =0<4B� ���

The above example defines A to be an array of 10 elements each of 5 characters. B is
an array of 400 elements (20 x 20) each of 1 character. NAMES is a 100 element
array, each element being 30 characters in length.

Character substrings
It is often necessary to use only part of a character variable or array element. Consider
the following:

270A02C4A�% 5;C=>

5;C=> , ´10 &#'´

Suppose that the first two characters of FLTNO are needed for some reason. There is
a need for a notation that refers to these two characters and yet treats them as a single
entity. It might be possible to redefine FLTNO as a 6-element array of 1-character
elements.

Thus:
270A02C4A 5;C=>�%�

Chapter 12 Fortran 77 character handling facilities

163

but this raises the problem of assigning the value 10 &#'. Returning to the previous
definition of FLTNO, substring notation can be used to extract the desired characters.

270A02C4A 5;C=>�%�08A;=�!�=D<14A�"

5;C=> , ´10 &#'´

08A;= , 5;C=>�)!�

=D<14A , 5;C=>�#)%�

FLTNO(1:2) is referred to as a substring name consisting of characters 1 and 2 of
FLTNO. FLTNO(4:6) consists of characters 4 to 6 of FLTNO. A substring name
can also be formed using an array element name as in the following example, in
which the previous simple character variables have been redefined as character arrays:

5;C=>� �� , ´10 &#'´

08A;=� �� , 5;C=>� ���)!�

=D<14A� �� , 5;C=>� ���#)%�

A substring name can be formed from an array element of any number of dimensions,
for example, TABLE(5,6)(10:20)

Data statements involving character entities
A DATA statement can be used to initialise a character variable, character array
element or character substring. The program fragment below gives some examples:

270A02C4A 0�%�1�"�2�'�3� ���#�4�!�

2 X]XcXP[XbPcX^] ^U bX_[T ePaXPQ[Tb

30C0 0�´012345´� 1 �´FGHI´� 2 �´?@A´�

2 dbT ^U X_[XTS 3>�[^^_

30C0 �3�9��8, �%��"�´GGGG´�!�´HHHH´�´IIII´�

2 bdQbcaX]V X]XcXP[XbPcX^]

30C0 4� �)!���´B42>=3 70;5´�

When the above program is loaded, the variables A, B and C would have the values

012345, FGH and ?@A∇∇∇∇∇ respectively. Note that if the length of the variable
and defining constant are not the same, then padding or truncation takes place as in
the case of assignment statements. The first 6 elements of the array D would have the

values GGGG, GGGG, GGGG, HHHH, HHHH and IIII respectively but the remaining
four elements would be undefined. Characters 10 to 20 of variable E would be defined

with the value B42>=3 70;5 but characters 1 to 9 would be undefined.

Note:
Fortran 77 does not allow an implied DO-loop variable to be used to initialise a

FTN77 User’s Guide

164

character substring. The character substring expressions must always be constant
expressions in a DATA statement.

Input and output of character data
List-directed input/output is the simplest way to read and print character data. It is
only necessary to use an appropriate character entity in the input/output list of a
READ or PRINT statement for its value to be transmitted. For example:

270A02C4A 2� ��30H�&��(

30C0 2�´ C>30H 8B ´�

30C0 30H �´<>=30H´�´CD4B30H´�´F43=4B30H´�

� ´C7DAB30H´�´5A830H´�´B0CDA30H´�´BD=30H´�

 A403 ��=30H

85 �=30H�;C� �>A�=30H�6C�&� C74=

?A8=C ��´4AA>A 8= =30H E0;D4´

6>C>

4=385

?A8=C ��2�30H�=30H�

� � �

In the above example, the first PRINT statement outputs the character constant

4AA>A 8= =30H E0;D4. The input/output list of the second PRINT statement
consists of two character entities: a character variable and a character array element.

The rules for list-directed input of character information are slightly more
complicated. Consider the statements:

270A02C4A� � 2

A403 ��2

The character data item on the input record corresponding to C must have the form of
a character constant, that is, the actual value must be enclosed in apostrophes. Spaces
are significant and, if an apostrophe character is required as part of the value, it must

be represented by two apostrophes on the data record. For example, the values 3>6

and 3>6´B would be supplied as data, respectively, as

´3>6´

´3>6´´B´

If either of these values were read by the above READ statement, the resulting value
held in C would be padded on the right with spaces as the length (10) of C is greater
than the length of the constant in each of the above cases. In general, the rules are

Chapter 12 Fortran 77 character handling facilities

165

exactly those for character assignment. Suppose that the following constants were
supplied as an item of data for the above READ statement:

´� !"#$%&'(01234´

then the resulting value assigned to C would be � !"#$%&'(. The leftmost
characters of the character constant are retained if the length of C is less than the
length of the data item. Character variables can, of course, appear in input/output lists
together with variables of other types. Character values on data records can be
repeated like any other value so, for example:

270A02C4A 2� ���$

8=C464A =

A403 ��=��2�8��8, �=�

could be used to read the following record

%�%�´4<?CH´

Six elements of the array C would be initialised to the value 4<?CH by means of this
statement.

Note:
The FTN77 compiler will not accept repeated character constants split over more than
one record. This violates the Fortran 77 standard, but is not a serious restriction in
practice.

Formatted input/output of character data requires the use of the Aw editing descriptor.
In general, if the length of the character item in the input/output list is c, there are a
number of differing effects for input and output depending on the relative values of w
and c. These effects are summarised by the table below.

Input Output

w > c The rightmost c characters of
the specified field are trans-
ferred to the list item

The value of the output list item is
transferred to the output field
receded by w - c space characters

w < c The w characters of the
specified field are transferred
to the list item padded on the
right by c - w spaces

The leftmost w characters of the
value of the list item are transferred
to the output field

w omitted A field width of c is assumed so that c characters are transferred
to/from the specified field

The examples below illustrate the use of this descriptor and some of the problems that
it can cause.

FTN77 User’s Guide

166

270A02C4A 2� �

A403 � �´�0 ��´�2

Ten characters would be transferred from the input record to variable C.

270A02C4A 20� ��

A403 � �´�0 ��´�20

Ten records would be read; the first character of each of these records would be used
as a value for the elements. 1 to 10 of array CA.

270A02C4A B<0;;�$�186� �

A403 � �!�� B<0;;

A403 � �!�� 186

!� 5>A<0C �0'��

Suppose the data records corresponding to the above READ statements were

0;?7014C

2011064B

after the READ statements had been executed, SMALL would have the value 7014C

and BIG would have the value 2011064B∇∇. Note that the effect obtained for
SMALL is exactly the opposite to that for list-directed input and is, indeed, the reverse
of one’s expectation.

270A02C4A B<0;;�$�186� ��>:�'

A403 � �!��B<0;;

A403 � �!��186

A403 � �!��>:

!� 5>A<0C �0�

In the above example, no field width is specified following A in the FORMAT
statement. In this case, the width assumed is the length of the corresponding
character variable or array element in the input/output list. Thus, with data records

0;?7014C

2011064B

:8=6B

the values obtained in SMALL, BIG and OK after execution of the above READ
statements would be, respectively, 0;?70, 2011064B∇∇ and :8=6B∇∇∇ as might
be expected intuitively. The following examples assume unit 2 is connected to a file
which does not require carriage control characters.

270A02C4A 1D5>DC�'�

FA8C4 �!�´�0'��´�1D5>DC

80 characters would be transferred from the character variable A to the output record.

Chapter 12 Fortran 77 character handling facilities

167

270A02C4A ;8CC;4� ��;0A64�!%

;8CC;4 , ´� !"#$%&'(´

;0A64 , ´0123456789:;<=>?@ABCDEFGHI´

FA8C4 �!� ��;8CC;4

FA8C4 �!� ��;0A64

 � 5>A<0C �0 $�

The output records produced by the two WRITE statements would be

� !"#$%&'(

0123456789:;<=>

If the FORMAT statement in the above example were replaced by

 � 5>A<0C �0�

the output records would be

� !"#$%&'(

0123456789:;<=>?@ABCDEFGHI

Comparing character strings
There are a number of applications where character strings must be compared, for
example:

270A02C4A�$ 2>=CA;�"��:4H

30C0 2>=CA;�´BC0AC´�´BC>?´�´F08C´�

% A403 � �´�0�´�:4H

3> # 8, �"

85 �:4H�4@�2>=CA;�8��6>C>� �!�"��8

2>=C8=D4

?A8=C ��´X]eP[XS R^]ca^[RPaS´

6>C> %

 � � �

! � � �

" � � �

In this example, the actual internal codes used by the system for the character values
do not matter as the test is only for equality of two character strings. Many programs
involve the sorting of data using some form of key which is frequently alphanumeric
but need not necessarily be so. Sorting implies comparisons of the form ‘is the value
of A less than the value of B?’ or ‘is the value of C greater than the value of D?’. This
type of comparison implies a need for some rules for ordering character values.

FTN77 User’s Guide

168

Everyone would intuitively place the words 3>6, 20C, A0118C and <>=:4H in the
following order:

20C

3>6

<>=:4H

A0118C

Suppose that the phrase A0118C´B 5>>C is to be inserted into the above sequence.

Clearly, it would follow <>=:4H but should it follow A0118C? Most people would
probably answer ‘yes’ to this question but what would happen if this operation were
part of a Fortran 77 program? The answer is that the ordering would depend on the
exact details of the collating sequence used by the implementor. FTN77 uses the
ASCII collating sequence but the Fortran 77 Standard only defines the following
collating sequence.

1) 0 < 1 < 2 . . . < 9

2) A < B < C . . . < Z

3) 9 < A or Z < 0 (in other words, all the digits must either precede A or follow Z)

4) Space < 0 and space <A

So, whilst many Fortran 77 implementations do use the ASCII collating sequence, the
above minimal rules can lead to non-portable programs unless one of the intrinsic
functions LLT, LLE, LGE or LGT is used.

In general, when comparing the values of two character expressions c1 and c2 in a
relational expression, the shorter expression is assumed to be padded on the right with
spaces. A character relational expression has the general form:

 c1 .op. c2

where c1 and c2 are character expressions and .op. is one of .LT. .LE. .EQ. .GE.
.GT. or .NE.

Note:
The effect of .EQ. and .NE. is independent of the collating sequence used.

The example below shows some relational expressions:

270A02C4A 2�����2 �$�2!�#�2"�(

;>6820; ;

?0A0<4C4A �2,´0??;4´�

?0A0<4C4A �;,2�6C�´0´�

� � �

2" , 2 ��2!

2 S^Tb 2" bcPac fXcW P] P[_WPQTcXRP[RWPaPRcTa.

85 �2"�64�´0´� C74=

Chapter 12 Fortran 77 character handling facilities

169

85 �2"�;4�´I´� 6>C> �

4=385

2]^ � Xb Xc]d\TaXR.

85 �2"�64�´�´� C74=

85 �2"�;4�´(´� 6>C> !�

4=385

2 Xb Xc Q[P]Z.

85 �2"�4@�´ ´� 6>C> "�

� � �

Intrinsic functions for handling character data
There are eight very useful Fortran 77 intrinsic functions provided specifically to
simplify the manipulation of character data. The functions are ICHAR, CHAR, LEN,
INDEX, LLE, LGE, LGT and LLT.

Conversion from character to integer and vice-versa
ICHAR(c) returns the position of character c in the collating sequence used by the
system.

CHAR(i) returns the ith character in the collating sequence used by the system. Note
that i starts at 0, not 1, and that a single character is returned. The maximum value
for i when using FTN77 is 255.

FTN77 uses the ASCII collating sequence but other Fortran 77 implementations may
not, so use of these functions does not necessarily lead to portable programs.

Example:
270A02C4A E0;D4

A403 ��8

85�8�;C���>A�8�6C�(� C74=

?A8=C ��´4AA>A´

BC>? (((

4;B4

E0;D4 , 270A�8�

4=385

This example converts the value of the single digit integer to character form. Note
that:

8 , #%

E0;D4 , 270A�8�

FTN77 User’s Guide

170

would not produce the character value 46 as CHAR only returns a single character.

8=C464A 0BC0AC� I4A>� B?024

0BC0AC , 8270A�´0´�

I4A> , 8270A�´�´�

B?024 , 8270A�´ ´�

This example finds the position of the character A, zero and space in the collating
sequence.

Length of a character entity
It is often useful to know the length of a character entity, particularly in a subroutine
or function where an argument of type character can have an assumed length passed
with it. In general, LEN(c) returns the length of the character expression c. For
example:

270A02C4A 0� �� 1�$��#� 2�!�

8 , ;4=�0�

9 , ;4=�1� ��

: , ;4=�2�)!���

After these statements had been executed, I, J and K would have the values 10, 4 and
10 respectively. Note that the length returned by LEN is the declared or assumed
length of the character expression and not the length of the expression once trailing
spaces have been removed. (The FTN77 compiler provides the function LENG for
this latter purpose: see chapter 11.)

Locating a substring
The function INDEX(C, CSUB) returns the starting position (≥1) of the substring
CSUB in the string C.

If CSUB is not a part of C, INDEX returns the value 0. If there is more than one
occurrence of CSUB in C, the starting position of the first occurrence is returned. For

example, in order to read a card and establish whether the keyword BD1A>DC8=4

appears in column 7 or later, the following program fragment might be used:

8=C464A ?>B

270A02C4A 20A3�'�� =0<4�%

 A403 � � �� 20A3

 � 5>A<0C �0�

?>B , 8=34G �20A3�´BD1A>DC8=4´�

2 bdQa^dcX]T U^d]S

2 T]bdaT ^][h Q[P]Z RWPaPRcTab _aTRTST Xc

85 �20A3�)?>B� � �=4� ´ ´� C74=

?A8=C �� ´X]eP[XS RPaS´

Chapter 12 Fortran 77 character handling facilities

171

4;B4

2 [^^Z U^a]P\T ^U bdQa^dcX]T

2 ;4= �´BD1A>DC8=4´� Xb R^]eTacTS c^ P R^]bcP]c Pc

2 R^_X[T�cX\T X] cWT 5C=&&X_[T\T]cPcX^]

2 b^ cWTaT Xb]^ [^bb ^U TUUXRXT]Rh WTaT

3> "� 8,?>B�;4=�´BD1A>DC8=4´��'�

85�20A3 �8)8� �=4� ´ ´� 6>C> !�

"� 2>=C8=D4

2 Pbbd\T]P\T WPb]^ T\QTSSTS b_PRTb

!� =0<4 , 20A3�8)8�$�

4=385

� � �

Portable character comparisons
The results of character comparisons which use .EQ. and .NE. are independent of the
collating sequence used but the results of character comparisons using .LT. .LE. .GE.
and .GT. depend on the collating sequence used. To overcome this problem,
Fortran 77 provides four logical intrinsic functions which use the ASCII character set
for character comparisons:

Function Equivalent to

LLT (c1,c2) c1 .LT. c2

LLE (c1,c2) c1 .LE. c2

LGE (c1,c2) c1 .GE. c2

LGT (c1,c2) c1 .GT. c2

As FTN77 uses the ASCII collating sequence, there is no need to use the above
functions unless a portable program is being written. For example, the value of the
relational expression

´:4H 0´�6C�´:4H0 ´

depends on the relative position of 1 and A in the collating sequence.

;6C�´:4H 0´�´:4H0 ´�

will always return the value .FALSE. as the character 1 precedes the character A in
the ASCII collating sequence.

FTN77 User’s Guide

172

Character functions
The FTN77 library contains some functions of type character, one of which is
DATE(). This function must be declared in the calling program unit as

270A02C4A 30C4�'

It returns today’s date as a character value in the form mm/dd/yy. The following
statements could be used to print the date:

270A02C4A 30C4�'

?A8=C ��30C4��

This character function has no arguments. In general, it is possible to write a
character function with argument(s) of any type. The FUNCTION statement has the
general form:

 CHARACTER*len FUNCTION func(arglist)

Where:

� func is the function name

� arglist is an argument list which may or may not be present

� If the form (*) is used for len, the length of the result returned by the function
depends on the length specified for the name in the calling program unit.

The following example is of a character function which returns a number of characters
of the alphabet starting at a position specified by its argument

270A02C4A���� 5D=2C8>= B;824�=�

8=C464A =

270A02C4A�!% 014C

30C0 014C�´0123456789:;<=>?@ABCDEFGHI´�

85 �=�;C� �>A�=�6C�!%�

� 20;; 4AA>A �´= ^dc ^U aP]VT´�

B;824 , 014C�=)=�;4=�B;824�� �

4=3

This function could be called as follows:

270A02C4A�" B;824

?A8=C ��B;824� ��´ ´�B;824�!#�

In this case, the length assumed for SLICE would be 3 and the PRINT statement
would output

012∇GHI

SLICE could, of course, be used to return character values of a different length by
declaring it appropriately in any calling program.

Chapter 12 Fortran 77 character handling facilities

173

Characters as dummy and actual arguments
Character entities may appear as arguments to subroutines and functions. Whilst the
basic rules for dummy and actual argument association are the same as those for
arguments of other types, there are a number of rules which apply specifically to
arguments of type character which come about because every character entity has a
length associated with it. This length must either be specified explicitly or as *(*) in
the subroutine or function. The table below gives the rules for dummy and actual
argument association.

Dummy argument Actual argument

Variable Variable

Array element

Substring

Character expression

Array Array name

Array element

Array element substring

For a dummy argument which is a variable, if dl is the length of the dummy argument
and al is the length of the actual argument, then dl must not exceed al. If dl is less
than al, then the leftmost al characters of the actual argument are associated with the
dummy argument. A length of *(*) can be specified for the dummy argument to
ensure that the lengths al and dl will always be the same for that argument. Suppose
that SIMPLE had been defined as follows:

BD1A>DC8=4 B8<?;4 �2 �2!�

270A02C4A 2 �'�2!����

The following program fragment shows the effect of some calls of SIMPLE:

?A>6A0< <08=

270A02C4A 0�'�1�%�2� �

� � �

2 PaVd\T]c 2! ^U bX_[T Pbbd\TS [T]VcW %

20;; B8<?;4�0�1�

� � �

2 X]eP[XS 20;;) [T]VcW ^U PRcdP[PaVd\T]c

2 1 Xb [Tbb cWP] STR[PaTS [T]VcW ^U 2

20;; B8<?;4�1�0�

� � �

2 cWT UXabc ' RWPaPRcTab ^U 2 PaT dbTS

20;; B8<?;4�2�0�

� � �

FTN77 User’s Guide

174

2 cWT PRcdP[PaVd\T]cb \dbc]^c

2 QT RWP]VTS Qh cWXb bcPcT\T]c

20;; B8<?;4�´01234567´�0��1�

� � �

4=3

For a dummy argument which is an array, the length of the dummy argument dl is
defined to be the length in characters of the entire dummy array. The length of the
actual argument al is defined as follows:

Actual argument type Length in characters

Array name The length of the entire array

Array element The length of the array from the
element to the end of the array

Array element substring The length of the substring

It is not essential for the declared character length of the dummy array element to be
the same as that declared for the corresponding actual argument array. If a length of
() is declared for a dummy argument array, the length assumed for the actual array
is as follows:

Actual argument type Length assumed for dummy
declaration of *(*)

Array name Length of the actual array

Array element Length of element

Array element substring Length of the substring

Suppose that subroutine MESSY had been defined as follows:

BD1A>DC8=4 <4BBH �0 �0!�

270A02C4A 0 � ���"�0!�%�����

� � �

4=3

The following program fragment shows the effects of some calls of MESSY:

?A>6A0< <8=4

270A02C4A 0� ���"�1�!���%�2�"�!��$

� � �

2 bcaPXVWcU^afPaS Pbb^RXPcX^]

2 cWT UXabc % T[T\T]cb ^U 1 PaT dbTS

20;; <4BBH �0�1�

� � �

2 cWT fW^[T ^U 2 �"� RWPaPRcTab� Xb

2 Pbb^RXPcTS fXcW 0 � cWT [T]VcW Pbbd\TS

2 U^a Sd\\h PaVd\T]c 0! Xb " �cWT bdQbcaX]V [T]VcW�

Chapter 12 Fortran 77 character handling facilities

175

2 P]S cWdb ^][h cWT UXabc " T[T\T]cb ^U 1 PaT dbTS

20;; <4BBH �2�1� ��)"��

� � �

4=3

Character entities in common blocks
A common block must either contain character data or non-character data. The
Fortran 77 Standard does not allow the two types to be mixed in one common block.
FTN77 allows character and non-character data to be mixed in common blocks if the
/ANSI compile-time option is not used.

FTN77 User’s Guide

176

177

13.

Language extensions

FTN77 was used for its own development. As a consequence, in order to be able to
produce executable code that is optimal in core requirements and execution speed, a
number of language extensions are made available by the compiler. Other extensions
are provided to aid the porting of programs from other systems. It is emphasised that
these extensions are not part of the ANSI Standard and their use is likely to result in
non-portable programs.

The list of extensions below is only available if an ANSI directive has not appeared in
the program source and a /ANSI compile-time option has not been specified.

� Long and short integer and logical data and DOUBLE COMPLEX data

� Data initialisation in type statements

� Hollerith data

� Use of @, $ and _ characters in names and common block names

� Long names

� Octal, hexadecimal and binary values

� WHILE statements

� DO WHILE statements

� END DO statements

� Extra intrinsic functions and subroutines

� Internal procedures

� In-line 32-bit assembler

� Numeric checking of variables and array elements

� Special form of the DATA statement

� Conditional compilation

� Input/output extensions (see page 132)

FTN77 User’s Guide

178

� IMPLICIT NONE

� Interrupt subroutines

INTEGER and LOGICAL data types
The ANSI standard specifies that integer and logical variables should occupy the same
number of storage elements as real variables but, in programs which manipulate large
quantities of integer and logical data, this can be wasteful of storage space. FTN77
provides three mechanisms for controlling the storage requirements of integer and
logical variables:

1) The default settings for a whole compilation can be chosen by using the /INTS,
/INTL and /LOGS, /LOGL compile-time options.

Note that, under DOS/Win16, /INTS and /LOGS are the compiler defaults when
the compiler is distributed.

To establish the defaults on your machine, issue the FTN77 command with the
/HELP option.

2) Any combination of INTS, INTL, LOGS and LOGL must appear in an
OPTIONS directive before the start of a program unit in order to specify the
default for the whole of that program unit.

3) The following alternative forms of the INTEGER and LOGICAL statement are
allowed:

INTEGER*1
INTEGER*2
INTEGER*4
LOGICAL*1
LOGICAL*2
LOGICAL*4

Note: Under Win32, INTEGER*1 parameters must not be used when declaring
the size of an array.

*1, *2 or *4 overrides or confirms the current default for the program unit. For
example:

>?C8>=B�8=CB�;>6B�

8=C464A�# 8�80� ��

� � �

4=3

>?C8>=B�8=C;�;>6;�

Chapter 13 Language extensions

179

BD1A>DC8=4 H�;�<�

8=C464A�# <

;>6820;�! ;�; �"�"�

� � �

4=3

declares the variables I and M to be four bytes in length, and the variable L to be 2
bytes in length. Each element of the array IA would occupy 4 bytes; each element
of the array L1 would occupy 2 bytes.

REAL and DOUBLE PRECISION data types
Parallel to INTEGER*2 and INTEGER*4 declarations there exist the alternative
forms, REAL*4 and REAL*8, of declarations for floating point variables. These are
synonymous with REAL and DOUBLE PRECISION respectively. The size
specifiers *1, *2, *4, and *8 can also immediately follow individual variable names in
the declaration list, overriding the length the variable would otherwise have (the
syntax is analogous to that for CHARACTER declarations in this respect). Thus, for
example, the following statements:

A40;�# G�'�H

8=C464A 8�9�#

would declare X to be REAL*8 (double precision), Y to be REAL*4 (single precision),
I to be of type default integer (set by use of /INTS and /INTL options or the
OPTIONS(INTS) and OPTIONS(INTL) directives) and J to be of type
INTEGER*4.

Data initialisation in type statements
It is possible simultaneously to declare and to initialise local variables and arrays as in
the following examples:

8=C464A 8�"��9

A40; 0�$�� �!�"�#�$�

270A02C4A�! 2�´GG´�

FTN77 User’s Guide

180

The syntax for the data initialisation part of the statement is identical to that used for
DATA statements except that each initialising value must immediately follow its data
item and not all variables need be initialised.

Notes:
� Variables initialised in this way are assigned to static storage.

� If an array is initialised in this way, data values must be specified for the whole
array.

� If a CODE/EDOC section follows an initialisation, then the CODE statement
should be preceded by a CONTINUE statement.

Hollerith data and ENCODE/DECODE
Hollerith data and ENCODE/DECODE are not part of the Fortran 77 standard
although they were included in Fortran 66. In FTN77 they have been implemented as
extensions to the Standard. Occurrences of Hollerith data are flagged as a warning by
the compiler. New programs should not use these two extensions.

Note: Hollerith editing in formats is still part of the Standard.

For example:

 � 5>A<0C �#75A43�

is equivalent to:

 � 5>A<0C �´5A43´�

Hollerith data is stored as two 8-bit characters per word, any unused character
positions being blank-filled.

The number of characters contained by each type of variable is as follows:

Type
Number of
Hollerith

Characters

INTEGER*1
LOGICAL*1

1

INTEGER*2
LOGICAL*2

2

INTEGER*4
LOGICAL*4

4

REAL 4

DOUBLE PRECISION 8

Chapter 13 Language extensions

181

Hollerith data is allowed in FTN77 as follows:

1) In DATA statements for variables and arrays of type INTEGER, REAL and
DOUBLE PRECISION. For example:

3>D1;4 ?A428B8>= 0�"�

8=C464A�# 81�!�

30C0 0�!#70123456789:;<=>?@ABCDEFG�

30C0 81�'7� !"#$%&�

Note that apostrophes can be used as an alternative to the nH form.

2) As data read by READ and WRITE statements; for example:

A403 � � ��8

 � 5>A<0C �0!�

An Aw edit descriptor is used to specify that ASCII chara-ters are to be read into or
written from the specified variables which may be of type INTEGER, REAL,
DOUBLE PRECISION or LOGICAL. FTN77 allows the form A (alone) where
w is assumed to be the number of ASCII characters that will fit into the variable in
the input/output list. For example:

8=C464A�! 8

A40; A

;>6820;�# ;

A403 � � ��8�A�;

 � 5>A<0C �"0�

would read, from a single record, 2 characters into I, 4 characters into R and 4
characters into L.

3) In assignment statements where the left hand side is an arithmetic variable or
array element, for example:

8 , ´01´

A , ´ !"#´

Note the use of apostrophes in these examples.

4) In subroutine calls or function references, for example:

20;; ?80=>�$75>AC4�

8 , AB� 70�'�

A run-time error will be generated when using either of the compile-time options
/CHECK or /FULLCHECK if a Hollerith string is passed as an actual routine
argument and the corresponding dummy argument is not of type CHARACTER.

FTN77 User’s Guide

182

Use of @, $ and _ characters in names
It is often useful to be able to name a subroutine or common block in such a way that
it will not clash with names chosen by everyday use of the compiler. FTN77 allows
the @, $ and _ (underline) characters as any non-initial character of a Fortran name.

Example:

BD1A>DC8=4 ?A8=C��8�

2><<>=�2></�0�1�2� ���

4GC4A=0; 5 /�5!/

8=C464A 5 /

� � �

20;; <HNBD1�5 /�

� � �

No guarantee can be given that use of a name containing an @ character will not
cause unpredictable results as a result of a clash with an FTN77 library name or other
reserved name. However, no system name contains a $ character.

Long names
FTN77 permits, as an extension, the use of variable names of up to 32 characters.

Octal, hexadecimal and binary values

Constants
An octal constant takes the form of a digit string enclosed in apostrophes and
preceded by the letter O, for example:

>´ !"#´

The number of digits as well as the magnitude determines the length (INTEGER*2 or
INTEGER*4) of the constant so that, for example, the above constant is an
INTEGER*2 constant (as long as the short integer default is in use), but:

>´&&&&&&&´

>´������&´

are both INTEGER*4 constants.

Chapter 13 Language extensions

183

Hexadecimal constants consist of a string enclosed in apostrophes and preceded by the
letter Z, for example:

I´55´

The length of the constant is determined by the number of digits so that, for example,
with the short integer default in operation, the above is an INTEGER*2 constant, but:

I´����55´

is an INTEGER*4 constant.

Binary constants consist of a string of 0’s and 1’s enclosed in apostrophes and
preceded by the letter B, for example:

1´ � � ´

The number of binary digits, and whether the short or long integer default is in
operation, determine whether the constant is INTEGER*2 or INTEGER*4.

Input and output
FTN77 provides O, B and Z edit descriptors for the input and output of octal, binary
and hexadecimal values. The edit descriptors have the following general form:

 Ow.m
 Bw.m
 Zw.m

The effect of O, B or Z edit descriptors parallels that of the Iw.m descriptor. w is the
field width, and m is the minimum number of digits that must be output. .m can be
omitted if desired - the default value for m is 1. m must not be greater than w and has
no effect for input.

The list item corresponding to an O, B or Z edit descriptor must be of type integer.
For example:

2 aTPS P #�SXVXc ^RcP[eP[dT

A403 � � ��8

 � 5>A<0C �>#�

2 faXcT P ��SXVXc QX]Pah eP[dT P]S

2 X]R[dST P[[[TPSX]V iTa^b

FA8C4 �$�!��:

!� 5>A<0C �1 �� ��

Octal, hexadecimal and binary constants can appear instead of integer constants as
items for list-directed input. The allowed forms that these constants may take are as
described for constants (see page 182).

FTN77 User’s Guide

184

WHILE statement
FTN77 offers a WHILE statement as an alternative to an IF ... GOTO construct or a
DO statement. Its general form is

 WHILE (logical expression) DO

 ENDWHILE

The WHILE-block may contain any executable Fortran statements. WHILE-blocks
may be nested within each other or within IF-, ELSE-, and ELSEIF-blocks and/or
DO statements. The rules of nesting are the same as those for the block-IF statement.

An ENDWHILE statement can be labelled but may only be referenced from within the
WHILE block.

Example:

9 , �

F78;4�8�=4���3>

8 , ;8BC�8�

9 , 9�

4=3F78;4

DO WHILE statement
FTN77 offers a DO WHILE statement as an alternative to the DO statement. Its
general form is

 DO WHILE (logical expression)

 END DO

The DO WHILE-block may contain any executable Fortran statements. DO WHILE-
blocks may be nested within each other or within IF-, ELSEIF- and ELSE-blocks,
WHILE-blocks and/or DO statements. The rules of nesting are the same as those for
the block-IF statement.

An END DO statement can be labelled but may only be referenced from within the
associated DO WHILE block.

Example:

9 , �

3> F78;4�8�=4���

Chapter 13 Language extensions

185

8 , ;8BC�8�

9 , 9�

4=3 3>

END DO statement
FTN77 offers an END DO statement as an alternative to the usual form of the Fortran
DO statement, which requires a terminating label. Its general form is

 DO <do-var>=<initial>,<final>,<step>

 END DO

The DO/END DO-block may contain any executable Fortran statements. DO/END
DO-blocks may be nested within each other or within IF-, ELSEIF- and ELSE-
blocks, WHILE-blocks and/or standard DO statements. The rules of nesting are the
same as those for the block-IF statement.

An END DO statement can be labelled but may only be referenced from within the
associated DO block.

Example:

: , �

3> 8, � �

9 , ;8BC�8�

: , :�

4=3 3>

Extra subroutines and intrinsic functions
A number of intrinsic functions have been provided which are not in the Standard.
These are defined together with the ANSI intrinsic functions in chapter 11.

FTN77 User’s Guide

186

Internal procedures
FTN77 provides internal procedures to allow even a few lines of coding to be used as
a “subroutine” without the run-time overhead that a CALL statement produces.

Internal procedures have been implemented in a way which is straightforward to use
and yet makes it easy to replace any internal procedure call by some standard feature
such as an ASSIGN statement and an assigned GOTO statement if a program is later
transported to a system which does not support internal procedures.

As its name suggests, an internal procedure is local to the program unit in which it
appears. FTN77 provides four statements to deal with internal procedures:

INTERNAL PROCEDURE <list of int-proc-names>

INVOKE <int-proc-name>

PROCEDURE <int-proc-name>

EXIT <int-proc-name>

The INTERNAL PROCEDURE statement
INTERNAL PROCEDURE is a specification statement and must appear before any
executable statement in a program unit. The general form is:

INTERNAL PROCEDURE <list of int-proc-names>

where <list of int-proc-names> is a list of internal procedure names separated by
commas. Every internal procedure name used in a program unit must first appear in
an INTERNAL PROCEDURE statement.

The PROCEDURE statement
The PROCEDURE statement is used to define the start of an internal procedure. It
has the form:

PROCEDURE <int-proc-name>

An internal procedure has no argument list; any local or external name available to
the program unit in which the internal procedure appears is available for use within
the procedure.

Note:
When defining an internal procedure, it is up to the programmer to ensure that there
is no possibility of control “flowing into” the procedure. It is suggested that internal
procedure definitions are grouped together following a RETURN or GOTO statement
at the end of a program unit, for example:

Chapter 13 Language extensions

187

� � �

A4CDA=

?A>243DA4 ?

� � �

?A>243DA4 ?!

� � �

4=3

The EXIT statement
The EXIT statement is used to exit from an internal procedure. It may appear
anywhere in an internal procedure definition and takes the form:

EXIT <int-proc-name>

An EXIT statement can appear wherever an executable statement is allowed (for
example, at the end of an IF statement).

The only effect of an EXIT statement is to transfer control to the statement following
the INVOKE statement used to invoke the internal procedure.

More than one EXIT statement can appear in an internal procedure definition. The
EXIT statement need not necessarily be the last statement in a definition so that
remarks made at the end of the previous section again apply here.

A program may also exit an internal procedure by executing a RETURN statement,
which also leaves the parent routine.

The INVOKE statement
The INVOKE statement is used to “call” an internal procedure. It has the general
form:

INVOKE <int-proc-name>

and can appear anywhere that an executable statement is allowed. The only effect of
an INVOKE statement is to transfer control to the specified internal procedure.

Example of the use of an internal procedure
8=C4A=0; ?A>243DA4 4AA>A

� � �

= , &

8=E>:4 4AA>A

� � �

= , '�

8=E>:4 4AA>A

� � �

FTN77 User’s Guide

188

?A>243DA4 4AA>A

85 �=�;C�$�� C74=

20;; 4AA>A �=�

4;B4

20;; 4AA>A!�=�

4=385

4G8C 4AA>A

� � �

4=3

In-line 32-bit assembler
This feature of the compiler is fully described in chapter 15.

Numeric checking of variables and arrays
It is possible to specify an upper and lower limit for the value assigned to any variable
or array element by means of an extension to the syntax of the INTEGER, REAL and
DOUBLE PRECISION statements as in the following examples:

A40; 0J ��) ����L

specifies that the variable A can take values in the range 1.0 to 100.0.

8=C464A 8J�)� L

specifies that the variable I can take values in the range -1 to +1.

8=C464A :� ��J�) �L

specifies that the elements of K can take values in the range 0 to 10.

The general form of the limit check is:

[<lower>:<upper>]

where <lower> and <upper> are arithmetic constant expressions. Conversion takes
place to the type of variable or array name, as appropriate. Thus the following are
equivalent:

A40; 0J) �L

A40; 0J ��) ���L

Chapter 13 Language extensions

189

Arithmetic constant expressions can, of course, include PARAMETER names making
the feature very flexible, in addition to its being simple to use.

The variable or array whose range is being checked can be local, common or an
argument.

If a range check is present it is always processed by the compiler but it is only used if a
/CHECK or /FULLCHECK is in force. Errors can be detected by the range check
either at compile-time or at run-time.

An error will be detected at compile-time for an assignment whose right hand side is
constant. For example:

A40; 0J$��) !��L

0 , !���

would result in a compile-time error.

Care should be taken when using real and double precision range checks to allow for
the effects of rounding error. For example:

A40; 0J!�!)$�!&$L

0 , "�

0 , 0�!� &$

might generate a range check error. The upper limit should be specified as 5.2751.

An error will be detected at run-time for all other assignments and statements such as
DO and READ which imply assignments. Such errors produce the message:

∗∗∗ DbTa�b_TRXUXTS aP]VT RWTRZ Taa^a

Note:
Statements such as:

3> � 8, �!�

imply a final assignment to I of the value 21. Any range check used for I should take
this fact into account.

Special form of the DATA statement
This facility, which permits INTEGER*4 variables to be given address values, is
described on page 199.

FTN77 User’s Guide

190

Conditional compilation
FTN77 provides conditional compilation by means of the SPECIAL PARAMETER
statement, the /SPARAM compile-time option and the CIF, CELSE and CENDIF
statements.

SPECIAL PARAMETER and /SPARAM
The specification statement

SPECIAL PARAMETER <name>

defines <name> to be of type integer. <name> must not appear in a type statement
and is local to the program unit in which the SPECIAL PARAMETER statement
appears. The value represented by <name> is set by means of the /SPARAM
compile-time option as follows:

/SPARAM <integer>

where <integer> is the required value.

Any number of SPECIAL PARAMETER names are allowed per program unit but
they are all assigned the same value.

CIF, CELSE and CENDIF
CIF, CELSE and CENDIF are used to select the statements in a program unit that
are to be used during a particular compilation. Their general forms are:

CIF (<name>.EQ.<constant>) THEN
 . . .
CELSE
 . . .
CENDIF

where <name> is a SPECIAL PARAMETER and <constant> is an integer constant.
CIF etc. begin in column 7 or after.

CIF and CENDIF must appear in pairs: their appearance constitutes a CIF-block.

The actual value assigned to the special parameter <name> is compared with the
integer constant <constant>. If the two agree, the statements following CIF are
compiled until a CELSE or CENDIF statement is found.

If the two disagree, statements are ignored until a CELSE or CENDIF statement is
encountered. Such statements are denoted by a back-slash character in the listing file.

Once CENDIF is encountered, the CIF-block is complete. CELSE causes the reverse
effect to that specified by the preceding CIF statement.

Chapter 13 Language extensions

191

CIF..CENDIF blocks can be nested and CELSEIF may be used to replace the
sequence CELSE, CIF,.....CENDIF as in the Fortran 77 IF-statement.

IMPLICIT NONE
This is a compiler directive that causes the compiler to fault the subsequent use of a
variable which has not been given an explicit type. It appears in column 7 or
afterwards and should be placed in every subprogram were it is needed and before all
executable statements in that subprogram.

An alternative is to use >?C8>=B�8<?;828CN=>=4� at the head of a file and this
will then apply to the whole file. Another alternative is to configure the compiler
using the compiler option /CONFIG and to set IMPLICIT_NONE as the compiler
default.

INTERRUPT subroutines

The SET_TRAP@ routine enables a program to catch a number of program events
(see the FTN77 Library Reference manual or the on-line Help system for details of
this routine and other routines mentioned in this section). Certain events, such as the
QUIT trap, can interrupt a program at an arbitrary point. The routine which is used
to catch such an interrupt must be specially written to cater for this. On page 206 an
assembler technique is described for this purpose. While this technique offers the
greatest flexibility, the INTERRUPT SUBROUTINE offers a simpler mechanism
which is normally adequate.

An interrupt subroutine must have no arguments and is normally terminated by
stopping (STOP or CALL EXIT) or by calling JUMP@ to return to a label in an
earlier routine. The following program illustrates this technique:

4GC4A=0; @D8C7

8=C464A�# G

2><?;4G� % ;014;

2><<>= ;014;

20;; ;014;/�;014;�� �

20;; B4CNCA0?/�@D8C7�G���

 A403 ��=

3> ! 8, �=

! ?A8=C ��=

FTN77 User’s Guide

192

?A8=C ��´4=3 >5 ;>>?´

6>C>

4=3

8=C4AAD?C BD1A>DC8=4 @D8C7

2><?;4G� % ;014;

2><<>= ;014;

20;; 2>D�´@dXc caP__TS�´�

20;; 9D<?/�;014;�

4=3

By pressing Ctrl Break you can force this program to abandon the loop in progress,
print a message, and return to read more data. Clearly this technique is of great value
in writing interactive programs.

It is possible on return from an INTERRUPT SUBROUTINE to continue from the
point at which execution was interrupted, provided that the subroutine neither
performs Fortran input/output calls nor any other system routine. For example, such a
subroutine might simply set a flag in a common block and return to the calling
program.

If the INTERRUPT SUBROUTINE either calls a system routine or performs
input/output, and the interrupt takes place from within a system routine or the Fortran
input/output system, then unpredictable effects can result after return from the routine.
However, control can be passed back to the program using the LABEL@ and
JUMP@ routines.

193

14.

The in-line assembler

Introduction
This chapter explains how to write 32-bit assembler instructions in Fortran programs.
It may be omitted by readers who have no interest in the details of the Intel
microprocessor environment. FTN77 users wishing to code at the assembler level
should obtain a copy of a Programmer’s Reference Manual published by Intel. For
details of the DBOS execution environment see page 314.

The execution environment (Win32)
Each process executes in its own 32-bit virtual address space. This gives 2Gbytes for
the combined code and data spaces (the remaining 2Gbytes are reserved for the
operating system). Using the advanced features of the 486 chip, each process address
space is protected from modification by other processes executing within the system.

The CODE/EDOC facility
The CODE statement switches the compiler into a mode in which it accepts Intel 32-
bit assembler instructions rather than Fortran statements. The compiler is returned to
normal by the EDOC statement. A CODE/EDOC sequence may appear anywhere
that an executable Fortran statement is permitted. For example:

270A02C4A� � ;

2>34

FTN77 User’s Guide

194

;40 438��; *438 VTcb PSSaTbb ^U ;

<>E1 0;��,´�´ *0bcTaXg X] 0;

<>E 42G��, � *2^d]c X] 42G

A4? *AT_ _aTUXg R^STS Pb

� * P bT_PaPcT X]bcadRcX^]

BC>B1 *CWXb UX[[b ; fXcW PbcTaXbZb

9<? � � *9d_ c^ [PQT[�

43>2

?A8=C ��´CWXb bW^d[S]^c QT _aX]cTS´

BC>?

 � ?A8=C ��´; , ´�;

4=3

This example is artificial in that there is no real point in performing operations in
assembler that can be done in Fortran, however it illustrates that code is written
according to the following conventions:

� Instructions refer to Fortran objects or explicitly to the registers

� Register names are followed be a ‘%’ to distinguish them un-ambiguously from
variable names.

� Instructions must start in column 7 or beyond.

� Only numeric (Fortran) labels are permitted.

� Comments may be included provided they are preceded by a semi-colon character
(;)

� Some mnemonics are followed by an ‘H’ to indicate halfword (16-bit) operation or
by ‘B’ to indicate a byte operation. This is discussed in more detail below.

Mixing of Intel 32-bit Assembler and Fortran
Assembler programs should not alter registers EBX% (pointer to local static data),
EBP% (pointer to local dynamic data), or ESP% (stack pointer). Other general
registers can be used freely.

Under DOS/Win16, in certain cases (notably in conjunction with SVC’s) it may be
necessary to alter EBP% or EBX%. In this case the contents should be pushed prior
to the operation and restored afterwards with a pop instruction.

The coprocessor will be empty and in rounding mode when control is passed to
assembler, and it must be in the same state afterwards. It is possible to jump from
Assembler to labelled Fortran statements and vice-versa.

Chapter 14 The in-line assembler

195

Labels
As in the above example, labels are Fortran labels and are referred to by preceding the
numeric label by a dollar character thus:

9<? �&

Conditional jumps are coded in 32-bit form when necessary, so these may be used
without considerations of range. The LOOP instructions, which do not have 32-bit
forms, are not supported by the assembler.

Referencing Fortran variables
Variables are referenced using the following scheme.

� Local dynamic variables are addressed using EBP%.

� Local static variables are addressed using EBX%.

� An argument can only be referenced by its address. For example, in order to load
the argument L into AX% use:

BD1A>DC8=4 5A43�;�

8=C464A�! ;

2>34

<>E 40G��,; *6Tc PSSaTbb ^U ;

<>E7 0G��J40G�L *;^PS WP[Uf^aS

�

�

� References to common or external variables are constructed using a full 32-bit
address.

These rules mean that local variable references may be indexed by one extra register,
and common variables may have two indexing registers if necessary. For example:

8=C464A�# ;�!���

2>34

<>E 40G��,'

<>E ;J40G�L�,� *CWXb bTcb ;�"� c^ �

Variable references may be offset. For example:

FTN77 User’s Guide

196

270A02C4A� � 5>>

2>34

<>E1 5>>�"�,"! *BTcb 5>>�#)#�,´ ´

Indices can also contain multipliers of 1 (default), 2, 4, or 8. For example:

033 J40G��42G��#L� ,%

Literals
An instruction operand may be a constant (literal). In this case the constant must be
preceded by an ‘=’. Floating point instructions may have literal arguments, which are
placed in memory and addressed, since there is no immediate form of these
instructions.

Literals may contain any constant expression (which will be evaluated using the
standard Fortran 77 rules) and may be of any type. For example:

5;3 ,$��

35033 ,$��3� *=^cT A40;�'

* R^]bcP]c]TTSTS

<>E 40G��,�#�$� *;^PS !� X]c^ 40G�

C4BC 5A43�,I´54555555´ *7Tg R^]bcP]c

Halfword and byte forms of instructions
In standard (16 bit) assembler notation, many instructions have two forms depending
on whether the operand is of type byte or word. In 32-bit assembler, instructions may
have three forms - full word (32-bit), half word (16-bit) and byte (8-bit).

Rather than follow the Intel convention that the instruction is defined by its operand
(something which is hard to define in the context of Fortran variables), each distinct
instruction has a different mnemonic. The conventional Intel mnemonic refers to the
32-bit form of the instruction, and we append an ‘H’ to refer to a half word instruction
(constructed using an operand size prefix) or a ‘B’ to refer to a byte instruction where
available. Thus for example we have the following string move instructions:

<>EB *<^eT P Ud[[f^aS

<>EB7 *<^eT P WP[U f^aS

<>EB1 *<^eT P QhcT

Chapter 14 The in-line assembler

197

A similar scheme is used with the memory reference coprocessor instructions. Thus
we have for example four types of memory reference floating point additions:

580337 8 *0SS P] X]cTVTa WP[U f^aS

58033 ; *0SS P] X]cTVTa Ud[[f^aS

5033 A *0SS P bW^ac aTP[�# QhcTb�

35033 3 *0SS P [^]V aTP[�' QhcTb�

Using the coprocessor
Coprocessor stack operands are referred to using the following notation:

BC��� *BcPRZ c^_

BC� � *=Tgc c^ bcPRZ c^_

TcR�

Stack reference instructions use the short real form of the mnemonic (for example,
FADD) but the actual calculations are performed to the full precision of the
coprocessor. The coprocessor stack must be returned empty and with the control word
unchanged. Coprocessor instructions do not contain an implied WAIT. WAIT
instructions are only necessary after results are returned to the 32-bit Intel chip
(FSTP, or FSTSWAX for example), and even then only if the result will be used
before another coprocessor instruction is started.

If you are writing code that might be used in an another environment, you should
ensure that any coprocessor mnemonics you use are appropriate to that environment.

Under DOS, Weitek mnemonics are supported for operations for the 1167 and 3167
coprocessors on a 386 and for operations for the 4167 coprocessor on a 486.

Instruction prefixes
The following prefixes are available as pseudo instructions coded on the line above :

A4?

A4?4

A4?=4

5B *0__T]Sb cWT 5B) _aTUXg

6B *0__T]Sb cWT 6B) _aTUXg

FTN77 User’s Guide

198

For example:

5B *B^daRT ^_TaP]S Ua^\ 5B

A4?

<>EB1

or

<>E 5B)��4B?�

would be coded as

5B

<>E ��4B?�

Other prefixes are rarely needed, however they are available using the DB pseudo
instruction to code an arbitrary byte. For example the CS: prefix could be coded as:

31 I´�4´

Other assembler facilities
In general, the assembler pseudo-instructions and macros are not available, as
equivalent or more powerful facilities are available using FTN77. The following
pseudo instructions have been provided:

� In-line data may be inserted using DB, DW, or DD pseudo instructions. For
example:

33 I´54555555´ *# QhcTb

3F #$ *! QhcTb

31 � * QhcT

� Under DOS/Win16, the SVC pseudo instruction has been provided to facilitate
calls to DBOS. The only SVC calls of general interest are SVC/3 and SVC/26.
SVC/3 is described in detail below; SVC/26 is used to set the IOPL (I/O
permission level) of the program. If EAX%=1 user I/O is enabled, if EAX%=0
user I/O is inhibited (default). After using this SVC it is possible to use IN and
OUT instructions to control peripherals (or crash the machine if you are not
careful!).

� Do not try to select the coprocessor rounding mode by using an explicit FLDCW,
as this will invalidate the independent control of arithmetic precision. Each of the
following pseudo instructions is snapped on first use to the appropriate FLDCW
command referencing a table of suitable control words:

5A>D=3 * BT[TRc a^d]SX]V \^ST

527>? * BT[TRc RW^__X]V c^fPaSb �

Chapter 14 The in-line assembler

199

527>?< * BT[TRc RW^__X]V c^fPaSb � X]UX]Xch

527>?? * BT[TRc RW^__X]V c^fPaSb � X]UX]Xch

Calling MS-DOS and BIOS
See page 316.

Other machine-level facilities
It is always inconvenient to have to descend to assembler, even in the form of a
CODE/EDOC sequence, and a number of special Fortran constructions have been
introduced for convenience.

� The intrinsic functions CCORE1, CORE1, CORE2, CORE4, FCORE4 and
DCORE8 are available to examine the contents of a given location.

Each function takes an INTEGER*4 argument. CORE1 returns the INTEGER*1
byte at that address, CORE2 returns the INTEGER*2 word at that address and
CORE4 the corresponding INTEGER*4 value, FCORE4 the corresponding
REAL value and DCORE8 the corresponding DOUBLE PRECISION value.
CCORE1 returns a single byte (as a character).

These functions must be declared in an INTRINSIC statement before they are
used. They may also be used on the left hand side of an assignment. For example:

2>A4!�;� , 2>A4!�;��

22>A4 �?�,´ ´

2>A4 �?CA�, !"

If an argument to a routine is one of these functions the actual address is passed,
for example:

8=C464A�# ;

8=CA8=B82 ;>2�2>A4!

: , #

; , ;>2�:�

20;; 5A43�2>A4!�;��

?A8=C ��:

4=3

BD1A>DC8=4 5A43�<�

< , < � !

4=3

FTN77 User’s Guide

200

would print 6.

� A special form of the SUBROUTINE statement is available thus:

B?4280; BD1A>DC8=4 902:

Special routines must have no arguments, and contain no preamble to set
EBX%,EBP% etc. They can only really be followed by CODE/EDOC sequences,
and no reference to dynamic variables must be made in such a routine. Static
variables may be referenced and will use the full address form of the instruction
(rather than EBX% relative). Special subroutines may contain additional entry
points coded as special entries:

B?4280; 4=CAH 18;;

Special routines may not contain ordinary entry points and vice-versa. The return
from a special subroutine must be via a RET instruction and not as a result of
executing a RETURN or END statement. The main purpose of the special
subroutine is as a routine which can be called from assembler without altering the
contents of the registers.

An additional use of this facility is in conjunction with the SET_TRAP@ routine. A
control break or floating point fault can take place at an arbitrary point in a
program, and it is important to be able to save the registers etc. before they are
overwritten. Although this can be done with an interrupt subroutine without the
use of CODE/EDOC, the latter offers the ability to inspect and alter the contents
of the registers if desired.

� INTEGER*4 variables may be given address values in DATA statements. For
example:

30C0 ;��:�

would give L the value of the address of K. The address must be of a local static,
external or common variable.

� Circular shifts are available as intrinsic functions and thus do not require the use
of assembler.

� The LOC intrinsic function returns the address of its argument as a 32-bit number.

Error messages
Owing to the syntax of assembler, use of unpaired apostrophes and parentheses in
comments in CODE/EDOC sequences will cause the compiler to output apparently
spurious messages concerning the mismatching.

201

15.

The in-line assembler and DBOS

FTN77 programs and the DBOS environment
This chapter gives some information about what basic forms of instructions are used to
access different storage classes of data, and also discusses the subroutine linkage
conventions used by FTN77. This will help both with recognition and understanding
of some of the instruction sequences emitted by FTN77, and also with writing
CODE..EDOC in-line assembler sequences under DOS/Win16.

Segment selector registers
The segment selector registers CS, DS and SS (code, data and stack segments
respectively) are set up to point to the entire virtual address space with no offset (i.e.
they all point to virtual address zero with a 4-gigabyte segment limit).

The ES selector is used by some string instructions which require it. The FS selector
is not dedicated for any particular use, and so it is available for temporary use for
special applications (for example, see the description of the use of the DOSCOM@
routine in the FTN77 Library Reference manual). The GS selector is set up to point
to the memory space mapped onto the Weitek coprocessor when one is installed.

Variable storage
FTN77 programs make use of the EBP% register to address local dynamic variables.

Scalars are allocated at positive offsets from EBP%, while arrays are allocated at
negative offsets. This arrangement is used so as to maximise the number of objects
(and hence hopefully the number of instructions) which require only a one-byte offset
to access them. For example, if an array of size more than 128 bytes were allocated at
offset 0 from EBP%, then no other objects allocated relative to EBP% could be
referenced with a one-byte offset, thus effectively wasting some code space on
instructions which would then need multi-byte offsets.

FTN77 User’s Guide DOS/Win16

202

When not operating in /OPTIMISE mode, the EBX% register is used to point to the
static data space (i.e. saved variables). Scalars are allocated at negative offsets from
EBX%, again to increase the number of objects which can be referred to with short
offsets. Note that the scheme can be used either way around. The range of offsets
which are accessible with one byte is -128 to 127, since the offset is treated as signed.
FTN77 does not use a more optimal allocation strategy due to the constraints of its
single-pass nature.) Where constants cannot be compiled into immediate mode
instructions (for example, where they appear as subroutine arguments), they are
placed relative to EBX%.

When /OPTIMISE is in effect, the EBX% register is not used in this way. All
references to static objects are planted as absolute address references (which are of
course re-located appropriately by the linker). In this way the EBX register becomes
free to be used for more general purposes. When optimisation is in effect the
availability of another register is especially beneficial, due to the extra sophistication
of the register allocation algorithms used.

Thus, the instructions output for an assignment of a static short integer scalar to a
dynamic short integer scalar might be of the following form:

<>E7 2G��3B�)J41G���!L

<>E7 BB�)J41?���'L�2G�

(Note that the syntax used here for segment register references is not directly
acceptable to the FTN77 in-line assembler. In fact, since DS% and SS% point at the
entire real mode address space, it would not be necessary to specify them explicitly
when assembling instructions such as those above.)

Arguments to routines are passed as pointers, which are stored relative to EBP% in
the initialisation code for the routine (usually from offset 0 onwards for a main
entrypoint). Thus the code to load a short integer argument into the AX% register
might be of the following form:

<>E 42G��BB�)J41?���#L

<>E7 0G��3B�)J42G�L

Note that even when refering to an object which is an argument by name in an in-line
assembler sequence, it is necessary to perform the de-referencing described above.
Failure to do so will result in the error message “Illegal memory reference” at compile
time.

Common variables (and static variables when /OPTIMISE is in effect) are fixed up to
an absolute address by the linker, and thus are not referenced relative to any base
register. A common reference might look something like the following:

<>E7 0G��3B�)J����!� ��L

Chapter 15 The in-line assembler and DBOS

203

Linkage to subroutines
There are three aspects to this topic - the code to call a subroutine, the code executed
at on entry to the subroutine, and the code to return from the subroutine. The scheme
has to achieve four things:

� Transfer of the arguments to the procedure.

� Setting up the required value of EBX% for the called routine’s static data space,
and reinstating its value on return.

� Setting EBP% to point to a new “stack frame”, or local dynamic data space.

� Transfer of control to the procedure and return to the point immediately after the
procedure invocation afterwards.

Of course, the most natural mechanism to use for the last of these requirements is the
CALL instruction, together with a corresponding RET instruction. This implies that
the system stack, with stack pointer ESP% is used, so the value of EBP% is set up
with respect to ESP%.

As an example, we will look at a call to a subroutine which takes two short integer
arguments. The code to call the subroutine is as follows:

?DB7 ������(4

;40 40G��BB�)J41?�� �L

?DB7 40G�

<>E 4B8��4B?�

20;; ������0�

033 4B?���������'

The first PUSH puts a pointer to the second of the two arguments onto the stack
(arguments are always pushed in reverse order). In this example, since the argument
is an absolute address, we can deduce that the argument in question is either a static or
common variable, or an external. The second PUSH is of a local dynamic variable -
its address has to be obtained at runtime by the LEA instruction since, unlike static
and common variables, its address cannot be determined at link time.

Next, the ESI% register is loaded with the value of the stack pointer ESP%, and the
routine is called. Thus on entry to the called routine ESI% contains the address of the
start of the argument pointers, which appear in order in ascending memory address
(since the stack builds downwards as values are pushed onto it). Upon return, the
ADD instruction effectively pops the argument pointers off the stack (the value 8
reflects the two 4-byte argument pointers).

For the case of character arguments, a 32-bit length is passed for each of the character
type arguments in the argument list, and these appear after all of the pointers for the
actual arguments in the argument list (that is, they are PUSHed onto the stack before
the actual arguments to the procedure).

FTN77 User’s Guide DOS/Win16

204

On entry to the subroutine, code such as the following is planted:

?DB7 41G�

?DB7 41?�

BD1 4B?��������##

;40 41?��BB�)J4B?��"�L

;40 41G��3B�)J�4�L

<>E 42G��,�������!

;40 438��BB�)J41?�L

A4? <>EB

First of all, EBX% and EBP% are pushed onto the stack, so that they can be returned
to the required values for the caller on return. Next the stack pointer, ESP%, is
moved down sufficiently to make space for the called procedure’s stack frame, and
EBP% is set up relative to this new value of ESP%. In the example, the called
procedure has a 20-element local dynamic short integer array, and one local short
integer scalar, and two arguments. The allocation relative to ESP% is as follows
(offsets in hex):

41?��!' c^ 41?��� array

41?���� c^ 41?���" argument pointer for first argument

41?���# c^ 41?���& argument pointer for second argument

41?���' c^ 41?���(local short integer scalar

To write CODE..EDOC in-line assembler sections it is not strictly necessary to
understand the storage allocation scheme beyond a very general level. To access any
given object in an instruction, it can be specified by name, and its address is fixed up
by the compiler, possibly with the help of the linker, in the same way as it would be
dealt with in a Fortran statement. For those that are interested, the actual storage
allocation of variables is given in the listing produced by the /MAP compilation
option.

Next the EBX% register is fixed up to point to the local static data space (this
instruction is fixed up by the linker when the space is allocated - the object file
specifies how big a space is needed, and the linker allocates the requested amount of
space).

The remaining instructions deal with copying the argument pointers from the location
given by ESI% (set up prior to the CALL instruction), to a known offset in the stack
frame, usually from offset zero relative to EBP%. The case where this may not occur
is when a procedure has entrypoints, and the same arguments may appear in different
positions in the argument list. However, as far as possible contiguous strips of
argument pointers are maintained (so that these can be copied by instructions with the
REP prefix). It is at this point that any character lengths are dereferenced, and their
values stored in a space allocated from the called procedure’s local dynamic storage.

Chapter 15 The in-line assembler and DBOS

205

If extra arguments are present on the call, their corresponding pointers are not copied
(the number of fullwords copied is equal to the number of arguments specified in the
subroutine declaration). If too few arguments are supplied then the pointers for those
not present are given by undefined memory locations, and attempts to access these
may simply give meaningless arguments, or may cause a general protection exception,
or for floating point quantities may cause a coprocessor fault.

However, if both the calling and the called procedure are compiled with the /CHECK
or the /FULLCHECK compiler options, then the mismatch in the number of
arguments is picked up by the argument checking mechanism. (We will not describe
the checking mechanism in any detail here, since it is assumed that if the program
being debugged has been compiled with one of the checking options then it does not
violate any of the rules.)

The code to return to the calling procedure simply restores the value of the stack
pointer ESP% to its value at the start of the procedure just after the callers local static
and dynamic space pointers have been restored, pops these from the stack, and then
executes a RET instruction:

;40 4B?��BB�)J41?�� #L

?>? 41?�

?>? 41G�

A4C

Functions are called in the same way as subroutines, except that the function value for
each function type is returned according to the following conventions:

INTEGER*2 AX%
INTEGER*4 EAX%
LOGICAL*2 AX%
LOGICAL*4 EAX%
REAL*4 and REAL*8 ST(0)
COMPLEX*8 and Real part in ST(0) and
COMPLEX*16 imaginary part in ST(1)

Functions which return a character type result are called by a slightly different
mechanism. Before calling the function, the register EDI% is set up to point at the
destination for the function value (note that this may be a compiler-generated
temporary variable). All assignments to the function value in the called routine go
through a copy of this pointer in the called procedure’s local dynamic space, and so
directly affect the intended operand. The declared character length of the function is
PUSHed before other lengths associated with character-type arguments, for use by
CHARACTER*(*) functions.

There are a number of other aspects of the generated code which are not described
here (for example, the argument checking mechanisms mentioned earlier in this

FTN77 User’s Guide DOS/Win16

206

chapter). However much of any information which might be required can be deduced
from the expanded listing generated by the /EXPLIST compiler option.

Trap routines
DBOS can simulate an interrupt if certain conditions occur. This can be enabled with
the SET_TRAP@ routine. See the description of SET_TRAP@ in the on-line Help
system or the FTN77 Library Reference manual for a list of the conditions which can
currently be trapped.

To use this feature the trap routine must save and restore the registers bearing in mind
that the event will usually occur between statements. Here is an example of a simple
CONTROL BREAK handler:

4GC4A=0; @D8CNCA0?

8=C464A�# ?

20;; B4CNCA0?/�@D8CNCA0?�?���

)

)

)

B?4280; BD1A>DC8=4 @D8CNCA0?

2>34

?DB75 *B0E4 0;; A468BC4AB 0=3 5;06B

?DB70

BD1 4B?��, �%*<0:4 A>>< 5>A 2>?A>24BB>A BC0C4

5B0E4 J4B?�L

58=8C

5A>D=3

20;; @D8C

5ABC>A J4B?�L

033 4B?��, �%

?>?0

?>?5

A4C

43>2

4=3

Note that this program could have been coded using an INTERRUPT
SUBROUTINE (see page 191) without the need for CODE/EDOC and is used purely
as a simple example. The QUIT1 routine can take any action desired except that if it
uses Fortran I/O statements it must not return back into an I/O statement. (A key
press could occur at any point.) The use of low level I/O routines such as COU@ is
not restricted. A useful technique is to set up a label with LABEL@ and pass it in

Chapter 15 The in-line assembler and DBOS

207

COMMON. The QUIT1 routine can then use JUMP@ to pass control to the label.
See the FTN77 Library Reference manual or the on-line Help system for detailed
information on COU@, LABEL@ and JUMP@.

The machine code programmer’s window
The window based debugging system, described in chpapter 7, also offers a window
for debugging at the machine code level (see page 68 for further details).

FTN77 User’s Guide DOS/Win16

208

209

16.

Mixed language
 programming

Introduction
This chapter discusses the details of inter-language programming between Fortran and
Salford C/C++. The sizes of the various data types, data storage and function call
styles are covered in order to facilitate the mixing of modules compiled in either
language.

Data types

Basic data types
The table 16-1 illustrates the amount of storage required for the basic data types
associated with each language: In all the languages, pointers are represented as 32-bit
quantities.

Arrays
There are two methods of storing arrays, row-wise and column-wise. Row-wise
storage means that the elements are stored a row at a time starting from a base address
and increasing towards high memory. Arrays stored column-wise have the elements
stored a column at a time increasing towards high memory.

For example, consider the array consisting of 10 rows and 20 columns. The
appropriate declarations in each language would be:

FTN77 8=C464A�#]d\QTab� ��!��

FTN90 8=C464A��:8=3,"�]d\QTab� ��!��

C/C++ X]c]d\QTabJ!�LJ �L*

FTN77 User’s Guide

210

Data
type

Size
(bytes)

C/C++ FTN77 FTN90

1 char INTEGER*1 INTEGER (KIND=1)

Integer 2 short int INTEGER*2 INTEGER (KIND=2)

4 int;
long int

INTEGER*4 INTEGER (KIND=3)

1 unsigned char - -

Unsigned
integer

2 unsigned short
int

- -

4 unsigned int - -

1 char LOGICAL*1 LOGICAL (KIND=1)

Logical 2 short int LOGICAL*2 LOGICAL (KIND=2)

4 int LOGICAL*4 LOGICAL (KIND=3)

4 float REAL; REAL*4 REAL (KIND=1)

Real 8 double REAL*8; DOUBLE
PRECISION

REAL (KIND=2)

10 long double - -

Character 1 char CHARACTER*1 CHARACTER*1

Table 16-1

A row-wise array would be stored as:

]d\QTab�����*]d\QTab� ���*]d\QTab�!���* ���]d\QTab�(���*

]d\QTab��� �*����

whilst a column-wise array would store the elements as

]d\QTab�����*]d\QTab��� �*]d\QTab���"�* ���]d\QTab���(�*

]d\QTab� ���*����

The various language standards define Fortran as using column-wise storage, whilst
C/C++ stores arrays row-wise. Therefore, a Fortran array defined as

]d\QTab� ��!��, would have the equivalent C/C++ declaration

]d\QTabJ!�LJ �L�

Chapter 16 Mixed language programming

211

Character strings
C/C++ character strings are stored as a NULL (character zero) terminated arrays of
characters whilst Fortran characters strings are fixed length and are padded to the end
of the array with spaces. It is important to take into consideration these different
methods of storing strings when passing or receiving them as parameters.

Calling FTN77 from C/C++

Introduction
The following text assumes that you are writing in C/C++ and are calling an FTN77
relocatable binary library (RLB) or dynamic link library (DLL).

When calling FTN77 routines from C/C++, the following major points should be
considered:

� Fortran arguments are passed by reference rather than value.

� All Fortran external names are upper case (regardless of the case of the original
source text).

� Fortran character variables have no simple analogue in C/C++.

If you have a C/C++ main program calling a Fortran RLB, then the main program
should call the library initialisation routine if there is one. Failure to do so will result
in unpredictable behaviour. If you are calling a DLL then the initialisation will
probably take place automatically when the DLL is loaded.

CHARACTER variables
Fortran character arguments are fixed length and padded with space characters. In
order to determine the length of a character argument, the FTN77 compiler passes the
length of the string as an extra argument at the end of the argument list for the
subroutine/function. If more than one character argument is passed, then the lengths
are passed in the order in which the character arguments appear in the argument list.
For example:

BD1A>DC8=4 2><?0A4�BCA8=6 � BC8=6!�

270A02C4A���� BCA8=6 � BCA8=6!

�

�

4=3

FTN77 User’s Guide

212

This subroutine would have the following C/C++ prototype:

TgcTa] �2� 2><?0A4�RWPa �b �RWPa �b!�X]c [�X]c [!�*

where l1 and l2 are the lengths of the two strings s1 and s2 respectively. In order to
call COMPARE from within a C/C++ program, the programmer must pass the
lengths of the two strings so the call would look something like this:

RWPa �bca � �bca!*

�

�

2><?0A4�bca � bca!� bca[T]�bca �� bca[T]�bca!��*

Arrays
As we have already noted, the standards for C/C++ and Fortran define array storage
differently. Is is therefore necessary to provide an interface routine between the
FTN77 library and the C/C++ code or to modify the C/C++ code to take into account
the differences in data storage.

INTEGER, LOGICAL and REAL
It is necessary to ensure that the data type of the C/C++ variable matches that of the
FTN77 variable (see table 16-1). All parameters in the Fortran argument list will be
passed by reference. You should therefore declare each argument as a pointer in C or
as a reference variable in C++.

Common blocks
The FTN77 compiler automatically adds an underscore “_” character onto the end of
a common block name. This is transparent to the programmer unless you wish to
access the data stored within the common block. It is necessary for the C/C++
programmer to explicitly add this underscore character to the common block name
before use. Alternatively, the program COMGEN (see chapter 17) may be used.

Calling C/C++ from FTN77 or FTN90
The C_EXTERNAL keyword has been added to give the Fortran programmer the
added flexibility of being able to call C/C++ routines and forcing the compiler to
generate extra code to handle some of the data conversions. An example of this is the
string data type. As we have already noted, C/C++ strings are NULL terminated,
whilst Fortran strings are fixed length, padded with spaces. The C_EXTERNAL
declaration for a function, informs the compiler that the function or subroutine is
written in C/C++ and is external to this program module. If the function uses a string

Chapter 16 Mixed language programming

213

data type, code is planted to generate a C/C++ style string before entering the C/C++
function and then after the function call, code is generated to convert the C style string
back into a Fortran string. This frees the C/C++ programmer from the additional
complexities of providing the conversion code. It also means that a Fortran
programmer can call a third party library without converting all string references into
C/C++ strings before calling an external routine.

The C_EXTERNAL declaration has the following form:

2N4GC4A=0;]P\T J�P[XPb�L J�STbR � ����L J)aTbch_TL

where:

name
is the name to be used to call the function in the Fortran program.

alias
is the external name used for the routine (i.e. the name that is used in the C/C++
source code).

desc
describes the arguments that the routine receives and/or returns.

restype
identifies the routine as a function and describes the type of the object returned;
this may be any function type other than CHARACTER.

Some examples of valid C_EXTERNAL declarations are given below.

Example 1

2N4GC4A=0; BD1

This describes an external C/C++ routine which accepts no arguments and returns no
result. The corresponding C/C++ declaration would be

TgcTa] �2� e^XS BD1�e^XS�

j

�����

l

and the function would be called by the Fortran statement 20;; BD1.

Example 2

2N4GC4A=0; FA8C4 �FaXcT5X[T�) 8=C464A�#

This describes a C/C++ routine called WriteFile which accepts no arguments, but
returns an integer result. The routine is called from a Fortran program by the
statements

FTN77 User’s Guide

214

8=C464A�# A4BD;C

A4BD;C , FA8C4��

�����

The C/C++ code could have the following form

X]c FaXcT5X[T�e^XS�

j

�����

l

Before continuing, we must first examine the possible forms of the desc parameter and
the restype part of the declaration in more detail.

The desc parameter allows the programmer to over ride the default linkage of
arguments. If you use these argument descriptors, the number of arguments in each
occurrence of a call must agree with the number of descriptors in the routine
definition. desc may be any one of: REF, VAR, STRING, INSTRING,
OUTSTRING.

The VAL specifier may only be used for numeric and logical scalars. Instead of
pushing the address of the value onto the stack, the actual value is pushed. This
allows C/C++ functions to use its arguments as local variables. The REF specifier
may be used with any Fortran object. This forces the Fortran program to push the
address of the object onto the stack. This is the default action but should be used as a
matter of good programming practice to allow the compiler to check for the correct
usage of external functions. So we may additionally have the following descriptions:

2N4GC4A=0; D=8GNFA8C4 �faXcT� �E0;� A45� E0;�) 8=C464A�#

for the UNIX low-level write function. This is defined in C/C++ as

X]c faXcT�X]c WP]S[T� e^XS �QdUUTa� X]c P\^d]c�

j

�����

l

but it now looks to the Fortran program as if it was a Fortran function declared as:

5D=2C8>= D=8GNFA8C4�70=3;4� 1D554A� 1D5B8I�

8=C464A�# 70=3;4� 1D554A� 1D5B8I� D=8GNFA8C4

The remaining three types, STRING, INSTRING, OUTSTRING, are a little more
complicated. All three are used to describe a string object. Each one forces the
compiler to do differing amounts of work before the function call is made. As we have
already seen from the discussion at the start of this section, the compiler can be forced
to convert strings from Fortran strings to C/C++ strings and visa-versa. This is the
default action and is equivalent to the STRING descriptor. However this causes an
unnecessary overhead if and argument is to be used for either input to a function or
output from a function but not both. In this case the INSTRING and OUTSTRING

Chapter 16 Mixed language programming

215

maybe used. This saves the redundant copy operation from taking place. It is also
possible to restrict the length of the temporary variable used to store the string which
is actually used in the function call. The default length of the string is the length of
the CHARACTER array or 256 bytes in the case of a CHARACTER*(*) array. This
is done by specifying the length of the string in parentheses after the descriptor.
Further examples of the C_EXTERNAL are:

2N4GC4A=0; 2>?HNBCA8=6 �bcaR_h� �>DCBCA8=6�8=BCA8=6�) 8=C464A�#

2N4GC4A=0; BCA=2?H �bcaRPc� �BCA8=6� 8=BCA8=6�#���) 8=C464A�#

where strcpy and strcat are the standard C library functions.

Under Win32, the syntax of the declaration for a C_EXTERNAL function is similar
to a STDCALL statement (see chapter 18 for details).

Calling Windows 3.1 functions
FTN77 and FTN90 contains two further keywords, WINREF and WINSTRING.
These are available to aid the writing of programs that use the Windows 3.1 API calls.
The source module containing these keywords must be compiled using the
/WINDOWS option.

WINREF passes the argument by reference but converts the pointer into a windows
style pointer (i.e. 16 -bit segment and offset) rather than a true 32-bit pointer.

WINSTRING arguments are input strings to windows functions. Again the pointer is
converted from 32-bit form to 16-bit form. Further details are given in the ClearWin+
User’s Guide.

Mixing I/O systems in C/C++, FTN77 and FTN90
In general the I/O systems in these three languages are different and should not be
mixed. For example, it is not usually possible to open a file in FTN77, and then pass
the handle to be used in C/C++. The only exception to this rule is that if you use
DBOS library calls to manipulate files, then the handles are common across the
language boundary.

FTN77 User’s Guide

216

217

17.

The COMGEN utility

Introduction
The COMGEN utility can be used to translate a source file containing definitions of
common blocks, parameters, externals and intrinsic declarations into Fortran and
C/C++ include files. By using a central source file and the INCLUDE directive (see
page 36), it is possible to ensure that all modules are using consistent definitions of
the common blocks they require. This also provides a method of accessing Fortran
common blocks as C/C++ structures.

Command line
COMGEN is invoked in the following manner:

COMGEN source dest1 [dest2]

where source contains the source declarations for COMGEN, dest1 is the name of the
file to be overwritten with the Fortran declarations and dest2 is the name of the file
which will contain the C/C++ declarations.

Source file format
The source file is broken down into three parts

� Header information

� Variable declarations

� Trailer information

FTN77 User’s Guide

218

Since COMGEN works as a finite state machine, the data in each section may occur
anywhere in the file. The header information is copied, without modification, into the
top of the Fortran insert file. The declarations for variables are copied into both the
Fortran and C/C++ files with the appropriate mappings applied for variable names
etc. The trailer information is copied, without modification onto the end of the
Fortran insert file.

Changing the process mode/state
It is possible to have more that one occurance of each section within a single source
file. This is achieved by using the directives .TOP, .VARIABLES and .BOTTOM.
These directives should appear with the full stop in column 1 and should be the only
entry on the line. The initial state for COMGEN is to accept variable declarations.

INCLUDE directive
It is possible to have declarations spread over several files by using the #INCLUDE
directive. This must be the only statement on a line with the # appearing in column
one. The remainder of the line should contain the path name of the file to be
processed next. Here are two examples.

�8=2;D34 VaP_WXRb

�8=2;D34 R)KR^\\^]KTaa^ab�baR

At the end of each include file, processing will continue with the line following the
include directive. Include files may be nested (see the limitations listed on page 221).

Comments
Comments may appear either as a full line or as a partial line comment. A comment
is started with /* and continues to the end of the line. The following examples all
include valid comments:

��

�� 8]R[dST SXaTRcXeTb

��

�X]R[dST R)KR^\\^]KR^[^dab�baR �� 2^[^da STUX]XcX^]b�

Chapter 17 The COMGEN utility

219

Variable declarations
Several variable declaration sections may appear in any single file. They may be
interspersed with header and trailer sections at any point in the file. By allowing this,
you can define two variables and use the .BOTTOM directive to place the equivalence
statements at the end of the file.

A variable declaration has the following format:

name storage_type data_type [value] [comment]

Only the first three fields are compulsary for all entries.

name is the name of the variable to be declared.

storage_type refers to the linkage properties of the name. This may be one of
PARAMETER, EXTERNAL, or INTRINSIC. In the case of a common block name,
the name should start and end with an oblique “/” character.

data_type gives the Fortran data type of the name. This entry may be any valid
Fortran data type given in table 17-1.

value is only relevant to names with the data_type PARAMETER. This field gives
the actual value for the name.

comment may be used to give further information about name and its use.

Example
The following example file illustrates the format of the COMGEN source file together
with the generated insert files.

COMGEN source file:

��

�� B^daRT UX[T U^a P UX[T R^]ca^[Q[^RZ SPcP bcadRcdaT�

�C>?

2

2 2^\\^] Q[^RZ STR[PaPcX^]b U^a 58;4 SPcP bcadRcdaT�

2

�E0A801;4B

58;4=0<4 �58;4� 270A02C4A� !'

?>B8C8>= �58;4� 8=C464A�#

0224BBN<>34 �58;4� 8=C464A�#

70=3;4 �58;4� 8=C464A�!

��

�� EP[dTb ^U cWT PRRTbb \^ST U[PVb�

��

FTN77 User’s Guide

220

A4038=6 ?0A0<4C4A 8=C464A�#

FA8C8=6 ?0A0<4C4A 8=C464A�# !

Issuing the command:

2><64= UX[T�baR UX[T�X]b UX[T�W �]c

results in the FILE.INS and FILE.H containing the following:

FILE.INS

2 5X[T VT]TaPcTS Ua^\ 2)Kc_KUX[T�baR

2

2 2^\\^] Q[^RZ STR[PaPcX^]b U^a 58;4 SPcP bcadRcdaT�

2

270A02C4A� !' 58;4=0<4

8=C464A�! 70=3;4

8=C464A�# A4038=6�0224BBN<>34�?>B8C8>=�FA8C8=6

?0A0<4C4A�A4038=6, �FA8C8=6,!�

2><<>=�58;4� 58;4=0<4�?>B8C8>=�0224BBN<>34�70=3;4

FILE.H

�STUX]T aTPSX]V

�STUX]T faXcX]V !

bcadRc Ng j

RWPa Ng!J !'L*

�STUX]T UX[T]P\T 58;4N�Ng!

X]c Ng"*

�STUX]T _^bXcX^] 58;4N�Ng"

X]c Ng#*

�STUX]T PRRTbbN\^ST 58;4N�Ng#

bW^ac X]c Ng$*

�STUX]T WP]S[T 58;4N�Ng$

l*

TgcTa] bcadRc Ng 58;4N*

It is possible to access any of the variables defined in the source file directly in both
Fortran and C. Note, however, that the names have been translated to lower case for
the C definitions. Note also that (even though the common block is mapped onto a
data structure) in C you access the variables directly by name rather than by
referencing the structure and its element. The “_” character in the C file will be
appended by the Fortran compiler automatically. This allows the Fortran compiler to
differentiate between variable and common blocks during compilation and so needs to
be explicitly added for C.

Chapter 17 The COMGEN utility

221

Data type mapping
The following table gives the mapping from the Fortran data types to the C data types.

Fortran C

INTEGER*1,
CHARACTER

char

INTEGER*2,
LOGICAL*2

short int

INTEGER*4,
LOGICAL*4

int

REAL*4 float

REAL*8 double

CHARACTER*(x) char [x]

Table 17-1

Limitations
The following limitations apply to the source file.

Line length 160 characters

Maxmum number of names 5000

Name length 40

Nesting level for include files 10

Number of common blocks 29

FTN77 User’s Guide

222

223

18.

Calling the Windows API (Win32)

Introduction
This chapter describes how to call Win32 API routines from Fortran. Details of how
to use a C_EXTERNAL function for this purpose under Win16 are given in the
ClearWin+ User’s Guide. This chapter provides a temporary addendum to the
ClearWin+ User’s Guide and describes how a C_EXTERNAL function under Win16
is replaced by a STDCALL function under Win32.

Calling Windows API routines from Fortran
As the Windows API is based upon C++, it is easier to use the API from a C++
program. It is possible to program the API from Fortran. However, Fortran data
structures do not easily map on to the data structures that are used by the Windows
API. One way forward, is to employ mixed language programming, keeping your
existing Fortran as far as possible unchanged, and using C++ to provide an interface
to the Windows API.

Programmers who are not familiar with C++ will probably prefer to avoid learning a
new language. In which case the following points should be kept in mind when
calling Windows API functions from Fortran.

Owing to the fact that the Windows API routines written in C++ are __stdcall
functions, it is necessary to use a FTN77 STDCALL function rather than a
C_EXTERNAL function to pop all the the arguments that are pushed on the stack
when the function returns. Windows API routines (and __stdcall routines) pop all the
arguments that are pushed on the stack by the routine that is called before returning.
STDCALL statements for Windows API are included in the file win32api.ins in the
default directory.

FTN77 User’s Guide Win32

224

The syntax of the declaration for a STDCALL function is similar to C_EXTERNAL
statement and is as follows:

BC320;;]P\T J´P[XPb´L J�STbR � ��� �L J)aTbch_TL

where:

name
is the name by which it will be called in the Fortran program.

alias
is the C++ Windows API name (or the required __stdcall function name). Note
that this appears in single quotes and is case-sensitive.

desc
is an argument descriptor, and is either REF, VAL, STRING, INSTRING, or
OUTSTRING (WINREF, WINSTRING, etc.. which are used in Windows 3.1
will be interpreted as REF, INSTRING, etc).

STRING, INSTRING and OUTSTRING may be followed optionally by an
integer in parentheses. This integer specifies the maximum length for the
corresponding argument in the C routine, in each case where the length of the
corresponding Fortran character object cannot be determined (i.e. the actual
argument is CHARACTER*(*)). If the integer is not specified, then a default
value of 256 (bytes) is assumed for the maximum length of the string.

restype
is the type of the function. If this does not appear then the function does not return
a result (equivalent to the C type void). Valid types are INTEGER, REAL,
DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, LOGICAL and
STRING. INTEGER, REAL and LOGICAL may be followed by a length
specifier of the form “*n”. If the function result is declared to be of type STRING
then the function result should be assigned to a variable of type CHARACTER.

Some examples of valid STDCALL declarations are:

BC320;; BD1 � BD1!

BC320;; BD1! ´6Tc0cca´)8=C464A

BC20;;; 2BD1"�A45�BCA8=6�!���)BCA8=6

BC320;; BD1# ´6TcBXiT´ �A45�E0;�E0;�8=BCA8=6�>DCBCA8=6� ����

If no argument specifiers are specified, then default argument linkage is assumed.
This is as follows:

Arrays:
by reference (i.e. as a pointer)

INTEGER and REAL scalars:
by value

Chapter 18 Calling the Windows API (Win32)

225

LOGICAL:
by value, as an integer of the appropriate length, 1 representing .TRUE. and 0
representing .FALSE.

CHARACTER objects:
Copied to a compiler defined temporary variable. A trailing null is added to the
end of the significant length of the string (i.e. there are no trailing spaces). The
temporary variable is then passed by reference. In addition, if the actual argument
is a scalar or array element, the result in the temporary variable is copied back, and
padded to the right with blanks if necessary. This is equivalent to the STRING
linkage descriptor described below.

Where linkage descriptors are specified, the number of arguments in each call must
agree with the number of descriptors specified. The various categories of objects
which may correspond to particular argument descriptors are as follows:

Numeric and LOGICAL scalars:
Value or reference (VAL or REF)

Arrays, externals, dummy procedures:
Reference (REF)

CHARACTER objects:
Reference or string (REF, STRING, INSTRING or OUTSTRING)

The three variants of the STRING descriptor are as follows:

STRING
The corresponding argument is both input and output, and is copied to a temporary
variable on entry to the routine (with a trailing null inserted at the end of the
significant length), and if the argument is a scalar or array element, is copied back
to the actual argument, blank padded to the right if necessary.

INSTRING
The corresponding argument is an input argument with respect to the external
routine. The argument is only copied to the temporary variable, and not copied
back.

OUTSTRING
The argument is returned by the external routine. The temporary variable is set up
to be the length of the corresponding scalar or array element plus one, or of
specified or default (256) length if the corresponding argument is
CHARACTER*(*), but the value is only copied out. Obviously, this descriptor is
only appropriate where the actual argument is a scalar or array element.

workspace, but the string must be NULL terminated beforehand and blank-padded on
return.

When it is required to pass a NULL pointer to a string, the value 0 (zero) should be
used.

FTN77 User’s Guide Win32

226

Some Windows API functions allow a particular argument to take two different types
in different circumstances. For example, an LPSTR in some circumstances and an
integer in others. This is outside the scope of the STDCALL mechanism. If this
feature affects you then you should copy the STDCALL statement for the relevant API
and modify it to have a different Fortran name and argument list, but keeping the
same called name.

A common example is the Windows API function LoadCursor which is used to load
either a cursor defined in the program resource or a predefined system cursor. This
has the following definition:

72DAB>A F8=0?8 ;^PS2dab^a0�70=3;4 W8]bcP]RT�;?BCA [_2dab^a=P\T�

When used to load a cursor from the program resource, hInstance is the instance
handle of the application. lpCursorName is a character string containing the name of
the cursor in the program resource. This form of the function will have the
STDCALL declaration :

BC320;; ;>032DAB>A �;^PS2dab^a0� �E0;� 8=BCA8=6�)8=C464A�#

When used to load a predefined system cursor, the first argument hInstance is set to
zero and the second argument lpCursorName is an integer containing one of a number
of predefined values which specifies the cursor to be loaded. This form of the function
will have the STDCALL declaration :

BC320;; ;>032DAB>A �;^PS2dab^a0� �E0;� E0;�)8=C464A�#

However, having two differing STDCALL statements for the same Fortran function is
not allowed. The solution is to change the Fortran name. For example

BC320;; ;>032DAB>A �;^PS2dab^a0� �E0;� 8=BCA8=6�)8=C464A�#

BC320;; ;>032DAB>A! �;^PS2dab^a0� �E0;� E0;�)8=C464A�#

The same situation arises with some other functions that have the form as
LoadCursor, for example LoadBitmap and LoadIcon,

A further example is given by the Windows API printer Escape function which can
take many different forms. One of these has the following form:

X]c F8=0?8 4bRP_T�WSR� 64CC427=>;>6H� =D;;� =D;;�[_CTRW]^[^Vh�

lpTechnology is an LPSTR (long pointers to strings) so the STDCALL declaration for
this form of the function for use in a Fortran program would be:

BC320;; 4B20?4 �4bRP_T� �E0;� E0;� E0;�8=BCA8=6�

� >DCBCA8=6�)8=C464A�#

A second form of this Escape function is:

X]c 4bRP_T�WSR� B4C2>?H2>D=C� bXiT^U�X]c��

[_=d\2^_XTb� [_0RcdP[2^_XTb�

Chapter 18 Calling the Windows API (Win32)

227

lpNumCopies, and lpActualCopies are both LPINT (long pointers to integers) so the
STDCALL declaration for this form of the function would be:

BC320;; 4B20?4 �4bRP_T� �E0;� E0;� E0;� A45� A45�)8=C464A�#

As before, having two differing STDCALL statements for the same Fortran function is
not allowed and the solution is to change the Fortran name. For example

BC320;; 4B20?4 �4bRP_T� �E0;� E0;� E0;�8=BCA8=6�

� >DCBCA8=6�)8=C464A�#

BC320;; 4B20?4! �4bRP_T� �E0;� E0;� E0;� A45�A45�)8=C464A�#

FTN77 User’s Guide Win32

228

229

19.

Using LINK77, RUN77 and
 Libraries (DOS/Win16)

Introduction
Although the load-and-go mechanism is easy to use, it is not usually suitable for
finished programs. When a program is ready for use, it should be compiled and then
linked by using either :

� the LINK77 utility (described in this chapter) or

� the /LINK compiler option (see page 40).

The LINK77 utility can also be used for mixed language programming to link Salford
C++, FTN90, or Sheffield Pascal modules with FTN77 modules.

FTN77 produces relocatable binary (RLB) code which is not loadable with the
standard Microsoft LINK utilities. This is because LINK works with real mode
addresses while FTN77 requires a 32-bit link. The utility LINK77 is used to produce
.EXE files which execute by invoking DBOS to switch into 32-bit protected mode.

This chapter gives details of the LINK77 utility and also describes two other utilities:
RUN77 and MKLIB77. The usage of these utilities can be summarised as follows:

� Use LINK77 to link RLB modules in object files produced by FTN77 etc. into
execute files which usually will be run directly.

� Use RUN77 to run an execute file in certain special circumstances.

� Use MKLIB77 to combine RLB modules from object files into an RLB library (or
just a new combination of modules) for use with LINK77. The essential difference
between such a library and a simple list of modules is that a library is scanned
selectively by LINK77 in order to satisfy calls to any missing routines.

FTN77 User’s Guide DOS/Win16

230

� Use LINK77 to create a dynamic link library (DLL). By default a DLL is given the
.LIB extension.

The LINK77 utility
LINK77 reads a set of commands from a file or from the keyboard. If LINK77 is
invoked with a file name argument then this is used as the source of commands,
otherwise commands are read from the keyboard. In the latter case, LINK77 prompts
for commands with a ‘$’ sign. When reading commands from a file all errors are
fatal, but when operating interactively LINK77 recovers from errors whenever
possible.

LINK77 commands
The following commands are available.

1. Loading and Saving
LOAD <pathname> or LO <pathname>

This command loads RLB modules from a file produced by FTN77, Salford C++
or Sheffield Pascal. The .OBJ suffix is added to the file name if necessary. This
command supports the use of DOS wildcards (e.g. LO *.OBJ). Object files and
RLB libraries produced by MKLIB77 can also be loaded with this command but
modules from RLB libraries are only loaded in order to satisfy calls to missing
routines.

LOAD_EXHAUSTIVE <pathname> or LE <pathname>
This command is used to load an RLB library and in this context it is identical to
LOAD, except that the library file is scanned repeatedly until no more unresolved
references can be satisfied. This means that it is not necessary to order the
routines in the library file. The repeated scanning is performed on a dictionary
stored at the front of the file, so no inefficiency is implied by this process. Use an
explicit filename extension with this command.

FORCELOAD
This command is also used to load an RLB library and is equivalent to LOAD in
the sense that the whole of the library is loaded without selectivity.

FILE <pathname>
This completes the link process and puts the result in the specified file (appending
the .EXE extension if necessary). If the pathname is omitted then LINK77 uses
the first .OBJ filename to be loaded as the root for the .EXE pathname. (When
LINK77 is used to produce a DLL, see page 237, the .LIB extension is appended.)

Chapter 19 Using LINK77, RUN77 and Libraries (DOS/Win16)

231

If LINK77 finds any unresolved references, it checks any currently available
dynamic link libraries to see if the reference can be resolved. If not it reports the
function(s) as missing. Regardless of whether it finds the function in question,
LINK77 sets up calls to the function so that they will snap a dynamic link if
executed. Note that this means that you can link a program in the absence of the
dynamic link libraries that it calls upon.

LARGE_FILE
Normally LINK77 produces an executable file which must be loaded in its entirety
by DOS (with the usual real mode memory constraints) even though the program
will run in protected mode and access additional memory. RUN77 can be used if
a .EXE file becomes too large to load in DOS. However, if the LARGE_FILE
command has been given, then the FILE command produces a file which requires
much less DOS memory. DBOS then reads the file into memory again. This
incurs a slightly larger startup cost but enables very large executables to be loaded
from the DOS command line without running RUN77. To be effective, the main
program should be loaded as early as possible when using this option.

PERMIT_DUPLICATES
After this command has been given the linker will not abort when a function or
subroutine is loaded more than once. Instead a warning message will be given and
all references to the routine will use the version of the routine that was first loaded.
This is sometimes useful to effectively replace a function or subroutine in a large
file of relocatable binary.

INCLUDE <pathname>
This command executes the linker commands from the given file. Command files
can be nested to a level of 10 deep. If you enter this command from the keyboard
then the included commands will be executed and control will be returned to the
keyboard. If the command is called from within another INCLUDE file then
control will be returned to the line after the command.

QUIT or Q
Terminates the linking process without saving anything on the disk.

2. Diagnostic Information
MAP <pathname>

This writes a map of the load to the file <pathname>. No suffix is implied. If
<pathname> is omitted the output is directed to the screen.

XREF <file>
Specifies that a cross reference map should be writen to <file>. This command
must be issued before any code is loaded.

NOTIFY <name>
Tells LINK77 to report whenever it encounters the given name. A typical use for

FTN77 User’s Guide DOS/Win16

232

NOTIFY would be to determine exactly where an unresolved external reference
occurs (as identified by a previous run of LINK77).

REPORT_DEBUG_FILES
After this command the linker will keep a list of all loaded files that contain
debugging information (i.e. compiled with /DEBUG, /CHECK, /FULLCHECK or
/UNDEF). After linking, LINK77 will produce a list of all the files it has en-
countered with debugging information.

SUPPRESS_COMMON_WARNINGS
This will suppress the warning messages issued by LINK77 if a common block is
defined with different lengths in different routines. However, if you initialise a
common block and subsequently redefine it to be of greater length the result will
still be a fatal error.

*
Lines beginning with an asterisk are treated as comments and are ignored by
LINK77.

3. Dynamic Link Libraries
LINK77 can also be used to create dynamic link libraries. The following summary
lists the commands which relate specifically to DLLs. Further details appear on page
238.

LIBOFFSET <hex number>
When LINK77 is used to create a DLL, the command sequence begins with
LIBOFFSET with <hex number> being the address at which code in the library
will be designed to run.

SUPPRESS
Specifies that subsequent routines loaded into a DLL will not be callable from
outside that library.

NOSUPPRESS
Cancels a previous SUPPRESS command.

ENTRY <routine name>
Specifies that the function is callable from outside the library regardless of the
state of the suppress flag. Suppose that you have a DLL consisting of many
functions of which only one is meant to be called from outside the library. A
simple way to enforce this is to load the code in SUPPRESS mode and then
specify the name of the function in an ENTRY command.

PRESERVE_CASE
This command tells LINK77 not to convert the names of symbols in commands to
upper case. For example, after the use of this command it is possible to set the
address of a lower case symbol using the SY command. This command is
normally used in conjunction with the C compiler.

Chapter 19 Using LINK77, RUN77 and Libraries (DOS/Win16)

233

4. Common Blocks and DLLs
SYMBOL <common block name> <hexadecimal address>

This command (which can be abbreviated to SY) defines the start address of a
common block (which must not be initialised in a block data routine). This is of
most use in conjunction with DLLs to enable a library to share a common block
with a program or other DLL. If you use this command you should ensure that the
storage you specify does not overlap with anything else.

COMMON_BASE <hexadecimal address>
The COMMON_BASE command tells LINK77 where to start allocating common.
This command is used in conjunction with the DEFCOM command.

DEFCOM <common block name>
This command forces a common block to be allocated at once. Usually it is used in
conjunction with the COMMON_BASE command, and this is described in more
detail in conjunction with DLLs (see page 239).

Using LINK77
As an example of the use of LINK77, consider linking the MYPROG.OBJ and
SUBS.OBJ files to produce a run file MYPROG.EXE. The following commands
could be used:

;8=:&&

;>03 <H?A>6

;>03 BD1B

58;4

LINK77 can also be used to create dynamic link libraries as described on page 238.

Running the program
The resulting .EXE file can be executed by typing its name - in the same way as for
any other .EXE file. Any command line parameters can be read with CMNAM@ (see
the FTN77 Library Reference manual or the on-line Help system). If the program
fails, the result will be a brief diagnostic and a register dump. These dumps are
mainly useful in conjunction with assembler coding (see chapter 15). In order to run
the program in this way the .EXE file must be small enough to be loaded by DOS (if
not, DOS will give the error “Program too big for available memory”). Since space
for uninitialised common and dynamic variables is not reserved in the file, most
programs will be loadable in this way. However, programs which contain really large
amounts of code may be too large and must then be loaded with the RUN77 utility.

FTN77 User’s Guide DOS/Win16

234

The RUN77 utility
RUN77 is useful for two reasons:

� In order to load and run .EXE files which are too large to load directly under
DOS. (An alternative solution to this problem is use LINK77 with the
LARGE_FILE command.)

� In order to make the facilities of the interactive debugger available to pre-linked
programs.

The command is used as follows:

AD=&& +_PcW]P\T- ^_cX^]b

The .EXE suffix is automatically added to the pathname if it is not present. The
program is run as normal except that control is passed to the interactive debugger in
the event of a run time fault.

The following options are available:

/BREAK
This causes the program to be suspended in the interactive debugger in the same
way as the /BREAK option operating with FTN77. The relevant routines must
have been compiled with the /CHECK, /FULLCHECK, /UNDEF or /DEBUG
options for this to be useful.

/HARDFAIL
This suppresses the interactive debugger intervention in the event of a run time
fault. This option is useful if RUN77 is simply being used to load a program
which is too big to fit into DOS memory.

/PARAMS
The remainder of the command line after /PARAMS is left for the program to
read. For example, if the program reads its input and output files from the
command line (using CMNAM@, see the FTN77 Library Reference manual or the
on-line Help system) the command line might look as follows:

AD=&& <H?A>6 �?0A0<B 8=58;4 >DC58;4

/PRELOAD
Using this option forces the whole executable file to be loaded before execution
begins, rather than being paged in on demand. This can be used to remove the
effect of the progressive paging in of a program on any timings which might be
taking place, and also to check whether the run file will fit in its entirity into a
given memory size.

/UNDERFLOW
This causes floating point underflow to be treated as an error. By default,
calculations which underflow produce a zero result.

Chapter 19 Using LINK77, RUN77 and Libraries (DOS/Win16)

235

/READ <unit> <pathname>
The /READ option opens the given file for formatted sequential read access on the
given unit. /WRITE is similarly used to assign an output file from the command
line. /READU and /WRITEU are correspondingly used for unformatted
sequential access files. For example:

AD=&& <H?A>6 �A403 & <H?A>6�30C

/READ and /WRITE etc. can be used in one and the same command line and may
be used more than once in the same command line.

Note:
RUN77 passes its arguments to the system routine START_PROGRAM@ (see the
FTN77 Library Reference manual or the on-line Help system), which provides
equivalent facilities under program control.

Libraries
The FTN77 system supports two kinds of libraries:

� Relocatable binary libraries for use with LINK77.

� Dynamic link libraries. (These are discussed on page 237.)

Relocatable binary libraries
RLB libraries are prepared using the MKLIB77 utility. This utility has two modes -
interactive mode and command mode.

RLB libraries are scanned by the LINK77 LOAD command and subroutines which
satisfy currently outstanding references are loaded.

Conceptually this process is linear. For example, suppose that FUNC1 contains a
reference to FUNC2 and assume that neither of these routines have been loaded. If
the routines were to appear in the library in the order

5D=2

5D=2!

then both would be loaded with the LOAD command. If, however, the order was
reversed, FUNC2 would not be loaded unless an explicit reference to FUNC2 was
outstanding. This mechanism can be used to achieve special effects within libraries.

FTN77 User’s Guide DOS/Win16

236

Sometimes it is inconvenient or impossible to order an RLB library in an appropriate
manner. In this case the LINK77 command LOAD_EXHAUSTIVE should be issued
instead of LOAD.

1. MKLIB77 command mode
In order to prepare a relocatable binary library you must first produce a file containing
the relocatable binary corresponding to the routines in question. In the simplest
situation, these routines will already reside in one file and can be compiled by a simple
call to FTN77. However, if the project involves a number of files, the widecard form
for the file name can often be used together with the /BINARY compiler option (see
page 22). Alternatively after compilation, .OBJ files may be combined if necessary
using the DOS COPY command. For example:

2>?H 5 �>19�1�5!�>19 C4<?�>19

where /B is used to inform COPY that the files are binary files. If a routine in the
library references another, then that routine must precede the referenced routine in the
.OBJ file. In the above example, routines in F1.OBJ may call routines in F2.OBJ,
but not vice-versa. The file is converted into a library using the MKLIB77 utility thus:

<:;81&& +aT[^RPcPQ[T QX]Pah UX[T- +[XQaPah UX[T-

For example, continuing the above example:

<:;81&& C4<?�>19 <H;81�;81

2. MKLIB77 interactive mode
Interactive mode is entered by typing the MKLIB77 command with no arguments:

<:;81&&

If there are no .OBJ files in the current directory the user is prompted for another
directory. When a directory is reached which does contain .OBJ files, these are
presented in a menu on the right of the screen, and the user selects one of them by
moving the cursor bar to the file in question, and pressing Enter.

Once a relocatable binary has been loaded into the system, the routine names (and any
entry points) will be scrollable in the window on the left of the screen.

The following keys can then be used in addition to the normal cursor keys:

Del Deletes the routine at the cursor

Ins Prompts for another .OBJ file to be inserted above the routine at the
cursor. Position the cursor just beyond the last routine in order to
append relocatable binary to the end. A window of relocatable binary
files is displayed for you to select the one to be inserted

Chapter 19 Using LINK77, RUN77 and Libraries (DOS/Win16)

237

Alt-L Mark the beginning or end of a block of routines. The block will be
marked in red

Alt-D Delete a block of routines

Alt-M Move a block of routines to just above the current cursor position (which
must not itself be in the block)

Alt-C Copy a block of routines to just above the current cursor position (which
must not itself be in the block)

F3 Create a new file and exit. You will be asked for the name of the file
and whether the result is to be an RLB library or simply an object file
(include an explict extension, .OBJ could be used for both types of file).

Alt-S Prompts for the name of a routine or entry point and searches for the
routine in the currently loaded relocatable binary

Esc Exits the utility

In either the command or the interactive mode, MKLIB77 will reject a .OBJ file
which contains a main program. The result can be used with LINK77 using the
LOAD command in exactly the same way as any other relocatable binary. Only those
routines that are required will actually be loaded by LINK77.

Dynamic link libraries
Dynamic link libraries are the preferred method for delivering large packages of
routines. These libraries operate in much the same way as the DBOS system library,
in that the code which they contain is linked into the program as it is required at run
time. This means that .EXE files can be kept small and link times are fast. When
DBOS is invoked it looks for the file LIBRARIES.DIR (actually LIBRARIE.DIR
since DOS file names are limited to 8 characters) in the directory containing the
DBOS system. This file, if present, should consist of a list of pathnames (not local
names) of the dynamic libraries to be used subsequently. Up to twenty such libraries
can be specified. Each pathname should be on a separate line in the file. For
example, a typical LIBRARIES.DIR file might contain:

2)KBHB;81K6:B;81�;81

2)K<H;81BK<0CA8G�;81

A dynamic link library is a piece of absolute binary code which has been linked so as
to work from high numbered addresses. This code is placed in a .LIB file together
with some map information which enables DBOS to load the code as it is actually
needed at run time. Note that the fact that the library code is loaded at high addresses
does not imply that a correspondingly large amount of physical memory must be
available on your PC. This is because DBOS uses the virtual memory hardware on
the 32-bit Intel chip.

FTN77 User’s Guide DOS/Win16

238

The address at which a library is loaded is arbitrary, provided it is at least 4095 bytes
beyond the last address used by a program, and not greater than 60000000 (to avoid
space used by DBOS). It is suggested that start addresses (hexadecimal) of 41000000,
42000000, 43000000, etc. are used, as these are well clear of any loaded programs and
the stack. If more than one library is in use, their address spaces must not overlap.
The above addresses provide for 16 megabytes of virtual address space per library.
Details of the Salford DBOS memory map are given on page 318.

Creating dynamic link libraries
Dynamic link libraries are created using LINK77. The first command to this utility
must be:

;81>55B4C +WTg]d\QTa-

The hexadecimal number is the address at which code in the library will be designed
to run. The remaining commands are the same as those used to create a .EXE file
except that you must not load a main program into a library file. A file with a .LIB
suffix should be used on the FILE command. As an example, the following
commands could be used to convert a set of Fortran routines in MYLIB.FOR into a
dynamic link library called MYLIB.LIB:

5C=&& <H;81

;8=:&&

;81>55B4C # ������

;>03 <H;81

58;4 <H;81�;81

A subroutine call will only reference a dynamic link library if there is no routine of the
same name to be found in the program itself. This is useful because it means that the
names of internal routines in a library will not clash with user-defined routines in the
way which they would if the library of routines were directly linked into the program.
It is also possible to hide the internal routines of a library completely. This is done
using the SUPPRESS and ENTRY commands in the linker. For example, consider
that in the above example only functions GRAPH1 and GRAPH2 are to be callable
by the user.

The library could be loaded thus:

5C=&& <H;81

;8=:&&

;81>55B4C # ������

BD??A4BB

;>03 <H;81

4=CAH 6A0?7

Chapter 19 Using LINK77, RUN77 and Libraries (DOS/Win16)

239

4=CAH 6A0?7!

58;4 <H;81�;81

Sometimes a dynamic link library may contain a call to a routine which is located in
the user’s program. For example, an integration routine may make calls to a user-
supplied routine called FUNC (say) to supply function values. If the call is made by
means of an external routine passed into the library as an external then there is no
problem. If the name is hard coded in the routine and the routine is not found within
the library, all other libraries plus the system library are searched for the routine. If
the routine reference is still unsatisfied, the user’s program is searched for the
reference. This means that references from within a library to user-supplied routines
will work provided a routine of the same name does not exist elsewhere in the system.

Common blocks in dynamic link libraries
Special consideration needs to be given to common blocks which are used to
communicate information with a dynamic link library. A library may use as many
common blocks as required internally to itself. However, if a program contains a
common block /C/ (say) and calls a routine in a library which also references a
common block /C/, then these two common blocks will not, by default, be the same.
This is because each piece of code, having been linked quite separately, will reside at
different addresses.

Sometimes this can be quite useful, however to share a common block you should
specify its address using the LINK77 command SYMBOL. If the same address is
used when loading the program and the library then all will be well. In general it is a
good idea to specify an address which is well removed from the program and the
library. This procedure can become tedious in situations in which there are large
numbers of named common blocks, since (if common blocks are allocated using the
SYMBOL command) it is the user’s responsibility to ensure that blocks do not
overlap.

The LINK77 commands COMMON_BASE and DEFCOM provide a means of
overcoming this problem. By means of these two commands, common blocks may be
loaded starting from a given address, without the need to calculate the positions of
subsequent blocks. For example if you had a common block /A/ of length 1000 bytes
(hex 3E8 bytes) and another common block /B/ of length 500 bytes, then the com-
mands:

2><<>=N10B4 "�������

3452>< 0

3452>< 1

would load common block /A/ at address 30000000 (hex) and block /B/ at address
300003E8. (Note that common block sizes are rounded up to the nearest multiple of 4
bytes for the purposes of allocation for hardware efficiency reasons.) These
commands would have to follow the load of relocatable binary which referenced the
two common blocks (in order that LINK77 could determine their sizes). If these

FTN77 User’s Guide DOS/Win16

240

commands are included in the link of the library and of the program, then common
blocks /A/ and /B/ will be shared.

If a common block has been initialised in a BLOCK DATA statement there is no easy
way to share it between a program and a library.

241

20.

SLINK (Win32)

For information about the Salford DOS/Win16 linker LINK77 see chapter 19.

Introduction
SLINK is Salford Software’s 32-bit linker for Win32. It is designed to accept Win32
COFF object files and produce Win32 libraries (.LIBs), Win32 Portable Executable
(PE) executables (.EXEs) and Dynamic Link Libraries (.DLLs). SLINK has been
designed to make it powerful and easy to use.

SLINK will act either as a library builder or as a conventional linker or both
simultaneously. SLINK is tailored for object code produced by Salford compilers. It
can, however, be used with COFF object code produced by other compilers. SLINK
will not accept 32 bit OMF object code, the native object code format for OS2/2.

Getting started
SLINK has three modes of operation:

a) command line mode,

b) interactive mode and

c) script file mode.

Command line mode takes all parameters from the command line whilst interactive
mode processes commands one at a time as they are entered from the keyboard. This
is very similar to LINK77, the Salford linker for the DBOS family of compilers.
Script file mode reads the commands from a text file. This has two variations, a
Salford LINK77 compatible command mode and a Microsoft compatible command
mode.

FTN77 User’s Guide Win32

242

It is easy to build executables with SLINK. For example, suppose that you compiled a
program contained within one file, say MYPROG. The compiler will produce an
object file called MYPROG.OBJ. To produce an executable from this, the following
command line will suffice

b[X]Z \h_a^V�^QY

In response, SLINK will :

1) Load MYPROG.OBJ.

2) Set the default entry point for Salford programs.

3) Scan the Fortran library, FTN77.DLL or FTN95.DLL.

4) Scan the Salford C library, SALFLIBC.LIB.

5) Scan the default list of system DLL’s.

6) Set the file name to MYPROG.EXE (derived from the name of the object file).

7) Create the executable.

This command line illustrates SLINK’s command line mode. Alternatively, we could
use SLINK’s interactive mode in the form:

b[X]Z

� [^PS \h_a^V

� UX[T

Note that SLINK’s command prompt is a $, and that SLINK has provided the .OBJ
extension. Interactive mode always terminates with a file command. The file
command is used both to terminate the session and to optionally provide the filename
that is to be used to store the output. SLINK will know that you are building an
executable and automatically supplies the .EXE extension.

Command line mode
This is an example of how to use SLINK in command line mode:

b[X]Z \h_a^V�^QY ¯UX[T)cTbc

In command line mode, all of SLINK’s commands begin with “–” or “/”. Any
parameters are separated from the command by a colon “:”. Note that there must be

no spaces within the command (in this case UX[T)cTbc). Where the command does
not take parameters, it should not be terminated with a colon. Where parameters are
optional because SLINK will complete the command (for example the file command)
then the colon is also optional.

Chapter 20 SLINK

243

Linking multiple object files
Multiple object files can be linked:

1) in command line mode by placing more objects on the command line,

2) in interactive mode by using more load commands, and

3) in script file mode by modifying the script file in a manner corresponding to 1) for
command line mode or 2) for interactive mode.

Abbreviating commands
Many of SLINK’s commands have an abbreviation. These are shown in the command
reference (see the end of this chapter). For example, instead of the load command you
may use lo. Also, many of SLINK’s commands have an alias.

Script or command files
When large numbers of commands are needed or the same command sequence is
repeated many times it is helpful to place the commands in a script or command file.
Interactive mode script file names are prefixed with a “$” on the SLINK command
line, whereas command line mode script files are prefixed with an “@”. Commands
taken from script files are presented in the same form as that used when entering
commands from a command prompt in interactive mode or from the command line.
For example,

b[X]Z �\h_a^V�X]U

will tell SLINK to take its commands from a file called MYPROG.INF and that the
command format is interactive mode, whilst

b[X]Z /\h_a^V�[]Z

will tell SLINK to take its commands from a file called MYPROG.LNK and that the
command format is command line mode.

Note that the file suffixes .INF and .LNK are purely conventional and do not affect
how the commands will be interpreted - you may use suffixes of your own choosing if
you wish.

As a special case, for interactive mode command files, the $ before the file name can
be omitted. In this case, if the file is not recognised as a COFF object, it will be
opened as a script file. For this reason, COFF objects specified on the command line
must have the correct filename extension as SLINK will not complete the filename
itself.

More than one script file may be specified on the command line but script files may
not themselves contain script files.

FTN77 User’s Guide Win32

244

Differences between command line mode and interactive mode
The main difference between command line mode and interactive mode is that
command line commands (i.e. commands that begin with a “–”) are implemented first
and objects and libraries are loaded later. Commands have a deferred effect and can
appear anywhere in the command line or script file and in any order. For example,

b[X]Z \h_a^V�^QY ¯UX[T)cTbc

and

b[X]Z ¯UX[T)cTbc \h_a^V�^QY

have exactly the same effect. In the latter case, specifying ¯UX[T)cTbc first, tells
SLINK that the filename will be TEST.EXE but no immediate action is taken on the
file command.

Interactive mode commands are implemented immediately, where appropriate. For
example, placing the following commands in a script file:

[^ \h_a^V

UX[T cTbc

and

UX[T cTbc

[^ \h_a^V

will have different effects.

The first script will do as expected, load an object file called MYPROG.OBJ and
produce an executable from it called TEST.EXE.

The second script will terminate with an error since the SLINK session is always
terminated in interactive mode by file and at that point no object files have been
loaded.

Comments
In script files (for both interactive and command line mode) all text following the
semicolon character “;” is ignored until a newline character is encountered. This
makes it easy to temporarily “comment out” commands. For example in

b[X]Z UX[T �^QY UX[T!�^QY *UX[T"�^QY c_VaP_W�[XQ

the objects FILE3.OBJ and TPGRAPH.LIB will not be loaded.

Mixing command line script files and interactive mode script files
It is not advisable to mix interactive mode and command line mode script files due to
the differences in the way that they are interpreted.

Chapter 20 SLINK

245

Executables
The previous section described briefly how to generate executables. This section looks
at additional commands that are either useful during the production of the executable
or affect the way the executable is produced.

Link map
The link map is used to examine the structure of the executable or DLL in detail. The
map will show:

1) The entry point (see below) and its address.

2) All of the routines that SLINK could not find a definition for. These are called
unresolved externals (see below). The SLINK map will also show the path name
of the file that contained the initial reference to the symbol.

3) The map then lists all of the defined symbol names and their addresses together
with the path name of the file that contained the definition of the symbol. These
addresses show the “preferred address”. The actual run time address may be
different.

4) The link map finally contains a brief outline of the executable by showing the
addresses where the executable’s sections have been loaded.

For example, the following SLINK session will produce a link map named
FILE1.MAP and an executable FILE1.EXE. These names are derived from the first
loaded object file name.

b[X]Z

� [^ UX[T

� [^ UX[T!

� \P_

� UX[T

Unresolved externals
Unresolved externals are those symbols for which SLINK was unable to find a
definition when searching the specified library and object files. Some omissions may
be intentional and may simply be routines that will not be called. Others may be
unintentional omissions. SLINK will successfully complete a link session even when
there are unresolved externals. It will provide a temporary definition of these symbols
so that, when the function is called, an error message will be printed out stating the
name of the function and the address from which it has been called.

In interactive mode, the command lure (List UnResolved Externals) may be used at
any time to check the progress of the linker session. This command will list all of the

FTN77 User’s Guide Win32

246

functions for which it currently has no definition together with the path name of the
file that contained the reference.

Do not be alarmed if a large number of functions are listed as unresolved when the
command is used immediately before the file command is issued. This is quite normal
because there will be functions in FTN77.DLL, FTN95.DLL, SALFLIBC.LIB (or
SALFLIBC.DLL) and in the system DLLs that need to be linked. SLINK will
automatically link them after the file command has been issued.

Direct linking with DLLs
SLINK allows direct linking with one or more DLLs without the need to use import
libraries (see section 5). It will generate its own import library for a DLL based upon
the information contained in the DLL’s export table. If you produce a DLL, you have
the choice whether or not to produce an import library.

Sometimes, as is the case with SALFLIBC.LIB (or SALFLIBC.DLL), the library is a
combined import and standard library. In this case, the functions in the standard
library part are not contained within the DLL, so directly linking with the DLL will
not achieve the same result as linking with the .LIB file. This means that you should
not link directly with SALFLIBC.DLL – always use the .LIB file i.e. SALFLIBC.LIB.

For example, suppose that some of the functions you need are provided inside a DLL
called TPGRAPH.DLL. In this case the linker would not import the runtime code for
the functions from the DLL even though the DLL must be loaded as illustrated here:

b[X]Z

� [^ UX[T

� [^ UX[T!

� [^ c_VaP_W�S[[

� UX[T

TPGRAPH.DLL is merely used to acquire the information that is necessary for the
executable to import functions from TPGRAPH.DLL at run time.

SLINK will not search the system path for the DLL. You should specify the full path
name on the load command.

Additional Commands
Various commands are used to provide information that is required to generate an
executable. SLINK will take a sensible default for all of these commands and it is
unlikely that you will need to use them.

Runtime tracebacks
SLINK builds an internal map into each executable. The location of this map is
registered with SALFLIBC at runtime. It contains the true fixed-up runtime

Chapter 20 SLINK

247

addresses. In the event of a fault during program execution that causes the program to
abort, SALFLIBC will print out a traceback of the various routines called, tracing
back to the user’s main program.

The internal map contains the name and address of all the static and external
functions in your code. You may wish (e.g. for code security reasons) to remove this
map and forego the run time traceback facility. This may be achieved by using the
notrace command.

Linking for Debug
When source files are compiled using checking or debugging options, the compiler
inserts additional information into the object files produced. This information has to
be organised and placed into the executable so that the Salford debugger can be used
to examine source files, set break points, examine variables etc. SLINK will
automatically insert the debugging information into the executable. However, since
this increases the size of the executable by a considerable amount, you are advised to
switch off the checking and debugging options before preparing production versions of
your executable.

The syntax of the command is:

debug [full | partial | none]

This means that the word debug can be followed by one of the options full , partial
and none. The debug command with no parameters or with the keywords partial or
full will insert debug information into the executable. partial and full have the same
meaning. The keyword none will remove the debug information. The default is full .

If debug information is not found in the object files, then SLINK will not insert any
debug information into the executable. In this case, if you are using the debug
command with partial or full , then slink will produce a warning.

Comment text
The syntax for the command is:

comment [on | off | "text"]

This means that the word comment can be followed by one of the options on, off and
some user-supplied text in quotation marks (in this chapter, user-supplied values are
shown in bold italics). It is possible to embed comment text into an executable using
the comment command. Comments are included into the .comment section in the
executable (here the word comment is preceeded by a period/full stop). Typically
copyright information and version information is included in comment text. Even if
the file name is changed, text within the comment section will still identify the
executable as your product.

FTN77 User’s Guide Win32

248

SLINK will prepend the text with the characters “@(#)”, and will also add newline
characters at both ends of the text. This makes the text easy to search for with a grep
type utility. Comment text is also added by the compiler used and by SLINK in order
to identify version numbers used for the build. SLINK will always add its own
comment to the executable.

Any number of comment commands may be issued. Text following the comment
command should be delimited with double quotation marks ("). The comment
command is only available in interactive mode.

It is also possible exclude the .comment sections of COFF objects from the executable.
This is useful where, for example, your application has been linked from a large
number of COFF objects. The .comment section in the executable would then
normally be very large. The comment off command will prevent the inclusion of
these comments from the point at which the command was issued until a comment on
command is issued. User comments will still be included.

Here is an example of the use of comments.

R^\\T]c �<Pab 0ccPRZ e!��"�8]cTa6P[PRcXR B^UcfPaT 8]R��

R^\\T]c ^UU

�����

R^\\T]c ^]

Virtual Common
It is possible in most languages (and in particular in Fortran and C/C++) to have
uninitialised global data, for example, a common block in Fortran not initialised with
a BLOCK DATA subprogram. Under normal linking, these are accumulated into the
.bss section in the executable (BSS is an old IBM term meaning Block Started by
Symbol). Although this section does not contribute to the size of the executable it
does contribute to the size of the loaded image. The consequence of this is that the
system must have the resources available to meet the size of the .bss section. This is
unfortunate, since many applications use very large global arrays, only some of which
is ever used.

If the SLINK command vc or virtualcommon is used at some stage during the link
process, the “.bss” section is removed from the executable and the global data is
allocated to virtual memory at runtime. The result is that pages of memory (4Kb
each) are allocated from the system on demand.

Chapter 20 SLINK

249

Libraries
Win32 acknowledges three types of library: Standard Libraries, Import Libraries and
Dynamic Link Libraries (DLLs).

Standard libraries and import libraries
These libraries contain code that is linked into the user’s program by SLINK as part of
the program’s executable image. They are easy to build and need no special
initialisation. Win32 standard and import libraries are very similar to UNIX COFF
archives and for that reason are referred to as archives. Archives consist of complete
object files loaded in together with various headers. These object files are referred to
as members. Win32 archives usually have the filename extension .LIB.

Import Libraries
Import libraries are used by programs that wish to link with DLLs. Import libraries
are not usually needed when SLINK is used because SLINK can extract the
information directly from the DLL itself. However, SLINK will generate import
libraries for the DLLs it creates if requested and will also accept them as input for the
load command. Import libraries have to be generated for other linkers that cannot
extract information directly from the DLL.

Salford run time library
All programs that are compiled using a Salford compiler must be linked with
SALFLIBC.LIB. SALFLIBC.LIB is a special kind of library and is a combined
standard and import library. SLINK will automatically link with SALFLIBC.LIB for
you. Although SALFLIBC.DLL exists, it should not be scanned directly since
SALFLIBC.LIB is more than just an import library. Not all references that are
satisfied by scanning SALFLIBC.LIB can be satisfied by scanning SALFLIBC.DLL.

Any import library or DLL may only be scanned once. A situation like the following
is to be avoided:

[^ ^QYTRc �^QY creates references to KERNEL32.DLL

[^ ZTa]T["!�S[[satisfies current references to KERNEL32.DLL

[^ ^QYTRc!�^QY creates more references to KERNEL32.DLL

SLINK will automatically scan the system DLLs, in order to satisfy references in the
user program, if any unresolved references exist at the end of the link process.

The following order of linking should be observed:

1) Object files

FTN77 User’s Guide Win32

250

2) Non system DLLs, non system import libraries and other standard libraries

3) FTN77.DLL or FTN95.DLL

4) SALFLIBC.LIB

5) System DLLs

The list of DLLs included in “system DLLs” is given in reference section beginning
on page 253.

Note that the last three stages are automatic but should none the less be regarded as
having taken place.

Dynamic Link Libraries
Dynamic Link Libraries are special kinds of libraries used by modern operating
systems. They do not contain code that is directly linkable with the user’s program.
They are pre-linked bodies of code that are called at run time and are a kind of
executable, rather than a kind of archive. The advantage is that, when the DLL is
updated, the user’s program does not have to be relinked unless the order of the
routines contained within the DLL has changed. Also, by using a DLL, very little
code is added to the user program.

Win32 DLLs require that programs wishing to use a DLL must link with an import
library (see above). This is so that the system loader can make the link between the
user program and the DLL when the user’s program is loaded at run time. The
Salford Fortran and C/C++ runtime libraries are DLLs. Usually, runtime library
routines are not linked into the user program. The exception is the case where the
compiler has inserted the code inline. Thus executables that use DLLs are much
smaller than would otherwise be the case.

Generation of archives
The linker command archive will specify that an archive is to be generated. The
archive command is available in both command line and interactive mode.

Object files to be placed into the archive are specified using the addobj command.
This informs the linker that the object specified is not to be included in the normal
link process but is to be placed in the archive. Archives themselves may be added to
the archive. In this way, objects may be added to already existing archives. You can
also give the addobj command a listfile name preceded by @ that contains a list of
files that you wish to be included.

The following example constructs an archive named NEWLIB.LIB which contains the
object files FILE1.OBJ, FILE2.OBJ together with all the object files contained within
LIBFILE.LIB. This results in two more object files being added to LIBFILE.LIB.
Note how the file command is used to terminate the linker session and initiate
building the archive.

Chapter 20 SLINK

251

b[X]Z

� PaRWXeT]Tf[XQ�[XQ

� PSS^QY UX[T �^QY

� PSS^QY UX[T!�^QY

� PSS^QY [XQUX[T�[XQ

� UX[T

or

b[X]Z

� PaRWXeT]Tf[XQ�[XQ

� PSS^QY /[XbcUX[T

� UX[T

where listfile contains the following text lines

UX[T �^QY

UX[T!�^QY

[XQUX[T�[XQ

the command line form of this command would be:

b[X]Z �PaRWXeT)]Tf[XQ�[XQ �PSS^QY)UX[T �^QY

�PSS^QY)UX[T!�^QY �PSS^QY)[XQUX[T�[XQ

or

b[X]Z �PaRWXeT)]Tf[XQ�[XQ �PSS^QY)/[XbcUX[T

Note that the load and addobj commands may be used with wildcards. For example,

PSS^QY ��^QY

Generation of DLLs and exporting of functions
Since DLLs are run time libraries, it follows that they can also provide routines for
other applications that are running. These routines have to be exported in order to
make them available to other applications. A DLL must have some exports.

The export command will make a function (or a variable) available to other
applications by inserting it into the export table in the DLL.

If you wish all of your functions to be exported, unless otherwise specified by the
exportx command, then the exportall command will insert them all into the export
table.

The exportx command will prevent functions from being inserted into the export
table. The export command overrides the exportx command.

The dll command is used to specify that a DLL is to be built.

FTN77 User’s Guide Win32

252

The following example will generate a DLL named MYDLL.DLL. All of the functions
within MYDLL.OBJ are exported.

b[X]Z

� S[[

� [^ \hS[[�^QY

� Tg_^acP[[

� UX[T

Note that the filename extension .DLL is appended by SLINK.

Import libraries can be generated by using the archive command described above. In
which case, all of the exported functions will have the necessary members added to the
import library to enable them to be linked with within the DLL at runtime.

The export command
The export command has the form:

export entryname [=internalname] [@ordinal [noname]] [data]

Only a shortened version of the command is available in command line mode, namely:

-export:entryname [=internalname]

internalname is the name of the symbol as it appears in your program or object files.
Note that, in the case of _ _stdcall functions, there is an additional “decoration” added
to the end of the symbol. In general, you should not use this decoration nor the
leading underscore added to the symbol name. SLINK will match the undecorated
name specified with the decorated name in the loaded object files. In the case of
Salford C++ decorations, the full decorated name should be specified but without the
leading underscore.

entryname is the name of the symbol by which the user would call your function.
SLINK will append a leading underscore and transfer any _ _stdcall decoration found
for the internalname to the entryname. The name of the function will appear in the
DLL export table exactly specified with this command.

In the following example, suppose your _ _stdcall function func exists with the full
decorated name _func@12

Tg_^ac V[^^_,Ud]R

SLINK will match func with _func@12 and also export _func@12. The name
appearing in the export list will be gloop and the symbol appearing in the import
library (if any) will be _gloop@12.

The name in the export table and the name in the calling program’s import table are
identical. This is so that the system loader is able to find the function in the DLL.

Chapter 20 SLINK

253

data is used to export a data item. You must use a pointer to the data item in your
program. See the command reference section below for descriptions of ordinals and
the noname keyword.

SLINK command reference
SLINK has two basic modes of operation: interactive and command line.

Generally, where a file name is optional the default file name is generated by taking
the file name of first loaded object file and adding the appropriate extension.

Interactive mode
This mode takes commands in a similar form to LINK77, the DBOS linker. The
commands are order dependent with the exception that the map command may be
given at any point.

A list of the interactive mode commands is given below. Note that the alias is given
in brackets alongside the command and that all commands are case insensitive.

addobj [filename | @listfile]
The specified COFF object is to be included in a COFF archive. Only COFF
object and COFF archive files may be so loaded. PE executables and dynamic
link libraries (DLLs) may not. This allows COFF archives to contain ReLocatable
Binary (RLB) code and also be an IMPort LIBrary (IMPLIB) for a DLL.
SALFLIBC.LIB is such an example, it is an import library for SALFLIBC.DLL
and yet contains RLB for the startup procedure SALFStartup.

Alternatively, a list of COFF objects to be included may be inserted in a listfile the
path of which is preceeded by an @.

archive (implib) filename
Specifies that an archive is to be generated from objects loaded with the addobj
command. It also specifes that an import library is to be generated from the export
list, if it is non-empty.

comment [on | off | "text"]
text is inserted into the .comment section in the executable. The text must be
delimitted by a quotation mark (") . Alternatively you can use on or off to enable
the inclusion of .comment sections from COFF objects from that point onwards in
the link process.

decorate
Symbols in the map and in the listing of unresolved externals are normally

FTN77 User’s Guide Win32

254

reported in their undecorated form. This command will force symbols to be
reported in their decorated form.

dll (library) modulename
Specifies that a DLL library is to be generated. DLLs have an internal name,
distinct from the filename, used by the system loader to recognise the DLL. The
DLL command also sets the internal name (i.e. the module name) that the DLL is
known as to the system loader to modulename.

If a module name is not specified, then the module name is generated from the file
name with a .DLL suffix. Note that this is equivalent to the library keyword in a
module definition file (.DEF file). The default suffix for the file command is set to
.DLL.

For example, one of the system DLLs, USER.DLL, has a filename USER32.DLL.
By default, SLINK will set the internal name of the DLL to be the same as the
filename.

entry symbol
Specifies the entry point for the program. For linking Salford compilations, this
command is unnecessary as the entry SALFStartup is assumed. If used, this
command MUST be the first command in the SLINK session. If this command is
not used, then the entry point will be set to SALFStartup after the first object file
has been loaded. If an entry point other than SALFStartup has been specified,
this will disable the default loading of SALFLIBC.LIB.

export entryname[=internalname] [@ordinal [noname]] [constant]
This has the same syntax as an entry in the exports section in a .DEF file. It adds
an entry to the export list. The entryname specified does not have to exist but if it
does not it may cause a run time error if the entry point is used. If the DLL
command is not used the module name is generated from the file name with a
.EXE suffix. Overides the exportx command.

Note: Only a shortened version of this command is available in command line
mode.

ordinals
An exported function’s ordinal is a two byte integer. The system loader will
ultimately obtain the function's address from the ordinal table and the export
address table. It does this by looking up the function's ordinal from its name and
then using the ordinal as an index into the export address table. By default SLINK
will assign ordinals to the exported functions. However, you may wish to
guarantee that the function has the same ordinal in all builds of the DLL. In
which case you may specify the ordinal with this command

e.g. the following example will assign ordinal 4 to the function func exported as
gloop

Tg_^ac V[^^_,Ud]R /#

Chapter 20 SLINK

255

noname
This will export the function by ordinal only. This is used to hide a function
within a DLL but still make it accessible to those who know its ordinal. You must
specify the ordinal if you use the noname keyword.

e.g.
Tg_^ac Ud]R /# =>=0<4

will export func by ordinal only, with an ordinal value of 4 whilst

Tg_^ac Ud]R =>=0<4

will produce an error.

exportall
Adds all exportable code entries to the export list. These are code symbols with
storage class "external" that have been defined in a COFF object file, i.e. not a
COFF archive or DLL. This excludes you from re-exporting an entry point in
another DLL unless you specifically export it with the EXPORT statement.

exportx
This prevents symbols from being included in the export list generated by the
exportall command. The export command will take precedence over this
command if a symbol appears in both.

file (fi) filename
Performs the following actions in order.

1) Symbols specified in the export list are exported and the export (.edata) section
generated. The archive, if required is also generated.

2) Scans the default libraries

a) FTN77.DLL or FTN95.DLL

b) SALFLIBC.LIB (unless an entry command has been used specifying other
than _SALFStartup see above). SALFLIBC.LIB will be searched for in
the following places:

i) Locally

ii) The directory specified in the environment variable SCCLIB.

iii) The directory above that specified in the environment variable
SCCINCLUDE.

iv) The directory where the invoked copy of SLINK resides.

The scanning of each of the following DLLs is dependent upon there being
unresolved references and upon the DLL in question being present. These
are searched for in the following places:

i) Locally

FTN77 User’s Guide Win32

256

ii) The “system directory”, i.e. the directory returned by the function
GetSystemDirectory e.g. C:\WINNT\SYSTEM32.

iii) The directories specifed on the system path

iv) The directory where the invoked copy of SLINK resides.

c) KERNEL32.DLL

d) USER32.DLL

e) GDI32.DLL

f) COMDLG.DLL

3) Generates the internal traceback map

4) Generates the map listing file if one has been requested.

5) Displays a list of unresolved external references.

6) Writes the executable. If an executable is to be written, a suffix of .EXE is
appended to filename as a default if one has not been supplied. If a DLL is to
be written, a suffix of .DLL is appended to filename as a default if one has not
been supplied.

7) Exits SLINK.

Note: Missing externals will not cause a failure but will generate warnings.
However, if an attempt is made to call one of the missing routines at run time a
message will be printed out giving the name and the return address of the routine.
The user's program is then aborted.

filealign value
Specifies the physical alignment of the sections within the file. value should be an
integral power of 2.

default value = 0x200

heap reserve[,commit]
Specifies the program heap size in bytes. An initial heap of commit bytes will be
allocated. If this is used up then a further commit bytes will be allocated up to the
maximimum size of reserve. The reserve and commit values are rounded to 4 byte
boundaries.

Salford libraries provide their own heap and so a minimal heap need only be
specified.

defaults:

for Salford programs:

reserve = 0x0

Chapter 20 SLINK

257

commit = 0x0

for other programs:

reserve = 0x100000 (1Mb)

commit = 0x1000 (4Kb)

imagealign (align) value
Specifies the virtual address alignment in bytes of sections within the executable.
value should be an integral power of 2.

default value = 0x1000

imagebase (base) address
Specifies the preferred base address for the loaded image. This may be relocated
by the loader.

The virtual address space begins at 0x00000000 but the user program starts much
higher in memory. The base command specifies the virtual address at which the
program is to start. This is called the preferred load address. If the system loader
cannot load the program at that address it calculates what is called a DELTA
which is the difference between the preferred load address and the actual load
address. This DELTA is then applied to all the virtual addresses in the program,
actually those specified in the program’s fixup table. SLINK will set the base
address to be 0x00400000 for executables and 0x01000000 for DLLs. You may
wish to change the base address if there is already something else loaded at that
address. The fixup process is much more likely to affect DLLs than executables.
However, the fixup process is so fast that it is tiny in comparison with the load
process overall and can safely be ignored. The base address is specified in
decimal, but can also be specified in hex or octal using the 0x or 0 prefixes
respectively.

The value set by the base command will be rounded down to be a multiple of 64K.
The resulting value must be non zero.

defaults:
executables

address = 0x00400000

DLLs
address = 0x01000000

The following example sets the base address to be 0x00700000

10B4 �g&�����

listunresolved (lure)
Prints a list of external references which are missing. This command may be used
to check the progress of a SLINK session and may be used at any time. This
command has no other effect.

FTN77 User’s Guide Win32

258

load (lo) filename
Loads object file filename. filename may be either a COFF object file, a COFF
archive library (i.e. .LIB) or a directly imported dynamic link library (.DLL). A
.OBJ suffix will be appended to filename if one isn't already supplied.

SALFLIBC.LIB will automatically be loaded if has not already been loaded and if
the entry point name has not been changed from SALFStartup.

map filename
Specifies that a symbol map file should be produced and written to filename. The
action of this command will be deferred until all object files have been loaded. A
suffix of .MAP is appended as a default if one has not been supplied.

notrace
Suppresses the generation of the internal map within the executable. Without this
map a runtime traceback is impossible.

stack reserve [,commit]
Specifies the program stack size in bytes. An initial stack of commit bytes will be
allocated. If this is used up then a further commit bytes will be allocated up to the
maximimum size of reserve. The reserve and commit values are rounded to 4 byte
boundaries.

defaults,

for Salford programs:
reserve = 0x300000 (3Mb)

commit = 0x4000 (16Kb)

for other programs:
reserve = 0x100000 (1Mb)

commit = 0x1000 (4Kb)

virtualcommon (vc) [base, [commit]]
Specifies that the uninitialised data section, i.e. the .bss section is removed entirely
from the executable and placed into virtual paged memory. The base address of
this virtual memory may be specified but should be done with care. Similarly, a
commit value can be specified to indicate how much memory should be committed
from the system at each acquisition. Small values of commit mean that there is
less memory wastage whilst larger values will improve (slightly) run time
performance at the expense of memory usage.

base and commit must be aligned on a page boundary, i.e. if specifying the values
in hex the least significant 3 digits must be zero.

defaults,

base = 0x20000000

Chapter 20 SLINK

259

commit = determined at run time initialisation

subsystem subsys
You should specify whether the program will require a Character User Interface
(CUI) or a Graphical User Interface (GUI). The subsystem specified should be one
of console for a CUI, windows for a GUI or native if no subsystem is required.
Win32 will not allow output to stdout unless console has been selected as the
subsystem.

By default, SLINK will set the subsystem to be console.

subsys should be one of the following:

native no subsystem required

windows a graphical user interface subsystem is required.

console application requires only a character mode subsytem (but
using a GUI is not precluded).

default: subsys = console

The following example sets a CUI subsystem requirement.

BD1BHBC4< 2>=B>;4

quit (q)
Immediately exits SLINK. No output files are produced.

Command Line mode
In this mode all of the object files and SLINK commands are placed on the command
line.

SLINK [files] [options] [commandfile]

Object files, script files and options may be freely intermixed. There may be more
than one command file.

1. Script files
Script files contain commands and/or object files.

Interactive style script files are prefixed by a “$” or have no prefix. Command line
script files are prefixed by an “@”.

2. Interactive style script files
These contain the same commands as may be used in interactive mode and are
executed in the order that they appear in the file.

FTN77 User’s Guide Win32

260

e.g.

B;8=: \h_a^V

If myprog (no filename extension) does not exist then myprog will be assumed a
interactive style script file.

or

B;8=: �\h_a^V

This form is explicitly a interactive style script file.

3. Command line style script files and command line arguments
These may contain the following commands:

-addobj:{ @listfile | filename}

-align:#

-archive:[filename] alias for -implib

-base:address

-debug [:full | :partial | :none]

-decorate

-dll [:modulename] alias for -library

-entry:symbol

-export:entryname [=internalname]

-exportall

-exportx:entryname

-file [:filename] alias for -out

-filealign:#

-heap:reserve [,commit]

-help alias for -?

-imagealign:# alias for -align

-imagebase:address alias for -base

-implib [:filename]

-library [:filename]

-map [:filename]

Chapter 20 SLINK

261

-notrace

-out [:filename]

-stack:reserve[,commit]

-subsystem:{ native | windows | console}

-vc[:baseaddress[,commit]] alias for -virtualcommon

-virtualcommon[:baseaddress[,commit]] alias for -vc

Commands have the same requirements and meaning as the corresponding interactive
command, may be in upper or lower case and may have either a “/” or a “–” prefix.

Commands are executed first and so may appear anywhere and in any order. Object
files are scanned after all of the commands have been scanned.

Object file names are specified with the .OBJ extension and, unlike interactive mode
no extension is automatically appended. However, object files are loaded in the order
in which they appear.

The -out: (-file:) command is unnecessary since an executable will be automatically
written after all commands have been processed and all object files have been scanned.
For example:

B;8=: \h_a^V�^QY �\P_) /^cWTab�X]U �UX[T)cTbc /STU[c[XQ�X]U

This will link the object file myprog.obj with any object files, libraries, or DLLs listed
in others.inf or defltlib.inf. A map file myprog.MAP will be produced (name taken
from the first loaded object) and executable test.EXE (automatic file name extension)
written. For example:

B;8=: cTbcTa�^QY \h[XQ�^QY

tester.obj is scanned and then mylib.obj is scanned. An executable named tester.EXE
will be written.

It is generally not advisable to mix interactive and command line style script files due
to their different behaviour. If more than one interactive style script file is used
remember that commands are executed in the order in which they appear.

Direct import of Dynamic Link Libraries
Care should be taken on importing DLLs. The mechanism is designed to replace the
importation of “pure” import libraries. It is possible that the .LIB file contains
loadable library code in addition to the imported symbol. In such cases, the loadable
library code is missing from the DLL and so cannot be loaded. SALFLIBC.LIB is
such a library, the DLL SALFLIBC.DLL cannot be loaded directly since it does not
contain, for example, the symbol _SALFStartup which is necessary for initialisation
and to provide the applications entry point.

FTN77 User’s Guide Win32

262

Direct import of dynamic link libraries require that the exported names in the DLL
follow the following rules

1) _ _stdcall symbols

The exported name is created by removing the leading underscore and does not
contain the appended @ and subsequent characters

e.g. _MessageBeep@4 will be exported as MessageBeep

2) Symbols beginning with a leading underscore

The leading underscore is removed.

3) Other symbols

All other symbols are assumed to be exported unchanged.

Archive and import library generation
Archives and import libraries may be generated without any objects being loaded with
the load command.

For example the following SLINK script will generate a combined RLB and import
library. Note that the file command is necessary to initiate the build. Ignore the
comments in brackets

PaRWXeT \h[XQ (archive file to be called mylib.LIB)
S[[(module name set to mylib.DLL)
PSS^QY Ud]R �^QY

PSS^QY Ud]R!�^QY

PSS^QY Ud]R"�^QY

PSS^QY Ud]R#�^QY

Tg_^ac Ud]RcX^]P

Tg_^ac Ud]RcX^]Q

Tg_^ac Ud]RcX^]R

Tg_^ac Ud]RcX^]S

Tg_^ac Ud]RcX^]T

Tg_^ac Ud]RcX^]U

Tg_^ac Ud]RcX^]V

UX[T

Entry Points
The executable file needs an entry point that is called by the system loader
immediately after the program has been loaded. This entry point is not the main,
WinMain or LibMain function as you may think, but library startup code. The
Salford entry point for all executables, including DLLs is _SALFStartup. Object files

Chapter 20 SLINK

263

produced by other compilers will have a different entry point which you will have to
set explicitly.

The entry point is specified with the entry command, omitting the leading underscore.
SLINK will automatically set the entry point to be _SALFStartup unless you use the
entry command before any objects files have been loaded. In command line mode the
entry command can be placed anywhere in the command line or script file since
commands are always processed first.

e.g. The following command will set the entry point to be _SALFStartup. This is
redundant since SLINK will do this for you.

4=CAH B0;5BcPacd_

You cannot change the entry point after the first object file has been loaded or if an
entry command has previously been used.

FTN77 User’s Guide Win32

264

265

21.

Using MK and MK32

Introduction
The Salford MK and MK32 utilities are similar to the UNIX MAKE program. Users
who are familiar with MAKE should be able to use these utilities with little or no
assistance. MK is a DOS/Win16 utility whilst MK32 is a Win32 utility.

A “make” utility is a project manager. Any given project is assumed to be based on a
number of inter-related files. These might include a file for the main program,
various files for the subroutines, various “include” files, object files, libraries, and
maybe a final executable file. These are assumed to be inter-dependent, in that a
change in one file will have repercussions on other files. For example a change in an
“include” file will affect any source file which uses that include file, this in turn will
affect the resulting object files and so on.

The purpose of a “make” utility is to read a file which describes all of the inter-
dependencies in a given project and update only those files that need to be updated.
The updating is based on the given dependency relationships and also on the current
date/time stamp for the files. Thus if file A is given to be dependent on file B and file
A predates file B, then file A is updated.

Note that a “make” utility uses the date/time stamp that the operating system places on
a file when it is saved. If the computer date/time is not functioning correctly then the
utility is unlikely to have the desired effect.

FTN77 User’s Guide

266

Tutorial
In order to illustrate how this works, we shall consider the following simple situation.

Suppose we have a project based initially on two files. The first file, called prog.for,
contains only a main program; the second sub.for contains all of the user-defined
subroutines that are called from the main progam. In all other respects, these files are
assumed to be independent of each other and independent of any other user files.

The simplest way of calling the Salford make utility is to type just MK (or MK32) at
the command prompt. If you do this then the utility processes a file called makefile
which the user places in the current directory. makefile contains dependency
relationships and dependency rules (either explicit or implicit) for the current project.

Example 1
This first example illustrates the use of explicit dependency relations.

In the project described above, makefile could contain:

_a^V�TgT) _a^V�^QY bdQ�^QY

B;8=: _a^V�[]Z

_a^V�^QY) _a^V�U^a

5C=&& _a^V �RWTRZ

bdQ�^QY) bdQ�U^a

5C=&& bdQ �RWTRZ

This means that prog.exe depends on both prog.obj and sub.obj and that prog.exe is
created by calling SLINK using prog.lnk as the linker script. For DOS/Win16 you
would use LINK77 instead.

In turn prog.obj depends on prog.for and prog.obj is created by calling FTN77 using
prog.for with the /CHECK option. A similar dependency relationship and rule is
used for sub.obj.

If sub.for only were changed (for example) then calling the utility would result in
sub.for being recompiled (but not prog.for). Then because prog.exe depends on
sub.obj, the linking process is also carried out.

Example 2
A second approach is to use an implicit dependency relationship as illustrated here:

�BD558G4B) �U^a �^QY

Chapter 21 Using MK and MK32

267

�U^a�^QY)

5C=&& �+ �RWTRZ

_a^V�TgT) _a^V�^QY bdQ�^QY

B;8=: _a^V�[]Z

The explicit dependency relation for prog.exe has not changed. The first line gives a
list of extensions (separated by at least one space) for which implicit relations will be
supplied. In this case one relation is given showing how “.obj” files are derived from
“.for” files.

The next line is an example of an implicit relation. In this case the relationship states
that (in the absence of an explicit relation) a “.obj” file is dependent on a
corresponding “.for” file and that the object file is formed by calling FTN77 with the
/CHECK option. “$<” represents the source filename (the dependency filename with
its extension). In other words, we have now used one implicit relation in place of two
explicit relations in Example 1.

Example 3
Our next example of a makefile illustrates a use for the TOUCH utility and takes the
form:

�BD558G4B) �U^a �^QY

�U^a�^QY)

5C=&& �+ �RWTRZ

_a^V�TgT) _a^V�[]Z

B;8=: _a^V�[]Z

_a^V�[]Z) _a^V�^QY bdQ�^QY

c^dRW _a^V�[]Z

The TOUCH utility simply updates the date/time stamp of the given file. So here we
are saying that prog.lnk depends on prog.obj and sub.obj but the content of prog.lnk
does not need to be changed. The order of the two explicit relations is significant;
prog.exe is the primary target and must come first.

Example 4
Now we take example 3 one stage further:

�BD558G4B) �U^a �^QY �[]Z �TgT

�U^a�^QY)

5C=&& �+ �RWTRZ

FTN77 User’s Guide

268

�[]Z�TgT)

B;8=: �+

_a^V�TgT)

_a^V�[]Z) _a^V�^QY bdQ�^QY

C>D27 _a^V�[]Z

This includes an implicit relation which connects the linker script to the executable.
The result is neither shorter nor simpler than example 3 and so has little merit unless
you also use a default.mk file (see below).

Example 5
We now return to the form given in example 2 and provide a modification which
illustrates the use of macros and comments:

� 4gP_[T $

�BD558G4B) �U^a �^QY

>1958;4B,_a^V�^QY K

bdQ�^QY

C,_a^V

�U^a�^QY)

5C=&& �+ �RWTRZ

�C�TgT) ��>1958;4B�

B;8=: �C�[]Z

Characters after a “#” symbol on a given line are ignored so the first line is a
comment. OBJFILES and T are macros. They represent constant character strings
which replace expressions of the form $(. . .) within dependency relations. If the
macro name consists of only one character then the parenthesis is not required. The
backslash (\) character is used for continuation (suppressing the following carriage
return/linefeed). The following macros are implicitly defined:

$@ evaluates to the file name of the current target

$* evaluates to the file name of the current target without its extension

$< evaluates to the source filename in an implicit rule

In a macro assignment, spaces can be used on either side of the equals sign. Macro
names are case sensitive although it is common to use only upper case letters. Also, it
is possible to append a string to an existing name as follows:

Chapter 21 Using MK and MK32

269

>1958;4B,_a^V�^QY

>1958;4B�, bdQ�^QY

but note that the space before sub.obj is essential in this context.

Example 6
Our next example is similar to example 4 but illustrates the use of a file called
default.mk. Create a file in the project directory called default.mk containing the
implicit relations:

�BD558G4B) �U^a �^QY �[]Z �TgT

�U^a�^QY)

5C=&& �+ �RWTRZ

�[]Z�TgT)

B;8=: �+

makefile now contains:

_a^V�TgT)

_a^V�[]Z) _a^V�^QY bdQ�^QY

C>D27 _a^V�[]Z

MK/MK32 automatically calls default.mk and uses it as a header.

You will find a file called default.mk in the compiler directory. This file can be
copied to your project directory and customised to suit your particular project.

If you wanted to include something other than (or as well as) default.mk in your
makefile then insert a line of the form:

X]R[dST UX[T]P\T

There must be no spaces at the beginning of this line.

Example 7
Taking this one stage further we now include macros in default.mk:

�BD558G4B) �U^a �^QY �TgT

>?C8>=B,

>1958;4B,

FTN77 User’s Guide

270

�U^a�^QY)

5C=&& �+ ��>?C8>=B�

�^QY�TgT)

B;8=: ��>1958;4B� �58;4)�/

This uses the command line form of SLINK which is not available with LINK77.
makefile now contains:

>?C8>=B,�RWTRZ

>1958;4B,_a^V�^QY bdQ�^QY

_a^V�TgT) ��>1958;4B�

Example 8
Our final example uses the same default.mk as in example 7 but moves OPTIONS and
a new macro called TARGET to the command line. makefile now contains:

>1958;4B,��C0A64C��^QY bdQ�^QY

��C0A64C��TgT) ��>1958;4B�

and the command line takes the form:

<:"! C0A64C,_a^V >?C8>=B,�RWTRZ

Macros that are defined on the command line replace any definitions that appear in
the makefiles. Alternatively you could define TARGET and/or OPTIONS as DOS
environment variables. Other items that can be added to the command line are given
below.

Reference

Command line options
-f filename Use filename instead of the default file called makefile. A minus

sign in place of filename denotes the standard input.

-d Display the reasons why MK/MK32 chooses to rebuild a target.
All dependencies which are newer are displayed

Chapter 21 Using MK and MK32

271

-dd Display the dependency checks in more detail. Dependencies
which are older are displayed, as well as newer.

-D Display the text of the makefiles as they are read in.

-DD Display the text of the makefiles and default.mk.

-e Let environment variables override macro definitions from
makefiles. Normally, makefile macros override environment
variables. Command line macro definitions always override both
environment variables and makefile macros definitions.

-i Ignore error codes returned by commands. This is equivalent to the
special target .IGNORE:.

-n No execution mode. Print commands, but do not execute them.
Even lines beginning with an @ (see Rules below) are printed.
However, if a command line is an invocation of MK/MK32, that
line is always executed.

-r Do not read in the default file default.mk.

-s Silent mode. Do not print command lines before executing them.
This is equivalent to the special target .SILENT:.

-t Touch the target files, bringing them up to date, rather than
performing the rules to reconstruct them.

macro=value Macro definition. This definition remains fixed for the MK/MK32
invocation. It overrides any regular definitions for the specified
macro within the makefiles and from the environment. It is
inherited by subordinate MK/MK32’s but acts as an environment
variable for these. That is, depending on the -e setting, it may be
overridden by a makefile definition.

Makefiles
The first makefile read is default.mk, which can be located anywhere along the PATH.
It typically contains pre-defined macros and implicit rules.

The default name of the makefile is makefile in the current directory. An alternative
makefile can be specified using one or more -f options on the command line. Multiple
‘-f’s act as the concatenation of all the makefiles in a left-to-right order.

The makefile(s) may contain a mixture of comment lines, macro definitions, include
lines, and target lines. Lines may be continued across input lines by using backslash
(\) at the end of a line.

FTN77 User’s Guide

272

Anything after a “#” is considered to be a comment. Completely blank lines are
ignored.

An include line is used to insert the text of another makefile. It consists of the word
“include” left justified, followed by spaces, and followed by the name of the file that is
to be included at this line. Include files may be nested.

Macros
Macros have the form WORD=text. WORD is case sensitive although commonly
upper case. Later lines which contain $(WORD) or ${WORD} will have this replaced
by ‘text’. If the macro name is a single character, the parentheses are optional. The
expansion is done recursively, so the body of a macro may contain other macro
invocations. Spaces around the equal sign are not relevant when defining a macro.
Macros may be extended to by using the “+=” notation.

Special macros
MAKEFLAGS This macro is set to the options (not macros) provided on the
command line for MK/MK32. If this is set as an environment variable, the set of
options is processed before any command line options. This macro may be explicitly
passed to nested calls to MK/MK32, but it is also available to these invocations as an
environment variable.

SUFFIXES This contains the default list of suffixes supplied to the special target
.SUFFIXES:. It is not sufficient to simply change this macro in order to change the
.SUFFIXES: list. That target must be specified in your makefile.

$* The base name of the current target (used in implicit rules).

$< The name of the current dependency file (used in implicit rules).

$@ The name of the current target.

Targets
The form of an explicit dependency rule is:

target [target] [. . .]: [source] [. . .]
 [rule]
 [. . .]

Here we have one or more target files, each separated by a space, and followed by a
colon (there must be no spaces before the first target). Then we have zero or more
dependent files followed by zero or more rules (see below), each on its own line
preceded by at least one space (again the space is essential). See example 2. The
targets can be macros that expand to targets.

Chapter 21 Using MK and MK32

273

The colon that appears in a dependency rule does not interfere with a colon that
appears in the path of a file (after the drive letter).

If a target is named in more than one target line, the dependencies and rules are added
to form the target’s complete dependency list and rule list.

The dependants are ones from which a target is constructed. They in turn may be
targets of other dependants. In general, for a particular target file, each of its
dependent files is ‘made’, to make sure that each is up to date with respect to its
dependants.

The modification time of the target is compared to the modification times of each
dependent file. If the target is older, one or more of the dependants have changed, so
the target must be constructed. This checking is done recursively, so that all
dependants of dependants etc. . . are up to date.

To reconstruct a target, MK/MK32 expands macros and either executes the rules
directly, or passes each to a shell or COMMAND.COM for execution.

For target lines, macros are expanded on input. On other lines macros are expanded
at the point of implementation.

Special targets
.DEFAULT:

The rule for this target is used to process a target when there is no other entry for
it, and no implicit rule for building it. MK/MK32 ignores all dependencies for this
target.

.DONE:
This target and its dependencies are processed after all other targets are built.

.IGNORE:
Non-zero error codes returned from commands are ignored. Encountering this in a
makefile is the same as specifying -i on the command line.

.INIT:
This target and its dependencies are processed before any other targets are
processed.

.SILENT:
Commands are not echoed before executing them. Encountering this in a makefile
is the same as specifying -s on the command line.

.SUFFIXES:
The suffixes list for selecting implicit rules. Specifying this target with dependants
adds these to the end of the suffixes list. Specifying it with no dependants clears
the list. In order to add dependants to the head of the list, use the form:

.SUFFIXES: .abc $(SUFFIXES)

FTN77 User’s Guide

274

Rules
A line in a makefile that starts with a TAB or SPACE is a rule. This line is associated
with the most recently preceding dependency line. A sequence of these may be
associated with a single dependency line. When a target is out of date with respect to
a dependent, the sequence of commands is executed. Rules may have any combination
of the following characters to the left of the command:

@ will not echo the command line.

- MK/MK32 will ignore the exit code of the command, i.e. the ERRORLEVEL of
MSDOS. Without this, MK/MK32 terminates when a non-zero exit code is
returned.

+ MK/MK32 will use COMMAND.COM to execute the command. If the '+' is not
attached to a shell line, but the command is a DOS command or if redirection is
used (<, |, >), the shell line is passed to COMMAND.COM anyway.

Implicit rules
The form of an implicit rule is:

.source_extension.target_extension:
 [rule]
 [. . .]

Here we have a dot (no spaces before it) followed by the extension for the source file
(one, two or three characters) then a dot followed by the extension for the target file
and then a colon and then a new line and at least one space. Optional rules then
follow on separate lines just as in an explicit dependency. See example 3.

Implicit rules are linked to the .SUFFIXES: special target. Each entry in .SUFFIXES
defines an extension to a filename which may be used to build another file. The
implicit rules then define how to build one file from another. These files are related,
in that they must share a common base name, but have different extensions.

If a file that is being made does not have an explicit target line, a search is made for
an implicit rule. Each entry in the .SUFFIXES: list is combined with the extension of
the target, to get the name of an implicit target. If this target exists, it gives the rules
used to transform a file with the dependent extension to the target file. Any
dependants of the implicit target are ignored.

Files
makefile Current version(s) of make description file.

default.mk Default file for user-defined targets, macros, and implicit rules.

Chapter 21 Using MK and MK32

275

Diagnostics
MK/MK32 returns an exit status of 1 when it halts as a result of an error. Otherwise
it returns an exit status of 0.

Badly formed macro
A macro definition has been encountered which has incorrect syntax. Most likely,
the name is missing.

Cannot open file
The makefile indicated in an include directive was not found or was not accessible.

Don’t know how to make target
There is no makefile entry for target, none of MK/MK32’s implicit rules apply,
and there is no .DEFAULT: rule.

Improper macro
An error has occurred during macro expansion. The most likely error is a missing
closing bracket.

Rules must be after target
A makefile syntax error, where a line beginning with a SPACE or TAB has been
encountered before a target line.

Too many options
MK/MK32 has run out of allocated space while processing command line options
or a target list.

FTN77 User’s Guide

276

277

22.

Using Plato

Introduction
Plato is a Win32 editor which supports all of Salford’s Win32 compilers. It is a
multiple document interface with many features including syntax colouring, unlimited
undo and keyword help.

This chapter describes how to use Plato and shows how it is possible to compile, link
and execute Salford programs from within an integrated development environment.

Getting started
Run Plato by clicking on the Plato shortcut icon in the “Salford Software” program
group.

Before proceeding further check that Plato has the correct location of you compilers
and help files. To do this select Directories from the Options Menu.

The Options Menu

FTN77 User’s Guide Win32

278

This will display a window showing the directory location of all Salford Compilers
and Help files. If you did not install your compiler(s) to the default directories you
may need to change the paths using the Browse button. Click the Apply button to
update your changes. Make sure Save Settings On Exit is selected as above to ensure
any configurations you have made are saved.

The toolbar at the top of the Plato screen controls most of Plato’ commonly used
functions.

The Toolbar

 New File

This button has the same effect as the New command on the File menu. It opens a
new blank Edit Window ready to begin typing a new source file.

 Open File

This button has the same effect as the Open command on the File menu. It presents a
standard ‘Open File’ dialog and prompts the user to select an existing source file. The
filename the user provides will then be opened in a new Edit Window.

Filenames ending in *.c or *.cpp are assumed to be C++ files; *.for, Fortran 77 files
and *.f90, Fortran 90 files. You can change the compiler associated with an open file
- see Changing File Options.

 Save File

This button has the same effect as the Save command on the File menu. It saves the
active source file with the current filename. If no filename has been assigned the user
is prompted to enter one.

 Print File

This button has the same effect as the Print command on the File menu. The file is
sent directly to the current printer, which can be configured from the File menu.

 Cut

This button has the same effect as the Cut command on the Edit menu. It removes
the selection from the active source file and places it on the clipboard.

Chapter 22 Using Plato

279

 Copy

This button has the same effect as the Copy command on the Edit menu. It copies the
selection onto the clipboard.

 Paste
This button has the same effect as the Paste command on the Edit menu. It inserts
the contents of the clipboard at the insertion point replacing any selection.

 Undo
This button allows you to undo previous editing instructions.

 Find
This button has the same effect as the Find command on the Edit menu. It searches
for specified text in the active source file.

 Compile File
This button has the same effect as the Compile File command on the Project menu.
It compiles the active source file.

 Build File
This button has the same effect as the Build File command on the Project menu. It
compiles and links the active source file.

 Compile Project
This button has the same effect as the Compile Project command on the Project
menu. It compiles all modified source files in current project.

 Build Project
This button has the same effect as the Build Project command on the Project menu.
It compiles all modified source files and links the current project.

 Rebuild Project

This button has the same effect as the Rebuild All command on the Project menu. It
compiles and links all files in the current project.

 Execute
This button has the same effect as the Execute command on the Project menu. It
runs the last file or project built.

FTN77 User’s Guide Win32

280

 Debugger
This button launches the Salford debugger SDBG and is available when you have built
an executable, which should have been compiled with debugging options.

 Show Error Window
This button displays the error window which displays errors, warnings or comments
generated from the last compile.

The toolbar also has a pull down listbox containing the files that are at present open or
part of an open project. You can switch between windows by selecting a filename
from this listbox.

Editing Source Files
You can edit compile and run individual source files using buttons from the toolbar:

Creating a New File

Select the New command from the File menu or click which opens a new edit
window in which you can type in your program.

The edit window will be labelled Untitled (That is your source file has not been

assigned a file name). When you now click the save button a Save As dialog box
will be presented. Use the Save As dialog box to navigate your disk and find an
appropriate folder to in which save the source file. Type a file name for your source
file and then click the Save button. Your source file will be saved to disk. Make sure
to use the appropriate extension for your file otherwise Plato will not know which
compiler to use.

Open an Existing File

Select the Open command from the File menu or click This presents a standard
dialog similar to the File Open dialog of many windows applications. Use the dialog
box to navigate your folders and select the file you want to edit then click the Open
button. The existing source file will be opened into a new MDI Edit Window.

When a file is opened, the name is recorded in the Most Recently Used (MRU) list on
the file menu, this list is saved and restored the next time Plato is started. The file
name is also placed into a drop down list box on the toolbar.

Chapter 22 Using Plato

281

Compiling a Single Source File.

1) Select the Compile File command from the Project menu or click A dialog
box will appear while the source file is compiled.

2) When the file is compiled the Compilation Status window will appear showing the
number of errors, warnings and comments. If the compile has been successful the
Compilation Status Icon will turn green, if not it will turn red.

3) Click the Details button to open the Message window and view any errors,
warnings and comments. You can quickly moved to the line where an error
occurred by double clicking on the appropriate line in the Message window.

The Message Window

4) Once you are happy with your compilation, choose build which will link your
program.

5) If the linking is successful choose Run (or click OK and then the toolbar
button). A window appears showing you the file to be executed and two radio
buttons. If you select Console, Plato will open up a console before running the
file.

Changing File Options
You add compiler options or change the compiler associated with the currently opened
file by selecting File Options from the File menu. The check boxes provide quick
access to common options whilst the edit box below it allows any option to be entered.

FTN77 User’s Guide Win32

282

Working with Projects
One of Plato’s major features is the ability to organise the source files that make up
your program into projects. Along with other benefits this enables you to compile and
link all your sources in one go.

Creating a New Project
To create a new project follow these steps:

1) Click New from the Project menu to open an empty project window.

2) Give the project a suitable title by clicking the left and then right mouse button on
the project icon at the top of the tree and selecting Project Name.

3) Build a list of source files. Left then Right click on the COMPILE folder in the
Application tree and select Add Item.

Chapter 22 Using Plato

283

4) Use the dialog box to navigate your folders and select the source file(s) that are
part of this application then click the Open button. The source file(s) you have
selected will be displayed in the Application tree.

The Project Window

6) To specify compiler options for a particular file click the right mouse button on the
filename and choose File options from the popup menu. To supply compiler
options that will affect all files use the Global Compiler Options edit box.

7) Save the project with the Save Project button.

8) Double click a file in the Application tree to open it for editing and click the Close
Window button. You can return to the project window from the Project Menu.

Compiling and Building a Project
Compiling a project is similar to compiling single files, you can use the toolbar to
Compile, Build and Rebuild your projects.

FTN77 User’s Guide Win32

284

The Project Menu

When a project is built, all the files in the application tree are processed and any files
that do not have an up to date object file are compiled.

Projects - Advanced Features
Since there are many different Fortran file extensions and three different Salford
Fortran compilers, Plato allows you to choose which of these compilers is associated
with user specified file extensions for your project. From the project window edit the
strings in the Default Compilers section and press the Update button.

The Project Window allows you to create DLLs (Dynamic Link Libraries) and RLBs
(Relocatable Binary Libraries). Select from the pulldown list box in the Application
Type section.

Customising Plato
You can change the font used to edit files by selecting Set Font from the Options
Menu. In addition you can change the colours associated with different program
elements by selecting Change Colours which is also in the Options Menu.

Chapter 22 Using Plato

285

Keywords are those words defined by the compiler you are using, e.g. PRINT in
Fortran and printf in C. Types include INTEGER and REAL in Fortran and
static and int in C.

Accelerator Keys

Standard Windows

Key Action

Ctrl+N Creates a new edit window

Ctrl+O Opens a file

Ctrl+S Saves the current file

Ctrl+P Prints a file

Ctrl+Z Undo

Ctrl+X Cut

Shift+Del Cut

Ctrl+C Copy

FTN77 User’s Guide Win32

286

Ctrl+Ins Copy

Ctrl+V Paste

Shift+Ins Paste

Ctrl+A Select all

Ctrl+F Find

Ctrl+H Find and replace

Ctrl+G Go to line

F1 Help topics

Shift+F1 Keyword help

Compiling

Key Action

F2 Save

F3 Save and close file

F4 Close file

F5 Find string

F6 Replace string

F9 Compile file

Alt+F9 Build file

F8 Compile project

Alt+F8 Build project

Shift+F8 Rebuild project

Ctrl+F5 Execute

Alt-F2 Save project

F10 Project properties

Ctrl+F1 Keyword help

Chapter 22 Using Plato

287

Block Marking

Key Action

Alt+B Mark block

Alt+- (minus) Cut block

Alt-L Mark line

Alt-Z Paste block

FTN77 User’s Guide Win32

288

289

23.

DBOS (DOS)

Introduction
When a 32-bit Intel chip is running MS-DOS it operates in “real mode”. In this
mode the chip emulates an 8086 chip with the addition of a few extra instructions and,
of course, a much improved performance.

Real mode offers a 1 Megabyte address space composed of 64K byte segments and no
protection of the operating system. In real mode, RAM at addresses above 1 Megabyte
is unaddressable. In order to gain access to these locations and use FTN77, it is
necessary to run DBOS. DBOS is the DOS extender provided with FTN77. Its
purpose is to provide services to applications compiled using FTN77 and her sister
compilers. The majority of the DBOS system stays resident above DOS. A small
portion (approximately 45 Kilobytes) stays resident in real mode memory and provides
services via an interrupt (78 hex).

The main service that is provided is to switch the program from real mode to protected
mode. This is the first operation performed by all programs compiled with FTN77.
When the program terminates, DBOS returns the processor to real mode and returns
control to MS-DOS.

Switching to protected mode allows access to the extended memory above the 1
Megabyte limit. It also opens up the possibility of clashes between DBOS and other
applications such as other memory managers or disk caches.

DBOS must not be used at the same time as other software which exploits extended
memory unless it is compatible with the Virtual Control Program Interface (VCPI)
eXtended Memory Specification (XMS) or an interrupt 15 top down allocator.

This restriction is necessary because DBOS uses all the available extended memory
for user page space. This can cause problems if there are other programs which also
use extended memory on your machine. In particular, the problems caused by DBOS
overwriting a disk-cache’s data area are usually catastrophic.

FTN77 User’s Guide DOS

290

However, DBOS may be used with software that uses extended memory if that
software supports the VCPI (for example QEMM386 from Quarterdeck), VDISK 4.0
or XMS (also known as the HIMEM.SYS scheme). DBOS recognises programs
which use these protocols without overwriting their associated memory areas.

The “VDISK” method uses the fact that a subfunction of interrupt 15 (hex) returns the
number of kilobytes of extended memory available from address 100000 (hex). By
default DBOS hooks this interrupt so it returns a smaller value.

DBOS and expanded memory managers
Expanded memory managers (EMMs) emulate expanded memory boards in order to
provide expanded memory specification (EMS) memory. Some also provide the
VCPI so that programs using extended memory and protected mode can allocate
memory and switch in and out of protected mode. DBOS can use this latter kind of
EMM.

EMMs come in two basic types, common pool and separate pool providers.

Common pool EMMs provide XMS memory, VCPI memory and EMS memory from
a single memory pool. No configuration of this pool is required by the user. Two well
known common pool providers are QEMM386 from Quarterdeck and
386MAX/BlueMAX from Qualitas. DRDOS 6.0’s EMM386 is also a common pool
provider. DBOS will run with common pool providers and will use the VCPI and
VCPI memory.

Separate pool providers maintain separate pools for EMS/VCPI memory and XMS
memory. This is usually because the XMS provider and the EMS/VCPI provider are
separate pieces of software e.g. HIMEM.SYS (XMS provider) and EMM386
(EMS/VCPI provider). Separate pool providers require you to explicitly transfer
memory from the XMS pool to the EMS/VCPI pool. MS-DOS 5.0’s HIMEM.SYS
and EMM386.EXE and Compaq’s HIMEM.EXE and CEMM.EXE are separate pool
providers.

VCPI memory is demand paged. That is, DBOS uses the VCPI to allocate memory
from the pool as programs demand it. Memory is released to the pool as programs
release memory and terminate.

XMS memory is not demand paged, instead, DBOS will use all the available XMS
memory (less that which may have been reserved using the /EXTMEM command line
option). For example using,

31>B �4GC<4< #�����

Chapter 23 DBOS (DOS)

291

will leave 4Mb of XMS memory for use with non-DBOS applications, and allocate
the remaining XMS memory for use with DBOS applications.

DBOS versions prior to 2.70 cannot use XMS memory if an EMM is installed.
DBOS versions after 2.51 may use XMS memory provided that an EMM is not
installed. Versions of DBOS after 2.70 can have access to XMS even after an EMM
is installed.

Removing DBOS (using the KILL_DBOS utility program) will release all the
memory that DBOS has reserved. You should ensure that other TSR (terminate and
stay resident) programs are loaded before DBOS. In particular, the user should note
that some MS-DOS commands load a memory resident portion (e.g. PRINT, MODE
and APPEND) and the first use of such commands should occur before DBOS is
loaded.

Note:
If an EMM has been installed you will initially be in virtual mode at the DOS
command line prompt, and DBOS will use the VCPI to switch in and out of protected
mode, regardless of whether VCPI or XMS memory is being used.

DBOS versions prior to 2.70
Common pool providers
Common pool providers need no special configuration for use with DBOS beyond the
usual include/exclude list on the EMM command line.

Separate pool providers
Separate pool providers require the transfer of memory to the EMS/VCPI pool from
the XMS pool. For example, a command line similar to the one below, for use with
MS-DOS 5.0 HIMEM.SYS and EMM386 will provide 4096Kb of memory to the
EMS/VCPI interface for use as VCPI memory with DBOS.

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 #�(% A0<

DBOS versions 2.70 and above
Common pool providers
DBOS detects the presence of a common pool provider and by default will use the
VCPI to allocate memory. This default behaviour can be changed by using the
/USE_XMS DBOS command line option, in which case DBOS will use XMS
memory for programs but still use the VCPI for virtual/protected mode switches.
However, there is no advantage to using XMS memory in this situation. In fact, some
common pool EMMs provide less XMS memory than VCPI memory.

FTN77 User’s Guide DOS

292

Separate pool providers
If you have partitioned your memory between XMS and EMS/VCPI, by default
DBOS will allocate memory from the largest pool. This behaviour can be changed by
using the /USE_VCPI or the /USE_XMS command line option to force the use of a
particular memory pool. However, unless you need to use VCPI or EMS memory for
some other application, you need not allocate any memory to your EMM at all. For
example, with MS-DOS 5.0,

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 =>4<B

is a suitable combination for DBOS and will provide the maximum amount of XMS
memory to the system whilst still giving access to the upper memory block (UMB, that
which is between 640Kb and 1 Mb) for loading TSR’s and device drivers high. It
also has the advantage of not requiring a page frame thus making a further 64Kb of
UMB space available.

Here are some further examples:

Assuming an 8Mb machine (i.e. 7Mb of extended memory) and MS-DOS 5.0, then
with

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 =>4<B

all of the extended memory available from XMS will be used by DBOS. Similarly
with

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 !�#' A0<

2Mb of extended memory will be allocated to EMS/VCPI leaving approximately 5Mb
available for XMS. In this case, DBOS will use the XMS memory pool since it is
larger. The UMB area will be reduced by 64Kb by the need for a page frame. As a
further example if you set:

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 #�(% A0<

then 4Mb of extended memory will be allocated to EMS/VCPI leaving approximately
3Mb available for XMS. In this case, DBOS will use the VCPI memory pool since it
is larger. The UMB area will be reduced by 64Kb by the need for a page frame.

Chapter 23 DBOS (DOS)

293

Network cards and expanded memory managers
In general, EMMs need to be told which regions of the UMB space are not available to
them. These areas must be explicitly excluded on the EMM command line. The most
common area that has to be excluded is the hardwired buffer on a network card. This
is usually 8Kb long and resides in the D000-DFFF region. If the system exhibits
instability when a network driver is loaded then it is likely that the network buffer has
not been excluded from the EMM. Typically, with MS-DOS 5.0 the following may
cure the problem:

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 =>4<B G,3����3 55

If it does not, try excluding the whole of the D0 segment as below,

34E824,2)K3>BK78<4<�BHB

34E824,2)K3>BK4<<"'%�4G4 =>4<B G,3����3555

Use of a network card may require that other areas need to be excluded from the
EMM.

DBOS command line arguments
In order to provide the services described above, DBOS must already have been
loaded into the system. This is done by typing DBOS, possibly followed by command
line arguments. DBOS will then load into memory, determine the operating
environment and return to the MS-DOS prompt leaving itself in memory. DBOS is a
Terminate and Stay Resident (TSR) program. DBOS can be removed at a later stage
by typing the command KILL_DBOS.

The options available on the DBOS command line are:

/EXTMEM <h>
Preserves <h> bytes of extended memory for other programs. This is achieved by
lowering the amount interrupt 15 returns to a value which preserves the amount of
memory specified. Thus the memory preserved is at the bottom of physical
extended memory, typically from 1 megabyte onwards. <h> must be specified in
hexadecimal. For example:

31>B �4GC<4< �����

would leave 1 megabyte of extended memory free.

/SEARCHMEM
Instructs DBOS not to use the VDISK mechanism for determining the amount of

FTN77 User’s Guide DOS

294

available extended memory, but to search for available memory. This option is
especially useful with early Compaq machines which remapped some of the
memory between 640KB and 1MB to just below 16MB. The VDISK mechanism
would not allow this memory to be used, /SEARCHMEM will, however, find it.

/PAGE <h>
This option is designed for use in multi-tasking environments such as that
provided by DESQview. The option tells DBOS to only use <h> bytes of memory
before paging to disk. In the first instance paging must be enabled by configuring
DBOS using the CONFIGDB utility. But even when this has been done, by
default paging is disabled when running under DESQview. This option has the
additional effect re-enabling paging when inside DESQview. <h> must be given
in hexadecimal.

/NO_SHIFT_INTERRUPTS or /NSI
From version 2.69 onwards a former option /SHIFT_INTERRUPTS became the
default. /NO_SHIFT_INTERRUPTS (abbreviated to /NSI) can be selected in the
unlikely event that you wish to bypass this action.

/SHIFT_INTERRUPTS remaps the IRQs used by DBOS to avoid collision with
other hardware. This prevents a clash between a piece of hardware (typically a
BUS mouse or networking card) and an interrupt that DBOS uses.

/NOWEITEK
For DBOS versions before 2.76 this option prevents DBOS from checking the
presence of a Weitek 1167, 3167 or 4167 numeric coprocessor. Some early 80386
machines have hardware problems which can cause strange behaviour when a
Weitek coprocessor is accessed. If you have such a machine it is possible a Weitek
coprocessor will not work in your machine.

/WEITEK
For DBOS versions from 2.76 onwards /WEITEK must be explicitly specified in
order to enable DBOS to check for the presence of a Weitek coprocessor. This
option is required in order to run an executable that was compiled using the
FTN77 /WEITEK command line option.

/PRIMELINK
Allows DBOS to reside with Primelink, a terminal emulation package from
PRIME.

/DISK_CACHE
Enables the DBOS disk-cache. This has the advantage of being DBOS
compatible and making efficient use of extended memory. The disk-cache will use
free memory pages. This is very flexible, allowing DBOS to take pages from the
cache and give them to an FTN77 program. In this way the disk-cache size varies
depending on the task being performed. A program in the compiler directory
called CACHESTATS can be run to give statistics about the disk-cache.

Chapter 23 DBOS (DOS)

295

The disk-cache is not available if an EMM is installed. However, all programs,
including non-DBOS applications, can obtain the benefit of the DBOS disc-cache
when it is installed.

/USE_VCPI or /UV

/USE_XMS or /UX
These options are for use with extended memory managers (EMMs) that support
XMS and VCPI. Some EMMs have a common pool for XMS and VCPI memory
whilst others have separate pools for each type (see page 302).

For common pool EMMs, the default DBOS behaviour is to use VCPI memory
and the /USE_XMS option should only be selected if you wish to force the use of
XMS memory.

For separate pool EMMs, the default DBOS behaviour is to use the larger of the
two pools. Selecting /USE_VCPI or /USE_XMS will over-ride the default
behaviour.

/CFG <config_file_path>
Specifies the path to an alternative DBOS configuration file. This allows the
possibility of several configurations for DBOS. One possible use of it is to specify
a configuration file which would cause DBOS to use a different paging file. This
is particularly useful under Windows, where several DBOS invokations are
simultaneously possible, only one of which may use the default paging file.

In addition to the options described above, DBOS can be invoked with an explicit
memory range. The memory limit or limits must be given before any other options.

This can take one of two forms:

DBOS <upper_limit>
Ensures that DBOS will not use any memory above and including the physical
address <upper_limit>. This value must be in hexadecimal. For example:

31>B �����

will prevent DBOS from using any extended memory (100000 hex is 1 megabyte).

DBOS <lower_limit> <upper_limit>
This form of memory specification can be used to circumvent a problem which
occurs with large amounts of memory. If for example, a machine has 32
megabytes of memory, there are some BIOSs which will only recognise the first 16
megabytes of memory. This can cause two sorts of problem:

Firstly, interrupt 15 will only report that there is 16 megabytes in the machine.

Secondly, there will be a problem if another program has already taken some
memory away (the BIOS will quite often do this), leaving a small amount of space
that should not be touched just below 16Mb.

FTN77 User’s Guide DOS

296

In this context, DBOS has two differing behaviours, depending upon the
relationship of the physical address <lower_limit> to the amount of memory
reported by the interrupt 15 mechanism.

a) If <lower_limit> is less than the amount of memory reported by interrupt 15
then DBOS will take <lower_limit> as the physical lower limit of the memory
it is to use. That is, DBOS will only use memory at physical addresses above
this limit.

b) If <lower_limit> is greater than the amount of memory reported by interrupt 15
then DBOS assumes that the machine is one with more memory than the
BIOS knows about. In this case DBOS uses the portion specified by the given
memory range in addition to that reported by interrupt 15.

For example, if interrupt 15 reports 16 megabytes of memory in a 32 megabyte
machine then

31>B ����� !������

will make all of the memory available as user page space, whilst

31>B !����� "'����

will only use extended memory between 2 and 3½ megabytes. The values

31>B ������ !������

would make DBOS use the second 16 megabyte memory block in addition to that
reported by interrupt 15. The virtual addressing capability of DBOS makes this
transparent to FTN77 programs.

This method does rely on the fact that you know how much memory the BIOS
thinks it has. This information is usually available - simply invoking DBOS
without any parameters will give a report on the amount of memory available via
interrupt 15.

Memory management
FTN77 programs can make use of ordinary DOS memory at addresses beneath 640K
and extended memory at addresses above 1 Mbyte. Since DBOS uses the hardware
paging facilities provided in the 32-bit Intel chip, this memory can be used at any
address where it is needed. Memory is controlled in pages of size 4096 bytes. Each
page of memory starts on a 4096 byte boundary.

When a program starts execution all the free space from the DOS area and the
extended memory is divided into pages. This pool of pages is then used to provide
virtual memory where the program needs it. By default, DBOS will use all the

Chapter 23 DBOS (DOS)

297

extended memory it can find for pages, although it is possible to tell DBOS to use less
memory, so as to accomodate other uses of extended memory (see page 295).

If DBOS can find enough extended memory it will relocate most of itself above 640K
so that only about 28K bytes of program remain resident in real mode. This is
important, because it leaves more real mode space available for non-FTN77
programs. Although DBOS can be used with systems containing no extended
memory, it is recommended that at least 256K bytes of extended memory be available.

Configuring DBOS
DBOS can be configured using the CONFIGDB utility. The DBOS_SET and
DBOS_RESET commands may also be used to set various switches in DBOS once
DBOS is loaded.

The CONFIGDB utility
CONFIGDB is a menu driven program which creates or modifies the file
DBOS.CFG in your DBOS directory. This file is read once by DBOS, when DBOS
is first loaded. After a successful reconfiguration, CONFIGDB will reboot your
machine to activate the new parameter settings. Some users may find it convenient to
save several versions of DBOS.CFG and copy the required one to the correct place
just before loading DBOS. This avoids the need to use CONFIGDB each time the
configuration parameters are to be changed.

If, for any reason, the DBOS.CFG file becomes corrupt, it might become impossible
to load DBOS in order to run CONFIGDB to correct the situation! If this should
happen, simply erase DBOS.CFG to return to the default options (it will be necessary
to remove the read-only flag by issuing the MS-DOS ATTRIB command).

The following parameters are controlled by CONFIGDB:

� Disk swapping
DBOS can be instructed to use disk space as a swap area for programs which are
too large to fit into memory. If you select this feature you will be asked to choose
between swapping to an MS-DOS file or to a whole hard disk partition.

The latter method is more efficient, but requires a dedicated partition, and means
that all existing data on the disk partition will be destroyed.

If you decide to use an MS-DOS file as a swap area, you will be asked to specify
its size. This will be rounded down to a multiple of 128K bytes, and the file will
be created of the required length. For best performance, it is important that this

FTN77 User’s Guide DOS

298

file should not be fragmented. The use of a disk compression tool may be
beneficial.

Note that the MS-DOS swap file must not be altered while DBOS is configured
to make use of it.

If you decide to stop using a disk partition as a paging area, you should reformat
the partition after using CONFIGDB to cancel its use.

� High resolution graphics
A default high resolution graphics mode can be defined to be used by the routines
HIGH_RESOLUTION_GRAPHICS_MODE@ and
GET_GRAPHICS_RESOLUTION@ (but note that these routines have now been
superseded by other more general routines). This may simply be set to standard
VGA or EGA, but it gives the opportunity to exploit other extended modes avail-
able with some graphics cards. Some particular graphics cards are listed, but it is
possible to provide information on the interrupts required and the resolution
provided by any particular card, so the list is only for convenience, and does not
constitute a limitation on the cards which can be driven.

� Run-time error actions
Whether or not a machine register dump and a routine traceback is printed when a
program aborts outside of the debugger can be controlled.

� Screen display
The colours for normal text, window headings, highlighted text, debugger dialog
and error message text within the FTN77 system can be configured.

� Miscellaneous features
DBOS can make use of a technique which avoids the need to reopen the file
DBOS.LIB each time an FTN77 program is executed. This can result in an
improved response when a program is run, especially where slow hard disks are in
use. However, this technique uses an undocumented feature of MS-DOS, which
might therefore be unsupported in some future version or in some unusual software
environment. It is suggested that this switch be set ON unless you are
experiencing difficulties which you think may be related to the use of this feature.
This is currently the only feature related to the ‘‘Miscellaneous’’ option on the
CONFIGDB main menu.

If you decide to stop using a disk partition as a paging area you should reformat the
partition after using CONFIGDB to cancel its use.

The DBOS_SET and DBOS_RESET commands

DBOS_SET <switch name>
DBOS_RESET <switch name>

Chapter 23 DBOS (DOS)

299

These two commands are used to set or reset various switches in DBOS. Switch
settings remain in effect until overwritten by another DBOS_SET (RESET)
command, or until the end of the current DBOS session. Switch settings are not
recorded on disk (c.f. CONFIGDB). Typically these commands may be included in
your AUTOEXEC.BAT file.

The following switches have been defined:

TRACEBACK
If SET, this switch forces a traceback when a program fails outside of the
debugger. Usually you would want this switch SET, however if you are working
with assembly code instructions for example, and are only interested in the register
dump, it may be useful to RESET this switch. The default value of this switch
may be selected by using CONFIGDB.

HEXDUMP
If SET, this switch forces a register dump when a program fails outside of the
debugger. Users who are not interested in the contents of these registers may
prefer to RESET this switch. The default value of this switch may be selected
using CONFIGDB.

PAGING
In the first instance, paging to disk is enabled by configuring DBOS using the
CONFIGDB utility. Once paging has been enabled in this way, it can be
temporarily disabled (and later re-enabled) by using this PAGING switch. If you
are running applications under DESQview, paging is enabled by using the DBOS
command line option /PAGE in addition to configuring DBOS using
CONFIGDB.

QUIT_ON_ERROR
This switch, which is SET by default, causes programs which fail (including the
compiler) to simulate a control break so that a batch file is interrupted without the
need to explicitly test the return code. If the switch is RESET, then programs
which fail will return a non-zero error code which may be tested using
’ IF ERRORLEVEL’ in DOS.

The paging algorithm
The following description of the DBOS paging algorithm is not guaranteed to remain
unchanged in all details in future versions of the software, although the overall
mechanism will not change.

FTN77 User’s Guide DOS

300

When a program starts to execute it begins to use up the pages of memory available
from the pool of memory beneath 640K and above 1 megabyte. Memory can be used
for any of the following purposes:

� Usually some extended memory will have been used by DBOS on startup to
relocate part of itself outside the real mode address space.

� Memory is used for the program stack. This holds all dynamic variables and
arrays (those which have not been saved) and various temporary variables and
return links.

� Memory is used by uninitialised common blocks. Unless the /UNDEF option has
been used, such common blocks are allocated page by page as they are used.

� Code inside the system library or from user-defined dynamic link libraries is paged
in from disk as needed. This also consumes pages from the pool.

� A few pages are used for internal purposes. For example, pages are needed by the
paging hardware itself to hold the page tables.

Extended memory pages are used preferentially for system library code because it is
sometimes possible for DBOS to reuse such code from one program run to another
without reloading it. If paging to disk is enabled, then most pages are candidates for
being swapped out. If paging to disk is not employed, then only the system library
code and unmodified portions of other memory-mapped MS-DOS files (chiefly the
code of dynaminc link libraries) can be swapped, since a copy of the information is
already on disk ready to be reloaded when required. The above algorithm has a
number of potentially interesting consequences for the user:

� Programs designed to operate on a range of problems with varying memory
requirements can be written with one-dimensional arrays dimensioned to cater for
the largest conceivable case. Providing the arrays in question are in dynamic local
storage or uninitialised common, and provided also that the /UNDEF option is not
used, only those portions of the arrays which are actually referenced will require
physical memory.

Such programs can be made robust by using the subroutine
GET_MEMORY_INFO@ (see below) to determine the actual memory available.
Note that this technique is much less effective with multidimensional arrays,
because data will be scattered in memory according to the standard Fortran
memory organisation (first subscript varies fastest).

� There is almost no limit to the size of program that can be run if disk paging is
used. The performance of programs will degrade gradually as the available
memory is reduced.

� Very large suites of code which have traditionally been run using overlaying can
reasonably be linked as a monolith and run with RUN77. The parts of the
program which are not used will soon get paged out of memory.

Chapter 23 DBOS (DOS)

301

� In a system containing a very large number of small subroutines, many of which
will be rarely used, it may be worth specifying routines which use each other in
adjacent LOAD commands in LINK77. This will tend to reduce the number of
pages needed to hold the program.

Writing programs within memory capacity
If you are writing software which will be run on a range of 32-bit Intel hardware with
differing amounts of extended memory available it is useful to have a way to avoid
running out of memory and producing the ‘Page memory exhausted’ error message.
DBOS keeps a count of pages of real memory and of pages of disk space available. If
disk paging is not enabled DBOS will let a program run out of memory completely,
generating the ‘Page memory exhausted’ message.

If disk paging has been enabled, however, DBOS produces the error message ‘Down
to page reserve’ while there are still enough pages remaining for the debugger to
move in to store.

It is possible to alter the threshold at which the ‘Down to page reserve’ message is
produced, and it is also possible to trap this error using SET_TRAP@ to perform
some form of error recovery. The following program illustrates one useful way to
combine these facilities. This program uses page swapping for debug and/or error
recovery by forcing DBOS to fault only when the real memory has filled:

8=C464A�# C>C0;N3>BN?064B�C>C0;N4GC4=343N?064B�

� A4<08=8=6N3>BN?064B�A4<08=8=6N4GC4=343N?064B�

� C>C0;N38B:NBF0?N?064B�A4<08=8=6N38B:NBF0?N?064B�

� C>C0;N?064NCDA=B

8=C464A�# 9D=:

4GC4A=0; <HN4AA>AN70=3;4A

2

2 =>C4 C70C C74 5>;;>F8=6 CF> BD1A>DC8=4 20;;B 2>D;3

2 14 A4?;0243 F8C7 >=4 20;; C> CA0?N>=N?064NCDA=/

2

20;; 64CN<4<>AHN8=5>/�C>C0;N3>BN?064B�

� C>C0;N4GC4=343N?064B�A4<08=8=6N3>BN?064B�

� A4<08=8=6N4GC4=343N?064B�C>C0;N38B:NBF0?N?064B�

� A4<08=8=6N38B:NBF0?N?064B�C>C0;N?064NCDA=B�

2 50D;C F74= 0;; <08= <4<>AH 8B 8= DB4 �8�4� C>C0;

2 4@D0;B 38B: ?064 B?024�

20;; B4CN?064BNA4B4AE4/�C>C0;N38B:NBF0?N?064B�

2

2 CA0? C74 4AA>A ´3>F= C> ?064 A4B4AE4´

FTN77 User’s Guide DOS

302

2

20;; B4CNCA0?/�<HN4AA>AN70=3;4A�9D=:�$�

20;; A4BCN>5N?A>6A0<

4=3

8=C4AAD?C BD1A>DC8=4 <HN4AA>AN70=3;4A

�

�

If you decide to use GET_MEMORY_INFO@ to determine the memory available to
you, you should be aware that the exact amounts of memory needed to run your
program may vary for several reasons. For example, if a small routine happens to
straddle a page boundary, then when it is used both pages will be required.
Furthermore, a program may call different numbers of library routines depending on
its data. However, even a small disk paging file can cushion you from these effects
when calculating whether you have enough room to run your program.

One possibility for GET_MEMORY_INFO@ is to use it to determine if your pro-
gram will run without requiring page turns, and to print a suitable warning if it will
require paging to disk - but then continue execution at the reduced speed.

Assembler instructions and the execution environment

When a 32-bit Intel chip is running MS-DOS it operates in ‘real mode’. In this mode
the chip emulates an 8086 chip with the addition of a few extra instructions and, of
course, a much improved performance.

Real mode offers a 1 Megabyte address space composed of 64K byte segments and no
protection of the operating system. In real mode, RAM at addresses above 1 Megabyte
is unaddressable. The DBOS system stays resident above DOS and provides services
via an interrupt (78 hex). The main service provided is to switch a program from real
to protected mode. All FTN77 programs (including the compiler and all ancillary
software) perform such a switch as the first instruction. The rest of a program
executes in 32-bit protected mode with the paging hardware turned on and CPL=3.
DBOS provides the tables known as the GDT, LDT, and IDT, which control protected
mode operations.

Programs run with CS, DS, ES, and SS pointing to segments which overlay each
other and offer an almost 2 Gbyte virtual address space. Observe that this implies that
negative addresses are illegal. At the top of this space is an area of virtual memory
reserved for the system library. Part of this space is write-protected and contains
information which is demand-paged from the DBOS.LIB system file. Beneath this
area is the system stack (pointed to by ESP), which is of a BIG descending type (as
defined by the GDT entry for SS).

Chapter 23 DBOS (DOS)

303

The user’s program, which has normally been loaded as a .EXE file, lies at the bottom
of the address space. Regardless of where the program has been loaded by MS-DOS,
DBOS arranges the segment offsets so that the first location of the program is
location 0. The .EXE files do not contain the space for common blocks (unless they
have been initialised in a BLOCK DATA subprogram) or the system stack.

When DBOS starts a program (in response to the initial INT 78) it obtains all the
unused memory below 640K by the appropriate DOS call, and pools this with
memory residing above 1 Megabyte to provide pages for use as required by the
program as it executes in protected mode. Uninitialised common and stack areas, for
example, will be provided from this pool.

Since virtual memory hardware is used, user programs are not sensitive to the memory
layout, which may vary from machine to machine, but only to the total amount of
memory available.

Programs communicate with DBOS by the use of protected mode INT 78 instructions
(which generate General Protection Exceptions into DBOS) followed by an
identification byte indicating the service required. This combination is usually
represented by a pseudo-op recognised by the FTN77 in-line assembler feature. Thus,
for example, when a program wishes to terminate it issues:

8=C I´&'´ *�7Tg�

31 �

which can be coded as:

BE2 �

Users should not need to use many of these SVC calls (which number about 50 in all),
since the services which they offer have been packaged as callable routines. For
example SVC/0 is available by calling EXIT or by executing the end statement in the
main program. Most SVC’s communicate with DBOS via the general registers. The
small number of SVC’s which may be of general use are described later in this
chapter.

When a program is linked using the FTN77 linker, LINK77, or the /LGO compiler
option there is no system library to be loaded. All system library routines (plus most
of the debugger, linker, and compiler routines) are contained in the DBOS.LIB system
file which, as explained above, is paged on demand into the system area above the
stack.

The linker plants calls to these routines as calls to locations containing a byte DB(hex)
which acts as an identifier, followed by a 1-byte name length followed by the name of
the routine in question. In order to make the call illegal 80000000(hex) is added to
the address (so as to make it negative). DBOS recognises this construct, follows the
pointer and looks up the routine in its map of the system library. The call is then
altered and re-executed.

FTN77 User’s Guide DOS

304

This dynamic linking is very efficient and results in much smaller .EXE files than
would otherwise be possible. If DBOS is unable to find a routine to satisfy an
otherwise valid dynamic link it raises an error and reports that a call to a missing
routine has been made. This illustrates the fact that not all General Protection Faults
result in program errors, and of those that do, not all are reported explicitly as General
Protection Faults.

If a program is run using RUN77, /LGO, /BREAK or /DBREAK, then DBOS
handles most program failures by passing control to the source level debugger. This is
inappropriate when debugging assembler and programs should be run as .EXE files
without using RUN77. Program failures are then reported as register dumps. For
example:

2^_a^RTbb^a UPd[c �bcPcdb ,1''!� X]bcadRcX^] PSSaTbb , ������$ �

3T]^a\P[XbTS ^_TaP]S Pc DbTa�������$#

5[PVb,��� �!#% �4@ =^ RPaah >SS _PaXch 35 , U^afPaS�

40G�,��� ���� 41G�,������%5 42G�,������� 43G�,��������

41?�,&525555% 4B8�,&525555% 438�,&5255522 4B?�,&525555%

BC���,��!���������������"4�#

������$#� 5BC? 3B�)J41G�� �L

The display contains an explanation of the error at the assembler level, a dump of all
the registers, and a print of the next instruction to be executed. All values are in hex
except for the contents of the co-processor stack.

The fault address (in this case User/54) is normally in the user space, although it is
possible to generate faults inside DBOS in which case the fail address would take the
form Os/<hex no>. The debugging of programs at this level is described in chapter 7.

Using assembler instructions to call DOS and BIOS

Real mode assembler programmers are familiar with calling DOS and BIOS routines
by loading information into the (16-bit) registers and issuing the appropriate INT
instruction. Many DOS and BIOS facilities have been made available via the library
routines supplied with the compiler. For example, it is recommended that all file
access operations are performed by library routine call rather than DOS calls.

The usual way to access DOS or BIOS directly is via the subroutine
REAL_MODE_INTERRUPT@ (for detials of this and other routines in this section
see the FTN77 Library Reference manual). However, to cater for special
requirements, and for compatability with earlier versions of FTN77, SVC/3 has been
provided. This SVC should be followed by one byte defining the interrupt required.
When SVC/3 is executed DBOS will switch to real mode and issue the corresponding

Chapter 23 DBOS (DOS)

305

INT instruction with the 16-bit registers filled with the bottom 16 bits of the user’s
register set. For example, in order to read the printer status word using BIOS you
could execute:

8=C464A�! BC0CDB

2>34

<>E1 07��,! *BcPcdb R^ST

BE2 " *0bZ 31>B c^ _TaU^a\ ^_TaPcX^]

31 i´ &´ *?aX]cTa X]cTaad_c

<>E1 07��,� *ITa^ TgcT]S aTbd[c

<>E7 BC0CDB�0G� *Bc^aT cWT aTbd[c PfPh

43>2

This is adequate for most purposes, but it does not cater for operations which require
pointers to memory. The problem is that your Fortran code is running in a paged
environment and bears no simple relationship to real mode memory. To cater for this
problem DBOS provides a special segment which overlaps a piece of real mode
memory. The DS and ES registers will be set to point to this segment every time
SVC/3 is executed. The segment is defined to be 512 bytes in length, and its
descriptor can be loaded into FS by a call to DOSCOM@. For example, this is the
code (somewhat simplified) for the COUA built in routine which prints a string on the
standard output:

BD1A>DC8=4 2>D0�2�

270A02C4A���� 2

8=C464A�# ;

4GC4A=0; 3>B2></

2

2 >1C08= C74 ;4=6C7 >5 BCA8=6 C> ?A8=C

2

;,;4=�2�

85�;�;4���A4CDA=

2>34

20;; 3>B2></ *;^PS 5B fXcW _^X]cTa

� * c^ 3>B2>< bTV

<>E 42G��;

<>E 4B8��,2 *?^X]c c^ bcaX]V

<>E 438��,� *?^X]c c^ bcPac ^U 3>B2>< bTV

 ;>3B1 *;^PS P RWPaPRcTa

5B *5B) _aTUXg

<>E1 J438�L�0;� *?dc Xc X]c^ 3>B2>< bTV\T]c

8=2 438�

342 42G�

96 � *;^^_ a^d]S d]cX[S^]T

<>E7 3G��,�

<>E 42G��; *0\^d]c c^ faXcT

FTN77 User’s Guide DOS

306

<>E7 0G��,I´#���´ *3>B faXcT Ud]RcX^] RP[[

?DB7 41G� *<dbc bPeT 41G

<>E7 1G��, *7P]S[T Xb bcP]SPaS ^dc_dc

BE2 " *0bZ U^a aTP[\^ST X]cTaad_c

31 I´! ´ *3>B RP[[

?>? 41G� *ATbc^aT 41G ^a _a^VaP\

� * fX[[V^ fX[S

43>2

4=3

The regenerative screen buffer is also available on a similar basis as a separate
protected mode segment. This segment starts at real mode address A0000, so
depending on the mode you are using with your video adaptor you may need to offset
into the array. Writing into this segment will, of course update the contents of your
screen at high speed. To load FS with the appropriate selector call SCREENSEG@.

DBOS memory map
The following table shows memory areas which should not be allocated to link
libraries as they are reserved for use by software marketed by Salford Software Ltd.

Address Usage

41000000 - 41FFFFFF SGKS, LIBCGKS.LIB

43000000 - 43FFFFFF SGKS, LIBFGKS.LIB

4C000000 - 4CFFFFFF Pascal dynamic link library.

50000000 - 50FFFFFF NAG FTN90 maths library.

50000000 - 51FFFFFF Pascal heap.

51000000 - 51FFFFFF NAG FTN77 maths library.

52000000 - 52FFFFFF GKS.

53000000 - 53FFFFFF IMSL for FTN90

54000000 - 54FFFFFF ISML for FTN77

57000000 - 57FFFFFF FTN90 run time system.

60000000 - 7ECFFFFF DBOS.

7ED00000 - 7FFFFFFF DBOS default storage heap.

307

24.

Running DBOS applications under
Windows (Win16)

Introduction
The DBOS system includes the Windows interface, known as WDBOS. WDBOS is
necessary only if you intend to use DBOS, or run a DBOS program, under Microsoft
Windows 3.1 or Windows 95. WDBOS provides the interface to Windows memory
management functions and other services that are vital to the correct operation of
DBOS in this environment.

Unlike some other multi-tasking environments, Windows does not offer DOS
programs access to the Virtual Control Program Interface (VCPI) for switching to
protected mode. One of the functions of WDBOS is to provide a subset of these
missing functions. Using WDBOS it is possible to run one or more copies of DBOS
concurrently and to switch between DBOS programs and other Windows applications
within a Windows session.

Installing WDBOS
WDBOS is a virtual device driver which is in the file WDBOS.386. This file is
copied into the DBOS system directory on your hard disk during the installation
procedure. To use WDBOS, Windows 3.1 must be informed that WDBOS.386 is to
be loaded as a device driver. This information should be included in the Windows
SYSTEM.INI file. The installation procedure will update your SYSTEM.INI file
automatically if you give the necessary confirmation when prompted. Failing this, you
can update the file manually as follows:

� Change to your WINDOWS directory.

FTN77 User’s Guide Win16

308

� Edit the SYSTEM.INI file using a text editor that does not append Ctrl-Z to the
file. Find the “[386enh]” section. On a fresh line, after the last “device=”
directive, enter:

STeXRT,R)KSQ^b�SXaKfSQ^b�"'%

or the equivalent for your configuration (note there is no asterisk following the
“=”).

A typical extract from a SYSTEM.INI file is shown below:

� � �

STeXRT,�QX^bg[Pc

STeXRT,�eSR

STeXRT,�e\R_S

STeXRT,�R^\QdUU

STeXRT,�RS_bRbX

STeXRT,R)KSQ^b�SXaKfSQ^b�"'%

[^RP[,2>=

5X[TBhb2WP]VT,^UU

� � �

Once this procedure has been carried out, DBOS may be used in a DOS window in
in Windows 95 or Windows 3.1 “enhanced” mode.

Windows modes
Windows 3.1 provides two modes of operation: standard and enhanced. These modes
allow you to run one or more 16-bit application programs, each in a DOS window
(commonly called a “DOS Box”). To the DBOS user, only the Windows 3.1
enhanced mode of operation is of interest, as this is the mode that offers full access to
the functionality of the 32-bit Intel chips. Windows 95 always uses “enhanced mode”.

The command:

F8=�"

starts Windows in enhanced mode, where DOS programs execute in virtual mode and
Windows applications execute in 16-bit or 32-bit protected mode.

If you start Windows with the command:

F8=

(i.e. with no parameter) then Windows determines the mode that will be used. On a
32-bit machine the WIN command will use enhanced mode if sufficient extended

Chapter 24 Running DBOS applications under Windows (Win16)

309

memory is available. If there is insufficient extended memory the WIN command will
enter standard mode without reporting the fact to you.

For this reason, DBOS must not be loaded before Windows is started. If DBOS has
been loaded, then it should be unloaded by typing:

:8;;N31>B

before Windows is started.

Running programs in a DOS box
To invoke a DOS session from within Windows 3.1, simply double click on the “MS-
DOS Prompt” icon in the Program Manager (Main) menu. Under Windows 95 click
on the Start icon at the foot of the screen and move the mouse to Programs. Then
select “MS-DOS Prompt”. DBOS may be then invoked by typing

31>B

as you would do under DOS. Please note that the DBOS option /DISK_CACHE is
not available when using DBOS within a DOS Box in Windows.

A DOS session may be windowed or may occupy the full screen. Switching between
full screen or windowed operation is done by pressing the Alt-Enter key combination.

You can switch between your DOS Box and Windows by pressing Alt-Tab.

If you want to remove DBOS, and exit from a DOS box, type

:8;;N31>B

4G8C

If you don’t use KILL_DBOS before typing 4G8C, you may be presented with a small
window asking you to use your “pop up program” and type Ctrl-C to return to
Windows. If this happens, ignore the message and type Ctrl-C. This message is

normal and does not indicate any fault. Typing 4G8C will terminate that DOS session
and DBOS will be removed from memory. The memory used by DBOS during the
DOS session will be released. In Windows 95 you can exit by clicking on the X-box
in the top right hand corner of a windowed DOS box.

As an alternative to the above procedure you may prefer to create a .BAT file
containing a call to DBOS (and HOTKEY77 with HELP77 if you prefer) followed by
a call to COMMAND.COM (or perhaps a call to your application).

Under Windows 3.1, you may then use the Windows PIF Editor to create a
corresponding .PIF file. The Windows Program Manager can then be used to attach

FTN77 User’s Guide Win16

310

this .PIF file to an icon in order to run DBOS from the Program Manager. This will
emulate the MS-DOS prompt icon.

Under Windows 95, once a batch file has been created it is possible to set up a short
cut to the batch file in either of the following two ways.

� Click the right mouse button on the desktop to bring up a popup menu. Select the
New option followed by Shortcut. Now either enter the full path and filename of
the batch file or use the Browse option to find the file. Once you have selected the
file you will be prompted to select a suitable icon. This icon will then appear on
the desktop and when you double click on the icon the batch file will be called.

� Alternatively, to create a Start program group entry, click with the right mouse
button on the Start icon and select Open from the menu. Now double click on
the Programs group so that it opens. Next double click on Your Computer icon
and select the batch file and using the right mouse button, drag it into the
Programs area. Select Create Shortcut, from the menu that appears. You will
now be able to start the batch file from Start and Programs.

Switching back to Windows
The key combination Alt-Tab will invoke the Windows task switcher. Successive
depressions of the Tab key, keeping the Alt key depressed, will cycle through the
currently running applications.

Releasing the keys will select the currently visible application. The DOS session will
be shown iconised at the bottom of the screen. Double clicking on this icon or using
the task switcher will enable you to reselect your original DOS session. Under
Windows 95 you can use the Taskbar bar the is normally at the foot of the screen.

It is possible to have multiple DOS sessions and therefore multiple DBOS sessions.
Each one of these DOS sessions may be regarded as running on a different machine,
or “Virtual Machine” in Windows terminology. DBOS must be invoked separately
for each DOS session in which it is required. The exception to this rule is the case
when you have task-switched back to Windows leaving the DOS session active and
have subsequently task-switched back to the same DOS session.

Achieving the above is much easier if you are using windowed DOS sessions. Task
switching may then be carried out by clicking on the window of the application or
DOS session that you wish to select.

Chapter 24 Running DBOS applications under Windows (Win16)

311

WDBOS version number
A simple Windows utility application, WDBOSVER.EXE, is provided. This utility
can extract the version number of the WDBOS.386 device driver present on your
system. WDBOSVER should only be run under Windows in enhanced mode.

FTN77 User’s Guide Win16

312

313

25.

Plotter Interfacing (DOS)

The plotter
The comments below relate to the HP 7550a plotter. If you have another type of
plotter you are advised to read the manuals supplied with your plotter to see how it
should be interfaced to the PC.

Cabling requirements
The correct plotter cable is essential for the successful use of the plotter. The cable
must be suitable for hardwire handshaking and cables of the ‘straight thru’ type or
cables designed to be used with packages that only support XON/XOFF handshaking
should not be used. Figure 25-1 shows the correct pin outs for such a cable. Typical
errors caused by use of the incorrect cable are: the DOS ‘Access Denied’ at the PC
end and ‘I/O buffer overflow’ at the plotter end.

Panel settings
The PC and the plotter must be set to the same baud rate. Other typical settings are:

BYPASS OFF

HANDSHAKING MODE HARDWIRE DIRECT

DATA FLOW REMOTE STANDALONE

FTN77 User’s Guide DOS

314

Plotter end: PC end:

Protective Ground

TD

RD

SGND

DTR

CTS

DSR

1

3

2

7

20

5

6

zz

zz

zz

zz

z z z

z

z

z z z

1

2

3

7

5

6

20

Protective Ground

RD

TD

SGND

CTS

DSR

DTR

 Figure 25-1 Plotter cable pin-out

Plotting plot files
There are three ways to plot the HPGL files produced by FTN77.

1) Use the COPY command. If the plotter is attached to COM1 and the file is called
PLOT.PLT, then type:

2>?H ?;>C�?;C 2><

2) Use the PRINT command. Type:

?A8=C ?;>C�?;C �3)2><

3) Redirect LPT1 to COM1. Type:

<>34 ;?C),2>< ATSXaTRcb ;?C c^ 2><

?A8=C ?;>C�?;C ?[^cb ?;>C�?;C

The redirection need only be done for the duration of the DOS session. All
subsequent prints will automatically be channeled through COM1. To terminate
redirection type:

<>34 ;?C)'��% or similar

COM1 may ‘time out’ whilst paper is being fed or the pen changed. If this
happens add a ‘,p’ to the initial mode command that sets the COM1 parameters
e.g.

<>34 2><)(%���]�'� �_

This will cause a continuous polling of COM1 should such a ‘time out’ condition
occur. The ‘time out’ loop may be terminated with Ctrl-Break.

315

26.

Calling real mode libraries and
programs (DOS)

Introduction
This chapter describes how you can adapt existing real mode libraries and programs
for use with programs compiled with FTN77. If you are not familiar with the various
execution modes provided by a 32-bit Intel CPU chip you will find it helpful to read
the next section before attempting to follow the description starting on page 328.

The library subroutines provided by FTN77 and referenced here are described in
detail in the FTN77 Library Reference.

Real and protected modes
A 32-bit Intel CPU differs in several fundamental ways from the original 8088 CPU
around which MS-DOS was designed. The most obvious and, for FTN77, most vital
characteristic is the ability to manipulate 32-bit data and to use 32 bits to address data,
thus making up to four gigabytes of memory theoretically available. 32-bit chips also
gain in speed of data access as they manipulate information in chunks four times
bigger than those of the IBM PC’s 8088 processor, and twice the size of the IBM
PC/AT 80286’s chunks.

Another, less immediately obvious, distinction is the 32-bit chip memory-management
facilities. These facilities break down into three distinct modes of operation. The first
is real mode, which is provided to guarantee compatibility with existing applications.
The processor emulates a fast 8088 or 8086. When operating in real mode, a 32-bit
chip cannot address more than 1Mbyte of memory, just like the 8088/86.

FTN77 User’s Guide DOS

316

The 80286 and all 32-bit chips have a protected mode of operation. 80286 protected
mode allows up to 16 megabytes of data to be addresssed, whereas on 32-bit Intel
chips the protected mode makes four gigabytes of memory addressable. Both
protected modes also support virtual memory techniques, whereby data can be
swapped to and from disk when real memory is full. This allows several applications
to run in memory concurrently, each protected from the others’ anti-social behaviour
by the chip’s memory management. The 80286 chip will operate in either protected
mode or in real mode, but a change of mode requires the system to be rebooted, thus
limiting its usefulness in many applications.

32-bit Intel chips have a feature not available with the 80286 chip: virtual 8086 mode.
Here the processor segments memory into 1Mbyte chunks, complete with 640K limit,
each of which appears to a DOS application to be an independent machine.
Unaltered, multiple DOS applications can run in one box without interfering with
each other.

Unfortunately, with a 32-bit Intel chip, DOS applications cannot use protected mode
directly. There are two approaches to making the power and addressing capability
available to programs:

1) Provide a new operating system, such as OS/2 or Windows 95/NT, and write
applications which can exploit it.

2) Make use of a “DOS Extender”, such as our DBOS package.

Using DBOS, programs can make use of 32-bit Intel protected mode and switch
readily in and out of real mode. Thus, FTN77 programs can co-exist with DOS
applications. DBOS allows full use of 32-bit addressing and uses the paging feature
of the 32-bit Intel CPU so that programs can address up to 4 gigabytes of memory.
When an FTN77 program has been compiled and link-loaded, the address space
which is used for, say, a common block, might be fragmented in physical memory,
because of the way the paging algorithm works.

Rules for calling real mode from protected mode
This process will seem at first like a ‘kludge’ which, of course, it is. We stress that
there is no standard way provided by the 32-bit Intel chip to achieve real and protected
mode inter communication. Real mode and protected mode code may be loaded at the
same time into physical memory. The mode in which the 32-bit Intel CPU is operat-
ing can be switched under the control of the DBOS system so that it is possible to
‘call’ real mode code from a protected mode program.

However, data which is accessible in 32-bit Intel protected mode (such as an array),
may be fragmented in physical memory. If real mode code needs to access data which

Chapter 26 Calling real mode libraries and programs (DOS)

317

is in a protected mode program, or vice versa, the data must be copied in physical
memory. It should always be kept in mind that this process of mode switching and
data copying has an execution time overhead associated with it.

Calling real-mode libraries
In order to use a real-mode library from an FTN77 program, you will have to do the
following:

1) Prepare a standard MS-DOS executable (.EXE) file, by compiling and linking a
main program and library routines using your chosen real mode compiler(s) (and
linker if provided), such as Professional Fortran, F77L, MASM, etc. and the MS-
DOS linker, LINK. As you will see from the simple example on page 330, the
main program should contain all of the following:

a) a common block which will be used to transfer data between the real and
protected mode programs;

b) if more than one real mode ‘service’ is to be controlled by the program, a
Fortran computed GOTO statement, or its equivalent, which will allow the
various operations in the real mode program to be controlled from a variable
whose value is set by the protected mode program which calls it;

c) at least one call to the subroutine FTN77WT (supplied on the FTN77 release
disk in source and object forms), which is used to initialise the real
mode/protected mode interface and subsequently to return control to the
protected mode program each time that the real mode program completes any
stage of execution. Note that this routine has a number of entry points as
different real mode compilers use different calling conventions. Details of
these entry points are as follows:

Real Mode Compiler Entry point name

Lahey F77L FTN77WTL

Prospero Fortran FTN77WTP

Professional Fortran FTN77WT

Microsoft Fortran FTN77WTM

Turbo C FTN77WTC

� The single argument to FTN77WT may be of any type.

� Any of the above entry points may be used with real mode assembler code
compiled with MASM. Which entry point will depend on the calling
conventions you have chosen.

2) Incorporate the following into your FTN77 protected mode program:

FTN77 User’s Guide DOS

318

a) A common block which will be used to transfer data between the real and
protected mode programs. This common block should be the same size in bytes
as that described in 1(a), above.

Note: The two common blocks have the same definition but, because of the
limitations of the 32-bit Intel CPU chip described on page 327, they do not
represent the same area of physical memory. It is necessary to copy data
between the two physical common block locations.

b) Calls to several special system subroutines in the FTN77 library which
initialise the mechanism and transfer data between the common blocks in the
real and protected mode programs.

3) It is possible to use the FTN77 debugger while programming in this way, but it is
not possible to use any real mode facility such as Microsoft’s CODEVIEW or
Lahey’s SOLD.

4) The real mode program should not terminate with STOP, END or CALL EXIT.
Termination of execution should always be in the protected mode program.

5) Both the real and protected mode programs can perform input/output, but the same
file should not be open simultaneously in both programs.

The example which follows will clarify the preceding explanation.

The example programs listed here are provided on the distribution diskette in the
DEMO directory. The protected mode program is provided in source and executable
form (PPROG.FOR and PPROG.EXE). The real mode program is provided in
source form (RPROG.FOR). An example output file, PPROG.OUT, is also on the
diskette.

Protected mode program (FTN77)

2 3TR[PaT R^\\^] Q[^RZ TcR�

2

8=C464A�# :�82><B8I4

?0A0<4C4A�8G, ��82><B8I4, 8G�# � '�

8=C464A�! G�8G��H�8G��<0G�<8=

2><<>= :�G�H�<0G�<8=

2

2 BcPac fXcW b^\T RP[Rd[PcX^]b dbX]V ^]T ^U h^da ^f]

2 5C=&&�R^_X[TS bdQa^dcX]Tb)

2

20;; 20;2�G�H�8G�

2

2 CWT RP[[c^ ;>03NA40;N<>34N;81A0AH/ [^PSb cWT aTP[

2 \^ST _a^VaP\ P]S X]XcXP[XbTb cWT RP[[X]V \TRWP]Xb\�

2

2 CWT UXabc TgTRdcPQ[T

Chapter 26 Calling real mode libraries and programs (DOS)

319

2 bcPcT\T]c X] cWT aTP[\^ST _a^VaP\ bW^d[S QT P RP[[c^

2 cWT bdQa^dcX]T 5C=&&FC� fWXRW aTcda]b R^]ca^[c^ cWXb

2 _a^VaP\ Pc cWT bcPcT\T]c U^[[^fX]V cWXb RP[[�

2

20;; ;>03NA40;N<>34N;81A0AH/�´2)K5C=&&�38AK34<>KA?A>6�4G4´�

?A8=C�

?A8=C ��´ATcda]TS c^ _a^cTRcTS \^ST fXcW : , ´�:

:,

2

2 CWT U^[[^fX]V RP[[\^eTb 82><B8I4 QhcTb ^U SPcP C> cWT

2 aTP[\^ST _a^VaP\´b R^\\^] Q[^RZ� =^cT cWPc Q^cW

2 PaVd\T]cb \dbc QT 8=C464A�#

2

20;; 2>?HNC>NA40;N<>34/�:�82><B8I4�

2

2 CWT aTP[\^ST _a^VaP\ Xb X]e^ZTS dbX]V P eP[dT ^U U^a

2 cWT U[PV� :

2

20;; A40;N<>34/

2

2 CWT aTbd[cb PaT R^_XTS QPRZ Ua^\ cWT aTP[\^ST _a^VaP\�

2 CWT U^[[^fX]V RP[[\^eTb 82><B8I4 QhcTb ^U SPcP 5A>< cWT

2 aTP[\^ST _a^VaP\´b R^\\^] Q[^RZ� =^cT cWPc Q^cW

2 PaVd\T]cb \dbc QT 8=C464A�#

2

20;; 2>?HN5A><NA40;N<>34/�:�82><B8I4�

2

2 0]S _aX]cTS

2

?A8=C�

?A8=C��´<PgX\d\ P]S \X]X\d\ eP[dTb PaT´�<0G�<8=

2

2 =^f RP[[aTP[\^ST _a^VaP\ c^ dbT P _[^ccX]V a^dcX]T

2

:,!

20;; 2>?HNC>NA40;N<>34/�:�82><B8I4�

20;; A40;N<>34/

20;; 2>?HN5A><NA40;N<>34/�:�82><B8I4�

?A8=C�

?A8=C��´ATcda]TS Ua^\ aTP[\^ST PUcTa _[^ccX]V´

4=3

BD1A>DC8=4 20;2�G�H�8I�

8=C464A�! G�8I��H�8I�

A40; A0=3><

3> 8, �8I

FTN77 User’s Guide DOS

320

G�8�,8

H�8�,A0=3><���"!�����

4=3 3>

4=3

Real mode program

2 3TR[PaT R^\\^] Q[^RZ�

2 CWXb R^\\^] Q[^RZ STR[PaPcX^] bW^d[S TgPRc[h \PcRW cWPc

2 X] cWT 5C=&& _a^VaP\

2

8=C464A�# :

?0A0<4C4A�8G, ��

8=C464A�! G�8G��H�8G��<8=�<0G

2><<>= :�G�H�<0G�<8=

?A8=C��´ATP[\^ST X]XcXP[XbTS´

2

2 CWXb bdQa^dcX]T Xb dbTS c^ aTcda] R^]ca^[c^ cWT

2 _a^cTRcTS \^ST _a^VaP\ TPRW cX\T cWXb aTP[\^ST

2 _a^VaP\ WPb UX]XbWTS P bcPVT ^U Xcb TgTRdcX^]�

2 =^cXRT cWPc P[[RP[[b c^ bdQa^dcX]T A40;N<>34/

2 X] cWT 5C=&& _a^VaP\ bcPac TgTRdcX^] Ua^\

2 cWT bcPcT\T]c PUcTa cWXb RP[[�

2

 20;; 5C=&&FC;�:�

?A8=C ��´ATP[\^ST RP[[TS fXcW : , ´�:

6>C>�((�!�"��:�

?A8=C��´8]eP[XS : eP[dT´

6>C> ((

2

2 3PcP \P]X_d[PcX^] dbX]V P aTP[\^ST bdQa^dcX]T

! ?A8=C ��´ATP[\^ST bTaeXRT � \Pg�\X]´

20;; <<�H�8G�<0G�<8=�

6>C>

2

2 ?[^ccX]V dbX]V P aTP[�\^ST bdQa^dcX]T

2

" ?A8=C ��´ATP[\^ST bTaeXRT ! � _[^ccX]V´

20;; 78BC�G�H�8G�

6>C>

((2>=C8=D4

?A8=C ��´ATP[\^ST Pc T]S fXcW : , ´�:

6>C>

4=3

BD1A>DC8=4 <<�H�8H�<G�<=�

Chapter 26 Calling real mode libraries and programs (DOS)

321

8=C464A�! H�8H��<G�<=

<=,"!&%&

<G,�

3> 8, �8H

<G,<0G�<G�H�8��

<=,<8=�<=�H�8��

 2>=C8=D4

4=3

BD1A>DC8=4 78BC�G�H�8G�

8=C464A�! G�8G��H�8G�

3> 8, �8G

82,H�8�� ���

FA8C4��� ���G�8���´�´�9, �82�

 2>=C8=D4

 �� 5>A<0C� G�8!� G�"!0�

4=3

Real mode program (C example)

��

3TR[PaT R^\\^] Q[^RZ T`dXeP[T]c�

CWXb R^\\^] Q[^RZ STR[PaPcX^] bW^d[S TgPRc[h \PcRW

cWPc X] cWT 5C=&& _a^VaP\� CWXb aT[XTb ^] cWT

_a^_Tach cWPc \^bc R^_X[Tab fX[[_dc R^]bTRdcXeT[h

STR[PaTS SPcP R^]cXVd^db[h X] \T\^ah� P[[_PbbTS SPcP

\Ph]TTS c^ QT _[PRTS X] P] PaaPh c^ T]bdaT

R^]cXVd^db bc^aPVT�

��

�STUX]T 8G �

[^]V :*

U[^Pc G�8G��H�8G�*

TgcTa] e^XS UPa 5C=&&FC@2�[^]V UPa��*

���

_dcb��ATP[\^ST X]XcXP[XbTS��*

:, ��*

��CWXb bdQa^dcX]T Xb dbTS c^ aTcda] R^]ca^[c^ cWT

_a^cTRcTS \^ST _a^VaP\ TPRW cX\T cWXb aTP[\^ST

_a^VaP\ WPb UX]XbWTS P bcPVT ^U Xcb TgTRdcX^]�

=^cXRT cWPc P[[RP[[b c^ bdQa^dcX]T A40;N<>34/ X]

cWT 5C=&& _a^VaP\ bcPac TgTRdcX^] Ua^\ cWT bcPcT\T]c

PUcTa cWXb RP[[� ��

fWX[T � �

j 5C=&&FC@2��:�*

FTN77 User’s Guide DOS

322

_aX]cU��ATP[\^ST RP[[TS fXcW : , �[SK]��:�*

bfXcRW �:�

j RPbT)

�� 3PcP \P]X_d[PcX^] dbX]V P aTP[\^ST

bdQa^dcX]T ��

_dcb��ATP[\^ST bTaeXRT � b^acX]V��*

b^ac�G�H�8G�*

QaTPZ*

RPbT !)

�� ?[^ccX]V dbX]V P aTP[\^ST bdQa^dcX]T ��

_dcb��ATP[\^ST bTaeXRT ! � _[^ccX]V��*

[^cW�G�H�8G�*

QaTPZ*

RPbT �)

_aX]cU��ATP[\^ST Pc T]S fXcW : , �[S��:�*

QaTPZ*

STUPd[c)

_dcb��8]eP[XS : eP[dT��*

QaTPZ*

l

l

Sample output

ATP[\^ST X]XcXP[XbTS

ATcda]TS c^ _a^cTRcTS \^ST fXcW : , �

ATP[\^ST RP[[TS fXcW : ,

ATP[\^ST bTaeXRT � \Pg�\X]

<PgX\d\ P]S \X]X\d\ eP[dTb PaT !$'%# # �

ATP[\^ST RP[[TS fXcW : , !

ATP[\^ST bTaeXRT ! � _[^ccX]V

 �

! ∗∗∗∗∗∗∗∗
" ∗∗∗∗∗∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
$ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
% ∗∗∗
& ∗∗∗∗∗∗∗∗∗∗∗
' ∗∗∗∗
(∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

 � ∗∗∗∗∗∗∗∗∗

Chapter 26 Calling real mode libraries and programs (DOS)

323

ATcda]TS Ua^\ aTP[\^ST PUcTa _[^ccX]V

Notes:
1) The protected mode program contains the path name of the real mode library. This

will need to be changed, and the program recompiled, if you have installed your
compiler/demo programs differently.

2) The real mode program contains a call to the routine FTN77WTL. This is an entry
point in the subroutine FTN77WT provided by FTN77. You may need to change
this to the entry point appropriate for your real mode compiler before compiling
this routine.

3) When you have compiled RPROG.FOR with your real mode compiler, it should
be linked with FTN77WT.OBJ, plus your compiler libraries.

4) By comparison of the routines above with the sample output, it is possible to see
the following standard sequence of events:

a) The call to LOAD_REAL_MODE_LIBRARY@ from the protected mode
program initialises the system by entering the real mode main program,
executing the call to FTN77WT and returning immediately to the protected
mode program.

b) Subsequent calls to REAL_MODE@, with appropriate values for the common
variable K, enter the real mode program at the line following the call to
FTN77WT, execute as appropriate and terminate with a call to FTN77WT.
Execution is returned to the protected mode program.

c) Program execution is always terminated (by STOP, END etc.) in the protected
mode program.

Calling real-mode drivers
Drivers are terminate-and-stay-resident programs (TSRs). Examples are those
external drivers provided by GSS, and the BTRIEVE record manager program. Once
loaded, the TSR remains ready to be activated by an interrupt from some other
program or external source. In these cases, it may be possible to use a more
straightforward method with which to call real mode code. The subroutines

 ALLOCATE_REAL_MODE_MEMORY@
 COPY_TO_REAL_MODE1@
 COPY_FROM_REAL_MODE1@
 REAL_MODE_INTERRUPT@

are used as described below:

1) Install the real mode TSR.

FTN77 User’s Guide DOS

324

2) The protected mode program should allocate real mode memory for itself using
ALLOCATE_REAL_MODE_MEMORY@. For example, in order to allocate
3000 bytes of real memory, the protected mode program should use the following
call:

8=C464A�# 8#?CA

8=C464A�! 82

20;; 0;;>20C4NA40;N<>34N<4<>AH/�8#?CA�8=C;�"�����82�

The use of INTL ensures that the argument is type INTEGER*4. IC is a status
code which is zero for successful allocation. I4PTR is a real mode address which
can be used in the protected mode program.

If the memory requirement is greater than 30000 (thirty thousand) bytes, the
DBOS command COMSPACE should be used to reserve an appropriate amount
of real memory. For example, in order to reserve 40000 bytes for your protected
mode application, use

2><B?024 3´#����´

3) The protected mode program can now use a data area of its own to prepare
information for the real mode program. This information is then copied to the
allocated area of real mode memory using COPY_TO_REAL_MODE1@. For
example,

2><<>=�?A>C23�30C0N0A40� ����

8=C464A�! 30C0N0A40�82

8=C464A�# A<033A

� � �

20;; 0;;>20C4NA40;N<>34N<4<>AH/�A<033A�8=C;�"�����82�

85�82�=4���BC>?´5PX[TS c^ P[[^RPcT aTP[\^ST \T\^ah´

� � �

20;; 2>?HNC>NA40;N<>34 /�30C0N0A40�8=C;�!�����A<033A� ����

This example allocates 3000 bytes of real memory, then copies data into this area
starting at offset 1000.

4) The driver can then be called using an interrupt as follows:

20;; A40;N<>34N8=C4AAD?C/�A468BC4AB�8=C4AAD?C�

5) Any result data can be copied back from the real mode driver as in the following
example:

20;; 2>?HN5A><NA40;N<>34 /�30C0N0A40�8=C;�!�����A<033A�

Note: the arguments for COPY_FROM_REAL_MODE1@ are in the same order
as for COPY_TO_REAL_MODE1@.

325

27.

Execution errors and
 IOSTAT values

All execution error messages consist of a message in English. These messages are
listed below. Execution errors corresponding to input/output statements can be
trapped by means of the ERR= and/or IOSTAT= keyword specifiers used with the
input/output statements (see page 103). The value returned by IOSTAT in this case is
n where n is the execution error number that appears in the table below. Users are
advised to trap specific errors by means of IOSTAT rather than to continue execution
regardless of the error that has been detected by the input/output system.

Notes:

� The IOSTAT value -1 indicates that an end-of-file condition has occurred.

� The positive values chosen for IOSTAT in this implementation of Fortran 77 will,
in all probability, differ from those chosen in any other implementation for the
same error conditions.

Error
No.

Message

0 No error

1 Floating point arithmetic overflow

2 Integer arithmetic overflow

3 Argument to CHAR outside range 0 - 255

4 Character argument/function name of wrong length

5 Attempt to execute invalid assigned GOTO

6 Inconsistent call to routine

7 DO-loop has zero increment

8 User-specified range check error

9 Might be array bound error or corrupt program - rerun with checks

FTN77 User’s Guide

326

10 Lower substring expression > upper

11 Array subscript(s) out-of-bounds

12 Lower substring expression out-of-range

13 Illegal character assignment

14 Attempt to alter an actual argument that is either a constant or a DO variable

15 Attempt to access undefined argument to routine

16 Lower array bound > upper bound

17 Upper substring expression out-of-range

18 This routine has been entered recursively (/ANSI mode)

19 Actual array argument size smaller than dummy array argument size

20 Argument to SINH/COSH out of range

21 Zero raised to negative or zero power

22 Floating point division by zero

23 Floating point arithmetic underflow

24 This source has not been compiled with /PROFILE

25 Argument to EXP out-of-range

26 Argument to ASIN/ACOS out-of-range

27 Invalid floating point number

28 Negative argument to square root

29 Call to missing routine

30 Storage heap is corrupt

31 Floating point number too big for integer conversion

32 Second argument to MOD is zero

33 Both arguments to ATAN2/DATAN2 zero

34 Negative or zero argument to logarithm routine

35 Illegal argument to TAN routine

36 Negative number raised to non-integer power

37 Integer divide overflow

38 Illegal character assignment (R.H.S. overlaps L.H.S.)

39 Illegal window

40 No more windows available

41 Maximum number of breakpoints already set

42 This line number is not available as a breakpoint

43 Invalid command

Chapter 27 Execution errors and IOSTAT values

327

44 Unable to open file

45 String not found

46 Routine not found or not compiled in check mode

47 Invalid expression

48 No more room for debugger information

49 Attempt to call a block data subprogram

50 Undefined input/output error

51 Format/data mismatch

52 Invalid character in field

53 Overflow detected by input/output routine (data out-of-range)

54 m > w in Iw.m run-time format

55 m > w in Ow.m

56 Unit has been closed by means other than a CLOSE statement

57 Attempt to read past end-of-file

58 Corrupt listing file

59 There is no repeatable edit descriptor in this format

60 Invalid external unit identifier

61 Invalid scale factor

62 Invalid or missing repeat count

63 Preconnected file comprises formatted records

64 Preconnected file comprises unformatted records

65 This command is not permitted from this window

66 File not in correct format

67 Character buffer too small

68 Field width exceeds direct access record size

69 Invalid record length (see documentation)

70 Logical input field is blank

71 H or apostrophe editing not allowed for input

72 Repeated formats nested too deep (>10)

73 Missing opening parenthesis in ‘run-time’ format

74 Invalid editing descriptor

75 A zero or signed repeat count is not allowed

76 Repeat count not allowed

77 Digit(s) expected

FTN77 User’s Guide

328

78 Decimal point missing

79 Missing separator

80 Invalid ACCESS specifier

81 Invalid combination of specifiers

82 ANSI - RECL is an invalid specifier

83 Label does not reference a format statement

84 Only BLANK may be changed for a file that exists for a given program

85 Repeated character constant must not extend past the end of a line

86 Character input/output list item is part of internal file

87 ENCODE/DECODE character count zero or negative

88 Internal file must not be constant or expression

89 Attempt to write past end of internal file

90 File access and properties are incompatible

91 Missing) from complex number

92 Invalid CLOSE statement

93 Missing (from complex number

94 Unit has neither been OPENed nor preconnected

95 Invalid direct access record number

96 Illegal operation (BACKSPACE/ENDFILE/REWIND) on a direct access file

97 Direct access record length too big

98 Invalid FILETYPE specifier

99 A function which performs I/O must not be referenced in a WRITE or PRINT statement

100 List-directed input/output is not allowed with direct access

101 Direct access is not allowed with an internal file

102 A formatted

103 Missing FILE specifier

104 File positioned at end-of-file

105 Invalid record length for existing direct access file

106 A valid record length must be specified if access is direct

107 STATUS=NEW must not be used with an existing file

108 Direct access record length mismatch

109 Brackets nested too deeply (>20)

110 Unformatted record is corrupt

111 Coprocessor invalid operation

Chapter 27 Execution errors and IOSTAT values

329

112 Reference to undefined variable or array element (/UNDEF)

113 Insufficient allocatable storage

114 Emulator failure

115 Invalid hash table

116 Too many files open

117 Disk full

118 ANSI - exponent out-of-range (use Ew.dEe or Gw.dEe edit descriptors)

119 Down to page reserve

120 Reference to non-existent Weitek coprocessor

121 Too many registered traps

122 No high resolution graphics mode is available

123 Too many labels in debug macro file

124 This command is only allowed in a macro

125 A file of this name already exists

126 ANSI - invalid STATUS specifier

127 ANSI - invalid edit descriptor

128 File does not exist

129 Invalid attempt to use peripheral

130 Unformatted record too big

131 ANSI - octal/hexadecimal/binary input not permitted

132 Device type not known on this installation

133 Expression required

134 File already in use

135 Sign not at start of field in business editing descriptor

136 Business editing not allowed for input

137 Illegal operation after a BACKSPACE

138 Attempt to write to readonly file or inconsistent file access

139 You may not write to a file that is ’READONLY’

140 You cannot OPEN a directory

141 ANSI - invalid $ in format descriptor

142 $ editing not allowed for input

143 Incorrectly positioned $ character in format descriptor

144 Illegal name in OPEN/CLOSE/INQUIRE statement

145 ANSI - the Aw edit descriptor must be used with an item of type CHARACTER

FTN77 User’s Guide

330

146 File path not found

147 Macro label not found

148 Reference to undefined variable or array element (/UNDEF)

149 Value returned by RECL= or NEXTREC= will cause overflow (use INTEGER*4 instead
of INTEGER*2)

150 Count for ENCODE/DECODE must be in the range 1 to 32767

151 Invalid FORM specifier

152 Invalid STATUS specifier

153 Invalid BLANK specifier

154 Unpaired brackets

155 Error detected by user-specified device driver

156 Unexpected error in Fortran I/O system

157 Do-loop will never be executed (/DOCHECK)

158 Unformatted record is too short for input list

159 Trailing sign or “CR” not at end of field in business editing descriptor

160 Multiple leading sign before “$” in business editing descriptor

161 “*” must precede “$” or “Z” in business editing descriptor

162 “$” in wrong position in business editing descriptor

163 “Z” after decimal point in business editing descriptor

164 Decimal point appears more than once in business editing descriptor

165 Comma at start of field or after decimal point in business editing descriptor

166 Invalid character found in business editing descriptor

167 DO-loop will never be executed (/DOCHECK)

168 Unanticipated DOS error encountered in I/O system

169 Underflow detected by input/output routine (data out-of-range)

170 Equals missing

171 Absolute value of complex argument out of range

172 The left hand side of a LET must be a variable or array element

173 You may not delete a file which is ’READONLY’

174 Array has wrong number of dimensions

175 Array subscript(s) out-of-bounds

176 Unpaired quotes

177 Name longer than 32 characters

178 Variable is not an array

Chapter 27 Execution errors and IOSTAT values

331

179 Variable is an array

180 Unknown variable

181 Block IF unterminated on leaving a macro

182 Error in the structure of WHILE-ENDWHILE block in a macro

183 Error in the structure of block IF in a macro

184 Display full

185 Routine not found

186 Unknown vector

187 Parameters may not be altered

188 Too many points to be plotted

189 ANSI - invalid FORM specifier

190 Attempt to read from a file opened with FORM=’PRINTER’

191 Key name expected

FTN77 User’s Guide

332

333

28.

Error and exception
 handling (Win32)

Exceptions are events generated outside the normal flow of control through a program
or thread of execution. Such an event may arise due to a hardware event (such as a
page fault) or through a software trap such as an attempt to access another processes
memory space. The default action of the process is to terminate the process and
produce diagnostic information. Exceptions occur for the following events:

� Denormal floating point operand

� Floating point divide by zero

� Inexact floating point result

� Invalid floating point operation

� Floating point overflow

� Floating point stack overflow

� Floating point underflow

� Integer divide by zero

� Integer overflow

� Integer underflow

� Access violation

� Breakpoint

� Single step

� Execution of a privileged instruction

These exceptions can be split into three distinct groups: Floating point math
exceptions, integer math exceptions and debugger exceptions.

FTN77 provides the programmer with a method to trap these exception events and to
act appropriately. This means that it is possible to trap an underflow event and reset a
variable to a known (say zero) value.

FTN77 User’s Guide Win32

334

This is achieved by maintaining a table of functions to be executed in the event of an
exception. Only one exception handler may be installed for any particular exception
event at any one time. So you may have two different handlers installed for two
different exception events, but you may not have two handlers chained together for the
same exception event. This also applies to mixed language programming where
nominally different handlers are required for Fortran and C code. If you want to
handle an exception differently in different parts of the code, you can remove one
exception handler and install another.

Each exception event is identified by an exception event code. This is an integer value
that is used to uniquely identify each of the possible exceptions that are trapable by the
user. These codes are defined in the insert file except.ins which is provided as part of
the FTN77 system.

When an exception event occurs, the operating system copies the machine state into
an area of memory. The image of the machine may be manipulated to correct the fault
in order to resume execution in an orderly manner. Once the machine state has been
saved, the exception handler searches for a handler offering the event to the following
processes:

� Debugger first chance.

� The frame based handler installed by the program.

� Debugger second chance.

The frame based handler is the one installed by any main program compiled with
FTN77. This handler is really a filter. It examines the exception event that has
occurred and looks to see if the user program has installed a handler for that event. If
such a handler routine is installed, control is passed back to the routine. If no handler
is found, the Fortran program takes the default action or it terminates and the
exception details are displayed for debugging purposes.

Here is a summary of the FTN77 error and exception handling routines that are
peculiar to Win32. Details are given in the FTN77 Library Reference.

ACCESS_DETAILS@ To get details of the access violation.
CLEAR_FLT_UNDERFLOW@ To clear a floating point underflow exception.
EXCEPTION_ADDRESS@ To find the address of the instruction that generated the

exception.
GET_VIRTUAL_COMMON_INFO@ To get virtual common block details.
PRERR@ To print the error message associated with a given error code.
RESTORE_DEFAULT_HANDLER@ To remove a user defined exception handler.
TRAP_EXCEPTION@ To install a user defined exception handler.

335

29.

Overview of the FTN77
 run-time library

This chapter contains outline information about the routines that are available in the
FTN77 run-time library. Further information is available in FTN77 Library
Reference and in the on-line Help system (in some cases a reference to MS-DOS
should be replaced by the appropriate operating system). The routines below are
arranged in functional groups with the given headings. Within the groups the
routines are arranged in alphabetical order.

The following symbols are used to denote the availability of each function on the
various platforms:

no symbol Function is available on all platforms, DOS, Win16 and Win32.

n At the time of going to press, function is only available under DOS .

o Function is only available under DOS.

p Function is only meaningful under DOS. Under Win16 and Win32
the function either has no operation or is not relevant. This category
is for DOS programs and programs that are being ported from DOS to
Windows.

q Function is available under DOS and also in ClearWin+ but with
slightly different functionality. See the FTN77 Library Reference for
the DOS function and the Clearwin+ documentation (the manual or
an information file on the release disk) for information on the
ClearWin+ variant.

r Function is only available under Win32.

FTN77 User’s Guide

336

Index
page

Character-handling ... 336

Data sorting.. 337

Error and exception handling .. 338

File manipulation .. 338

Graphics... 340

Graphics plotter/screen... 341

Graphics printer.. 342

Mouse .. 342

Printer .. 344

Process control... 344

Random numbers... 344

Sound .. 345

Storage management ... 346

System information... 346

Text screen/keyboard ... 347

Text windows.. 348

Time and date .. 348

Bit-handling
CLEAR_BIT@ Clears the N’th bit of an array.

SET_BIT@ Sets the N’th bit of an array.

TEST_BIT@ Tests if the N’th bit of an array is set.

Character-handling
ALLOCSTR@ To allocate dynamic storage and copy a string. r

APPEND_STRING@ Adds a string to the end of a line.

CENTRE@ Positions a string in the centre of a field.

CHAR_FILL@ To fill a string with a particular character.

Chapter 29 Overview of the FTN77 run-time library

337

CHSEEK@ Looks for a given string in an ordered array.

CNUM Converts an integer to character form.

COMPRESS@ Compresses a string by using tabs.

GETSTR@ To get a string that was stored using ALLOCSTR@ r

LCASE@ Alters a character argument so that all letters become lower case.

NONBLK Obtains the position of the first character that is not a space.

SAYINT Returns an integer argument as text.

TRIM@ Removes leading spaces.

TRIMR@ Rotates a character string right until there are no trailing spaces.

UPCASE@ Alters a character argument so that all letters become upper case.

Command line parsing
CMNAM Reads a token from the command line.

CMNAM@ Reads a token from the command line.

CMNAMR Resets the command line.

CMNARGS@ To get the number of command line arguments. r

CMNUM@ To get the next command line argument as an integer.

CMPROGNM@ To get the program name. r

COMMAND_LINE Reads the whole command line.

GET_PROGRAM_NAME@ Returns the name of the current program.

SET_COMMAND_LINE@ To set the whole command line. o

Data sorting
CHSORT@ Sorts an array of characters.

DSORT@ Sorts a REAL*8 array.

ISORT@ Sorts an integer array.

RSORT@ Sorts a REAL*4 array.

FTN77 User’s Guide

338

Error and exception handling
ACCESS_DETAILS@ To get details of the access violation. r

CLEAR_FLT_UNDERFLOW@ To clear a floating point underflow exception. r

DOS_ERROR_MESSAGE@ Gets a DOS error message.

DOSERR@ Prints a DOS error message when an error occurs.

ERR77 Prints a DOS error message and terminate a program
when an error occurs.

ERROR@ Prints a user defined error message and terminate a
program.

EXCEPTION_ADDRESS@ To find the address of the instruction that generated the
exception.

r

FORTRAN_ERROR_MESSAGE@ Gets a Fortran error message.

GET_VIRTUAL_COMMON_INFO@ To get virtual common block details. r

JUMP@ Executes a non-local jump.

LABEL@ Sets a label for a non-local jump.

PERMIT_UNDERFLOW@ Switches off floating point underflow checking.

PRERR@ To print the error message associated with a given error
code.

QUIT_CLEANUP@ Prints a message and exit from a program with Control-
break

RESTORE_DEFAULT_HANDLER@ To remove a user defined exception handler. r

RUNERR@ Prints the run-time error corresponding to a given
IOSTAT value.

SET_TRAP@ To trap a given event. n

TRAP_EXCEPTION@ To install a user defined exception handler.

UNDERFLOW_COUNT@ Gets the number of floating point underflows.

File manipulation
ATTACH@ Sets the current directory.

CLOSEF@ Closes a file.

CLOSEFD@ Closes and delete a file.

CLOSEV@ Closes a file opened with OPENV@ o

CURDIR@ Gets the current directory.

Chapter 29 Overview of the FTN77 run-time library

339

CURRENT_DIR@ Obsolete routine. Use CURDIR@ r

DIRENT@ To obtain directory information.

EMPTY@ Clears a file for writing.

ERASE@ Deletes a file.

FEXISTS@ To search for a file with a given path name or wildcard.r

FILE_EXISTS@ Obsolete routine. Use FEXIST@ instead r

FILE_SIZE@ To get the size of a file in bytes.

FILE_TRUNCATE@ To truncate an open file at its current position.

FILEINFO@ To get information about a specified file. r

FILES@ Obtains directory information.

FPOS@ Repositions a file.

FPOS_EOF@ To move the file pointer to end-of-file. r

GET_FILE_DATE_TIME_STAMP@ Gets the DOS date and time stamp for a particular file.o

GET_FILES@ To get a list of files in the current working directory. r

GET_PATH@ Gets the fully qualified pathname.

GET_PATHV@ Gets the fully qualified pathname. o

MKDIR@ Creates a new DOS directory.

OPENR@ Opens a file for reading.

OPENV@ To open a file for reading. o

OPENRW@ Opens a file for reading or writing.

OPENW@ Opens a file for writing.

READF@ Reads binary data from a file.

READFA@ Reads ASCII text from a file.

RENAME@ Renames a file.

RFPOS@ Gets the position of a file.

SELECT_FILE@ To select from a displayed list of files. o

SET_FILE_ATTRIBUTE@ Sets a file attribute.

SET_SUFFIX@ Changes the extension of a given file name.

SET_SUFFIX1@ Adds an extension to a given file name.

TEMP_FILE@ Provides a unique name for a file.

WILDCHECK@ To check for the matching of a file name with a wild card.r

WRITEF@ Writes binary data to a file.

WRITEFA@ Writes a line of data to an ASCII file.

FTN77 User’s Guide

340

Graphics
CLEAR_SCREEN@ Clears the screen.

CLEAR_SCREEN_AREA@ Clears a rectangular area of the screen.

COMBINE_POLYGONS@ Gets the handle for a combination of polygons.

CREATE_POLYGON@ Gets a handle for a specified polygon.

DELETE_POLYGON_DEFINITION@ Deletes a polygon definition.

DRAW_HERSHEY@ Draws an Hershey character.

DRAW_LINE@ Draws a straight line in graphics mode.

DRAW_TEXT@ Draws text in graphics mode.

EGA@ Switches to EGA graphics mode. q

ELLIPSE@ Draws an ellipse.

FILL_ELLIPSE@ Fills an ellipse.

FILL_POLYGON@ Fills a polygon.

FILL_RECTANGLE@ Fills a rectangle.

GET_ALL_PALETTE_REGS@ Gets all palette registers for colour graphics. q

GET_DEVICE_PIXEL@ Gets the pixel colour for a virtual screen or printer.q

GET_GRAPHICS_MODES@ Gets details of all the graphics modes. p

GET_GRAPHICS_RESOLUTION@ Gets details of the high resolution graphics mode.p

GET_PIXEL@ Gets a pixel colour. q

GET_TEXT_MODES@ Gets information about the available text modes. o

GET_TEXT_SCREEN_SIZE@ Gets the resolution of the current text mode. o

GET_VIDEO_DAC_BLOCK@ Gets a block of VGA DAC registers. q

GRAPHICS_MODE_SET@ Sets the graphics mode to a given resolution. q

GRAPHICS_WRITE_MODE@ Selects replace/XOR mode before writing to the
screen, virtual screen or printer.

HERSHEY_PRESENT@ Tests if a character number has a Hershey
representation.

HIGH_RESOLUTION_GRAPHICS_MODE@ Switches to high resolution graphics mode. q

IS_TEXT_MODE@ Tests if the screen is in text or graphics mode. o

LOAD_STANDARD_COLOURS@ Loads the standard colours for 256 colour mode. q

MOVE_POLYGON@ Moves the position of a polygon.

POLYLINE@ Draws a number of connected straight lines.

RECTANGLE@ Draws a rectangle.

RESTORE_GRAPHICS_BANK@ Restores the graphics bank after a BIOS call. p

Chapter 29 Overview of the FTN77 run-time library

341

RESTORE_TEXT_SCREEN@ Restores a text screen saved with
SAVE_TEXT_SCREEN@.

o

SAVE_TEXT_SCREEN@ Saves the whole of the text screen. o

SCREEN_TYPE@ Gets the graphics screen type. o

SET_ALL_PALETTE_REGS@ Sets all palette registers for colour graphics. q

SET_DEVICE_PIXEL@ Sets a pixel colour for a virtual screen or printer.

SET_PALETTE@ Sets a palette register for colour graphics. q

SET_PIXEL@ Sets a pixel to a colour. q

SET_TEXT_ATTRIBUTE@ Sets the current graphics text attributes.

SET_VIDEO_DAC@ Sets a VGA DAC register. q

SET_VIDEO_DAC_BLOCK@ Sets a block of VGA DAC registers. q

TEXT_MODE@ Returns to text mode. p

TEXT_MODE_SET@ Selects the current text mode. q

USE_VESA_INTERFACE@ Forces the VESA interface to be used. p

VGA@ Switches to VGA graphics mode. q

Graphics plotter/screen
CLOSE_PLOTTER@ Closes the plotter device or file. q

CLOSE_VSCREEN@ Closes the virtual screen.

CREATE_SCREEN_BLOCK@ Creates a screen block in memory. q

GET_DACS_FROM_SCREEN_BLOCK@ Uses palette information from a PCX file.

GET_SCREEN_BLOCK@ Saves a rectangular area of the screen.

NEW_PAGE@ Provides a new page on the current graphics device.

OPEN_PLOT_DEVICE@ Opens the plotter. q

OPEN_PLOT_FILE@ Directs plotter output to a file. q

OPEN_VSCREEN@ Opens a screen block as the virtual screen.

PCX_TO_SCREEN_BLOCK@ Loads a file a screen block. q

PLOTTER_SET_PEN_TYPE@ Selects a pen type for the plotter. p

RESTORE_SCREEN_BLOCK@ Displays a previously saved area of the screen.

SCREEN_BLOCK_TO_PCX@ Saves a screen block a file.

SCREEN_BLOCK_TO_VSCREEN@ Loads a screen block to the virtual screen.

SCREEN_TO_VSCREEN@ Loads the graphics screen to the virtual screen.

VSCREEN_TO_PCX@ Saves the virtual screen to a file.

FTN77 User’s Guide

342

VSCREEN_TO_SCREEN@ Loads the virtual screen to the graphics screen.

WRITE_TO_PLOTTER@ Writes a string to the plotter. p

Graphics printer
CLOSE_GRAPHICS_PRINTER@ Closes the graphics printer device or file.

GET_PCL_PALETTE@ Gets the colour definitions for a given number of
colours.

q

LOAD_PCL_COLOURS@ Loads the standard colour definitions. q

OPEN_GPRINT_DEVICE@ Opens a graphics printer. q

OPEN_GPRINT_FILE@ Directs graphics printer output to a file. q

PRINT_GRAPHICS_PAGE@ Prints a graphics page.

SELECT_DOT_MATRIX@ Selects an Epson compatible dot matrix printer o

SELECT_PCL_PRINTER@ Specifies attributes of a PCL printer. q

SET_PCL_BITPLANES@ Sets the number of colours in the image. p

SET_PCL_GAMMA_CORRECTION@ Alters the “gamma correction” for colours. p

SET_PCL_GRAPHICS_DEPLETION@ Improves the image quality. p

SET_PCL_GRAPHICS_SHINGLING@ Makes a number of print passes. p

SET_PCL_LANDSCAPE@ Sets LANDSCAPE or PORTRAIT orientation. p

SET_PCL_PALETTE@ Loads the colour definitions. p

SET_PCL_RENDER@ Sets the “rendering algorithm”. p

Hot key
DEFINE_HOT_KEY@ To associate a hotkey routine with a given key. o

REMOVE_HOT_KEY@ To disassociate a hotkey routine from a given key. o

FEED_KEYBOARD@ To push a keycode into the keyboard buffer. o

In-line
FILL@ Sest an array of N bytes to a particular value.

IN@ To input one byte from an I/O port. o

Chapter 29 Overview of the FTN77 run-time library

343

MATCH@ Compares two arrays of N bytes.

MOVE@ Copies an array of N bytes.

OUT@ To output one byte of data to an I/O port. o

POP@ Pops a value off the system stack.

PUSH@ Pushes a value on the system stack.

SET_IO_PERMISSION@ To set the I/O permission level to 3 or 0. o

Mouse
DISPLAY_MOUSE_CURSOR@ Shows the mouse cursor on the screen. p

GET_MOUSE_BUTTON_PRESS_COUNT@ Gets the number of times a button has been pressed.

GET_MOUSE_EVENT_MASK@ Gets the mask for the most recent mouse interrupt.

GET_MOUSE_PHYSICAL_MOVEMENT@ Gets the mouse pad distance from the last call. p

GET_MOUSE_POSITION@ Gets the present state of the mouse cursor.

GET_MOUSE_SENSITIVITY@ Gets the values of the physical movement ratios and
the double speed threshold.

p

HIDE_MOUSE_CURSOR@ Hides the mouse cursor on the screen. p

INITIALISE_MOUSE@ Initialises the mouse driver. p

MOUSE@ Performs a mouse interrupt. p

MOUSE_CONDITIONAL_OFF@ Switches off the cursor when it enters a specified
rectangle.

p

MOUSE_LIGHT_PEN_EMULATION@ Uses the mouse as a light-pen. p

MOUSE_SOFT_RESET@ Initialises the mouse software.

QUERY_MOUSE_SAVE_SIZE@ Gets the buffer size for the mouse state. p

RESTORE_MOUSE_DRIVER_STATE@ Restores a former state of the mouse driver. p

SAVE_MOUSE_DRIVER_STATE@ Saves the current state of the mouse driver. p

SET_MOUSE_BOUNDS@ Restricts mouse movements to a specified rectangle.p

SET_MOUSE_GRAPHICS_CURSOR@ Specifies the shape of the mouse cursor for graphics
mode.

p

SET_MOUSE_INTERRUPT_MASK@ Enables mouse actions to produce interrupts.

SET_MOUSE_MOVEMENT_RATIO@ Sets the mouse cursor sensitivity. p

SET_MOUSE_POSITION@ Moves the mouse cursor to a particular position.

FTN77 User’s Guide

344

SET_MOUSE_SENSITIVITY@ Sets the mouse cursor sensitivity and the threshold for
the double speed.

p

SET_MOUSE_SPEED_THRESHOLD@ Sets the threshold for double speed. p

SET_MOUSE_TEXT_CURSOR@ Specifies details of the mouse cursor for text mode.p

Printer
PRINT_CHARACTER@ To send one character to the printer. o

INITIALISE_PRINTER@ To initialise the printer. o

GET_PRINTER_STATUS@ To obtain status information for the printer. o

Process control
CISSUE Issues a DOS command.

EXIT Terminates a program.

EXIT@ Terminates a program.

SLEEP@ Suspends program execution for a specified time
interval.

SPAWN@ Initiates a concurrent subtask. o

START_PROGRAM@ Starts another Salford program. o

YIELD@ To yield control to a subtask. o

Random numbers
DATE_TIME_SEED@ Selects a new “seed” for the pseudo-random number

generator function RANDOM.

RANDOM Returns a pseudo-random double precision value.

SET_SEED@ Enters a new “seed” for the pseudo-random number
generator function RANDOM.

Chapter 29 Overview of the FTN77 run-time library

345

Real mode
ALLOCATE_REAL_MODE_MEMORY@ To allocate real mode memory. o

COPY_FROM_REAL_MODE@ To copy data from a real mode program. o

COPY_FROM_REAL_MODE1@ To copy data from a real mode program. o

COPY_FROM_SEGMENT@ To copy data from another segment. o

COPY_TO_REAL_MODE@ To copy data to a real mode program. o

COPY_TO_REAL_MODE1@ To copy data to a real mode program. o

COPY_TO_SEGMENT@ To copy data to another segment. o

DEALLOCATE_REAL_MODE_MEMORY@ To free real mode memory. o

DOSCOM@ To obtain a segment selector for the DOSCOM buffer.o

FTN77WT etc. Used within a real mode program to receive control
from and return control to a FTN77 program.

o

LINEAR_ONE_MEG_SEG@ To obtain the real mode address 0. o

LOAD_REAL_MODE_LIBRARY@ To load and execute a real mode program. o

MODIFY_REAL_MODE_MEMORY@ To change the size of a block of real mode memory.o

REAL_MODE@ To transfer control from a FTN77 to a real mode
program.

o

REAL_MODE_ADDRESS_OF_DOSCOM@ To obtain the address of the DOSCOM buffer. o

REAL_MODE_INTERRUPT@ To cause a real mode interrupt from an FTN77
program.

o

SCREENSEG@ To obtain the segment selector for the graphics area.o

Sound
BEEP@ Outputs an audible beep. o

SOUND@ Makes an audible sound at the console. o

FTN77 User’s Guide

346

Storage management
FREE_SPACE_AVAILABLE@ Obtains the amount of free memory in the system.o

FREE_VIRTUAL_PAGES@ Frees memory for reuse. o

GET_MEMORY_INFO@ Obtains information about the memory. o

GET_STORAGE@ Gets a block of storage of size N bytes from the storage
heap.

GET_STORAGE1@ Gets a block of storage from the storage heap. o

LARGEST_BLOCK_AVAILABLE@ Obtains the size of the largest free block in the storage
heap.

o

MEMORY_AVAILABLE@ Gets the total size of available heap space. o

RETURN_STORAGE@ Returns a block of storage.

SET_PAGES_RESERVE@ Warns of a limited page reserve. o

SET_TRAP_ON_PAGE_TURN@ Warns of the first page turn. o

SHRINK_STORAGE@ Shrinks a block of storage.

USE_STORAGE@ Offers additional memory to the storage heap. o

USE_VIRTUAL_SCRATCH_FILES@ Enables or disable the virtual scratch file facility. n

System information
DBOS_VERSION@ To get the current DBOS version number. o

DOSPARAM@ To get an environment variable.

DYNT@ To test for the presence of a system routine. o

DYNT1@ To test for the presence of a user routine. o

GET_COPROCESSOR_ENVIRONMENT@ To obtain the types of processors available on the
system.

o

GET_CURRENT_FORTRAN_IO@ To access the state of the current Fortran I/O unit.

GET_CURRENT_FORTRAN_UNIT@ To get the unit number for the current I/O operation.

GETENV@ To get an environment variable. r

Chapter 29 Overview of the FTN77 run-time library

347

Text screen/keyboard
COU@ Outputs text to the screen with a new line.

COUA@ Outputs text to the screen without a new line.

COUP@ Outputs text to a given screen position. o

DOS_KEY_WAITING@ Tests if the keyboard buffer is empty. o

ECHO_INPUT@ Controls the echoing of text from standard input. o

ERRCOU@ Outputs text to the standard error device. r

ERRCOUA@ Outputs text to the standard error device. r

ERRNEWLINE@ Writes an newline to the standard error device. r

ERRSOU@ Outputs text to the standard error device. r

ERRSOUA@ Outputs text to the standard error device. r

GET_CURSOR_POS@ Gets the co-ordinates of the text cursor. o

GET_DOS_KEY@ Gets the next keycode. o

GET_DOS_KEY1@ Gets the waiting keycode. o

GET_EXTENDED_CHAR@ Gets the waiting two-byte keycode. o

GET_KEY@ Gets the next keycode.

GET_KEY1@ Gets the waiting keycode. o

GETCL@ Gets a line of text from the keyboard. o

HIDE_CURSOR@ Hides the text cursor. o

KEY_WAITING@ Tests if the keyboard buffer is empty. o

NEWLINE@ Writes a carriage return/linefeed to the screen (standard output).

PRINT_BYTES@ Writes a sequence of hexadecimal values.

PRINT_BYTES_R@ To write a hexadecimal sequence in reverse order.

PRINT_HEX1@ Prints a 1 byte hexadecimal number (2 digits) without a new line.

PRINT_HEX2@ Prints a 2 byte hexadecimal number (4 digits) without a new line.

PRINT_HEX4@ Prints a 4 byte hexadecimal number (8 digits) without a new line.

PRINT_I1@ Prints an INTEGER*1 decimal number without a new line.

PRINT_I2@ Prints an INTEGER*2 decimal number without a new line.

PRINT_I4@ Prints an INTEGER*4 decimal number without a new line.

PRINT_R4@ Prints an REAL*4 decimal number without a new line.

PRINT_R8@ Prints an REAL*8 decimal number without a new line.

READ_EDITED_LINE@ Inputs text from a screen position. o

RESTORE_CURSOR@ Shows the text cursor. o

SET_CURSOR_POS@ Sets the co-ordinates of the text cursor. o

SET_CURSOR_TYPE@ Sets the shape of the text cursor. o

FTN77 User’s Guide

348

SOU@ Outputs text with a new line, omitting any trailing blanks.

SOUA@ Outputs text without a new line, omitting any trailing blanks.

Text windows
CONCEALW@ Moves a window to the bottom of the stack. o

KILLW@ Removes a text window. o

MOVEW@ Changes the position of a window on the screen. o

POPW@ Moves a window to the top of the stack. o

SCROLL_DOWN@ and SCROLL_UP@ Scrolls text in a window. o

SET_CURSOR_POSW@ Sets the cursor position for a text window. o

WBORDER@ Sets the border style for a text window. o

WCLEAR@ Clears a text window o

WCOU@ Writes text to a window. o

WCOUP@ Writes text to a window position. o

WCREATE@ Creates a text window. o

WDBORDER@ Sets the default border style for all subsequent text
windows created.

o

WDSHADOW@ Sets the default shadow style for all subsequent text
windows created..

o

WMEMORY@ Gets the memory pointer for a text window. o

WREAD_EDITED_LINE@ Inputs text from a window position. o

WSHADOW@ Sets the shadow style for a text window. o

WTITLE@ Assigns a title to a text window. o

Time and date
CLOCK@ Gets a time in seconds.

CONVDATE@ To get the date in numeric form. r

DATE@ Gets the date in the form MM/DD/YY (American
format).

DCLOCK@ Gets a time in seconds.

EDATE@ Gets the date in the form DD/MM/YY (European
format).

Chapter 29 Overview of the FTN77 run-time library

349

FDATE@ Gets the date in text form.

HIGH_RES_CLOCK@ To obtain the CPU time accurate to 1 microsecond.

SECONDS_SINCE_1980@ Gets the number of seconds from a fixed date.

SET_ALARM_CLOCK@ To set the elapsed time before an alarm. o

TIME@ Gets the time in the format HH:MM:SS.

TODATE@ To convert a given time to a date in the form
MM/DD/YY.

r

TOEDATE@ To convert a given time to a date in the form
DD/MM/YY.

r

TOFDATE@ To return the date in text form. r

TOTIME@ To return the time in the form HH:MM:SS. r

FTN77 User’s Guide

350

Index-1

Index

*
*,LINK77 command, 232

_
_ _stdcall symbols, 262
_SALFStartup entry point for executables, 262

A
ANSI conformity, 28
ANSI directive, 177
ANSI,compiler option, 28, 30, 31, 43, 132, 140, 175, 177
APPEND_BINARY,compiler option, 43
APPEND_LIST,compiler option, 24, 43
Argument consistency,checking at run-time, 80
Argument,dummy array, 92
Arguments,character, 173
Arithmetic overflow,checking at run-time, 79
Array subscript checking at run-time, 81
Array used as actual argument, 80
Assembler 32-bit Intel, 24
Assembler comments, 194
Assembler labels, 195
Assigned GOTO checks at run-time, 83
Automatic loading and execution of programs, 39

B
B edit descriptor, 133, 183
Binary data values, 182
BINARY,compiler option, 29, 44
BIOS routines - how to call them, 304
BREAK,compiler option, 44, 304
BREAK,RUN77 option, 234
BRIEF,compiler option, 44
Business editing, 133

ASTERISK (*), 134
comma, 135
CREDIT (CR), 135
decimal point (.), 135
DOLLAR sign ($), 134
MINUS sign (-), 134
number sign (#), 135
PLUS sign (+), 134
ZED (Z), 134

C
C,compiler option, 47
C_EXTERNAL statemant, 213
CCORE1 routine, 199
CELSE statement, 190
CENDIF statement, 190
Character

arrays, 162
assignments, 160
comparisons, 167, 171
constants, 159
expressions, 159
functions, 172
input/output, 164
substrings, 162

Character arguments,length of, 83
Character data,length of, 170
Character handling facilities, 157
Character variable,overheads when using long, 92
CHECK,compiler option, 30, 44, 79, 81, 181, 189, 205
Checking character data handling at run-time, 83
Checking substring expressions at run-time, 84
CIF statement, 190
CLOSE statement

Description of specifiers, 116
General form of, 116
Status of files at program termination, 116

CMNAM@ routine, 42
CODE compiler directive, 194
Code motion, 88
COFF, 241
Comment message, 27
Common blocks in dynamic link libraries, 239
COMMON statement,character data, 175
COMMON_BASE,LINK77 command, 233
Compilation, 21

conditional, 190
listing, 23
messages, 75
suppressing the listing of, 35

Compiler directive, 34
INCLUDE, 36
INTL, 178
INTS, 178
LIST, 35
LOGL, 178
LOGS, 178

FTN77 User’s Guide

Index-2

NOLIST, 35
OPTIONS, 35

Compiler options
default, 49
reading from file, 33

COMPLEX*16 data, 139
CONFIG,compiler option, 32, 44, 49
CONFIGDB command, 297
Configuring DBOS, 297, 298
Constant folding, 86
CONTROL BREAK handler example, 206
Coprocessor emulation, 5
Coprocessor, use of, 5, 197
CORE intrinsic functions, 199
CORE1 routine, 199
CORE2 routine, 199
CORE4 routine, 199

D
Data initialisation in type statement, 179
DATA statement, 163

setting address constants with, 200
special form of, 189

Data transfer statement
Description of specifiers, 122
Effect of first WRITE statement, 127
General form of, 122

DBOS options
DISK_CACHE, 294
EXTMEM, 293
memory limits, 295
NO_SHIFT_INTERRUPTS, 294
NOWEITEK, 294
PAGE, 294
PRIMELINK, 294
SEARCHMEM, 293
USE_XMS, 295

DBOS system, 193, 302
DBOS_SET and DBOS_RESET commands, 298
DBREAK,compiler option, 44, 304
DCLVAR,compiler option, 28, 44
DCORE8 routine, 199
DEBUG,compiler option, 30, 44
Debugging system

/BREAK option, 52
/DBREAK option, 52
invoking, 52

DEFCOM,LINK77 command, 233
Determination of storage address, 139
Diagnostic facilities, 75
Diagnostics, 2

compilation, 75
run-time, 79

Direct access, 101, 129
DISK_CACHE,DBOS option, 294
DO WHILE statement, 184

DO1,compiler option, 45
DOCHECK,compiler option, 45
DOS routines - how to call them, 304
DOSCOM@ routine, 305
DOUBLE PRECISION,automatic use of, 31
DO-variable used as actual argument, 80
DREAL,compiler option, 31, 45, 98
Dynamic link libraries, 237
Dynamic storage, 29

E
EDOC compiler directive, 194
Efficient use of Fortran 77, 85
ENCODE Fortran 66 syntax, 180
END DO statement, 185
End-of-file condition, 103

to set from the screen, 106
ENTRY,LINK77 command, 232
EQUIVALENCE statement,error messages for, 76
Error message, 27
ERROR_NUMBERS,compiler option, 28, 45
Execution errors,list of, 325
EXIT statement, 186
Expanded source listing, 1
EXPLIST,compiler option, 24, 45, 206
Extensions to the ANSI standard

List-directed input, 133
OPEN statement, 133
RECL specifier, 133
RENAME specifier, 133

EXTERNAL statement, 139
EXTMEM,DBOS option, 293
EXTREFS,compiler option, 45

F
FCORE4 routine, 199
File existence, 99
File names, 99
File Positioning statements

BACKSPACE statement, 132
Description of specifiers, 131
ENDFILE statement, 132
General form of, 131
REWIND statement, 132

File properties, 99
File structure, 99
FILE,LINK77 command, 230
Filename in the OPEN statement, 107
FORCE_LOAD,LINK77 command, 230
FORMAT statement,efficient use of, 93
Formats,contained in non-character arrays, 137
Fortran 77 extensions, 177

FORMAT statement, 137
Input/output, 132

Fortran compilers other than FTN77, 30
FTN77

Index

Index-3

peep-hole optimisations in, 85
simple use of, 16
treatment of common subexpressions in, 92
treatment of constants in, 92

FTN77, simple use of, 8
FULLCHECK,compiler option, 45, 79, 81, 181, 189, 205
FULLDCLVAR,compiler option, 45
FULLMAP,compiler option, 45
FULLXREF,compiler option, 45

G
General Protection Exceptions, 303
GUI, 223

H
HARDFAIL compiler option,use with load-and-go, 41
HARDFAIL,compiler option, 45
HARDFAIL,RUN77 option, 234
HELP,compiler option, 13, 45
HELP77 utility, 13
Hexadecimal data values, 182
Hollerith data, 180

I
Identifier,internal files, 103
IGNORE,compiler option, 28, 45, 77
IMPLICIT NONE,compiler directive, 191
IMPLICIT_NONE,compiler option, 45
INCLUDE,compiler directive, 36
INCLUDE,LINK77 command, 231
INDEX,usage of intrinsic function, 170
Induction weakening, 88
Initial point,file position, 101
In-line assembler

literals in, 196
Input/output specifier

ACCESS=, 108
BLANK=, 110
DRIVER=, 109
END=, 105
ERR=, 104
FILE=, 107
FILETYPE=, 108
FORM=, 109
IOSTAT=, 104
RECL=, 110
RENAME=, 117
STATUS=, 107, 116
UNIT=, 103

Input/output statements, 95
ACCESS=, 120
BLANK=, 121
DIRECT=, 120
End of record terminator, 98

END=, 127
ERR=, 119, 126
EXIST=, 119
FMT=, 123
FORM=, 120
FORMATTED=, 120
FUNIT=, 121
IOSTAT=, 119, 126
NAME=, 119
NAMED=, 119
NEXTREC=, 121
NML=, 124
NUMBER=, 119
OPENED=, 119
Permitted specifiers with, 96
REC=, 127
RECL=, 120
SEQUENTIAL=, 120
UNFORMATTED=, 120

INQUIRE statement
Additional FTN77 feature of, 121
Description of specifiers, 119
examples in the use of, 121

Integer data,long and short, 178
INTEGER* statement, 178
Internal files, 101
INTERNAL PROCEDURE

examples in the use of, 188
Interrupt routines, 191
INTL,compiler option, 30, 46, 98, 141, 178
Intrinsic function, 139, 169

character manipulation with, 169
FTN77-specific, 185
generic name for, 140
inline code for, 91
integer arguments and results, 141
logical arguments and results, 142
names not allowed as actual argument, 141
names used as actual argument, 141
non-ANSI, 139
notes, 148
specific name for, 140

INTRINSIC statement, 139
INTS,compiler option, 30, 98, 178
IOSTAT values,list of, 325

K
KILL_DBOS command, 7

L
Language extensions

input/output, 183
LARGE_FILE,LINK77 command, 231
Length of variable names, 182

FTN77 User’s Guide

Index-4

LGO,compiler option, 8, 39, 46, 303, 304
LIBOFFSET,LINK77 command, 238
Libraries

dynamic link, 237
relocatable binary, 235

LIBRARY,compiler directive, 41, 78
LIBRARY,compiler option, 41, 46
LINK77 commands, 230

*, 232
COMMON_BASE, 233
DEFCOM, 233
ENTRY, 232
FILE, 230
FORCE_LOAD, 230
INCLUDE, 231
LARGE_FILE, 231
LIBOFFSET, 238
LOAD, 230
LOAD_EXHAUSTIVE, 230
MAP, 231
NOSUPPRESS, 232
NOTIFY, 231
PERMIT_DUPLICATES, 231
PRESERVE_CASE, 232
QUIT, 231
REPORT_DEBUG_FILES, 232
SUPPRESS, 232
SUPPRESS_COMMON_WARNINGS, 232
SYMBOL, 233
XREF, 231

LINK77,compiler option, 40, 46, 229
LIST,compiler directive, 35
LIST,compiler option, 23, 46
List-direct I/O, use with internal files, 137
LOAD,LINK77 command, 230
LOAD_EXHAUSTIVE,LINK77 command, 230
Load-and-go facility, 39
Loader diagnostics, 78
Loading, 21
Loading FORTRAN programs using LINK77, 230
LOC intrinsic function, 200
Logical operations,bitwise, 139
LOGICAL* statement, 178
LOGL,compiler option, 31, 46, 98, 178
LOGS,compiler option, 31, 98, 178
Long variable names, 182
Loop invariants, 88

M
MAKE utility, 265
MAKEDA77 command, 99, 130
MAP,compiler option, 25, 46, 204
MAP,LINK77 command, 231
memory limits,DBOS option, 295
Memory map for DBOS, 306
MKLIB,compiler option, 46

MKLIB77
command mode, 236
interactive mode, 236

Multiple opening of a file, 102

N
Namelist-directed I/O, 124
Negative addresses, 302
New line, surpression in FORMAT statement, 137
NO_BINARY,compiler option, 29, 46
NO_COMMENTS,compiler option, 46
NO_CR,compiler option, 29, 46
NO_FAIL,compiler option, 46
NO_FLOATING_TRACKING,compiler option, 46, 88, 94
NO_OFFSET,compiler option, 24, 46
NO_OPTIMISE,compiler option, 86
NO_PEEP_HOLE,compiler option, 47
NO_SHIFT_INTERRUPTS,DBOS option, 294
NO_WARN73,compiler option, 28, 47
NO_WARNINGS,compiler option, 47
NO_WEITEK,compiler option, 86
NOLINK,compiler option, 47
NOLIST,compiler directive, 35
NOSUPPRESS,LINK77 command, 232
NOTIFY,LINK77 command, 231
NOTRACKING,compiler option, 47
NOWEITEK,DBOS option, 294
Numeric checking of variables and array elements, 188
Numeric data,limits for, 79

O
O edit descriptor, 183
Object code

properties of, 29
Octal data values, 182
OLDARRAYS,compiler option, 47, 82
OMF, 241
ONLY_UNDEF,compiler option, 47
OPEN statement

Additional FTN77 features of, 108, 110
Description of specifiers, 107
DRIVER keyword, 109, 113
examples in the use of, 111
general form of, 106
specification of device drivers with, 109, 113

Optimisation, 85
OPTIMISE,compiler option, 47, 85, 86, 202
OPTIONS,compiler directive, 35, 79
OPTIONS,compiler option, 33, 47

P
Page memory exhausted, 301
PAGE,DBOS option, 294, 299
PAGETHROW,compiler option, 23, 47
Paging algorithm, 299

Index

Index-5

PARAMETER names in FORMAT statements, 137
PARAMETER statement, 161
PARAMS compiler option,use with load-and-go, 42
PARAMS,compiler option, 47
PARAMS,RUN77 option, 234
PE, 241
PERMIT_DUPLICATES,LINK77 command, 231
PERSIST,compiler option, 24, 47, 75
Plotter Interfacing, 313
Portable Executable, 241
PRELOAD,RUN77 option, 234
PRESERVE_CASE,LINK77 command, 232
PRIMELINK,DBOS option, 294
Printer,writing directly to, 109
PROFILE,compiler directives, 37
PROFILE,compiler option, 37, 48
Program development, 75
Protected mode, 193, 302

Q
QUIT,LINK77 command, 231

R
Range-check for numeric variables, 189
READ,RUN77 option, 235
READONLY status, 102, 108
READU,RUN77 option, 235
Real mode, 193, 302
Real mode program calling, 315
REAL* statement, 179
Record types

Endfile, 98
Formatted, 98
Unformatted, 96

Register
dumps, 304
locking, 89
tracking, 87

Relocatable binary, 29
REPORT_DEBUG_FILES,LINK77 command, 232
Resource compiler, 19
Routines

Character-handling, 336
Data sorting, 337
File manipulation, 338
Graphics, 340
Graphics plotter/screen, 341
Graphics printer, 342
Mouse, 343
Printer, 344
Process control, 344
Random numbers, 344
Sound, 345
Storage management, 346
System information, 346

Text screen/keyboard, 347
Text Windows, 348
Time and date, 348

RUN77 options
BREAK, 234
HARDFAIL, 234
PARAMS, 234
PRELOAD, 234
READ, 235
READU, 235
WRITE, 235
WRITEU, 235

RUN77 utility, 234
RUNERR@ routine, 105

S
SALFLIBC.DLL, 249
SALFLIBC.LIB, 249
SAVE,compiler option, 29, 48
SCREENSEG@ routine, 306
SEARCHMEM,DBOS option, 293
Sequential access, 101, 128
Sequential unformatted record structure, 100
SET_TRAP@ routine, 191, 200, 206, 301
Shifts,bitwise, 139
SILENT,compiler option, 27, 48
SLINK

Abbreviating commands, 243
Archives, 249
Command line mode, 242
Comment text, 247
Comments, 244
data, 253
Differences between command line mode and
interactive mode, 244
Direct linking with DLLs, 246
Dynamic link libraries, 250
Entry Points, 262
entryname, 252
Generation of archives, 250
Generation of DLLs and exporting of functions, 251
Import Libraries, 249
internalname, 252
Link map, 245
Linking for Debug, 247
Linking multiple object files, 243
Mixing command line script files and interactive
mode script files, 244
Runtime tracebacks, 246
Script or command files, 243
Standard libraries and import libraries, 249
The export command, 252
Unresolved externals, 245
Virtual Common, 248

FTN77 User’s Guide

Index-6

SLINK command
addobj, 250, 253
archive, 253
comment, 247, 253
debug, 247
decorate, 253
dll, 254
entry, 254
export, 251
exportall, 251, 255
exportx, 251, 255
file, 255
filealign, 256
heap, 256
imagealign, 257
imagebase, 257
load, 258
lure, 245, 257
map, 258
notrace, 247, 258
quit, 259
stack, 258
subsystem, 259
virtualcommon, 248, 258

Source file, 22
SPARAM,compiler option, 48, 190
SPECIAL ENTRY statement, 200
SPECIAL PARAMETER statement, 190
SPECIAL SUBROUTINE statement, 200
Compilation, 1
SRC, 19
STACK,compiler option, 32, 48
Statement execution count, 36
Statement function,inline code for, 92
Statement label,use of, 91
Static storage, 29
Statistics,compilation, 27
STATISTICS,compiler option, 28, 48
STDCALL statement, 223
Subroutines

arguments, 202
Substring, 162
SUPPRESS,LINK77 command, 232
SUPPRESS_COMMON_WARNINGS,LINK77 command,
232
SVC pseudo-op’s, 303
SVC/3, 305
SYMBOL,LINK77 command, 233

T
Terminal point,file position, 101
TOUCH utility, 267, 269, 270
TRAP routines in DBOS, 206

U
UNDEF,compiler option, 30, 48, 79, 82, 300
Undefined variables,checking for, 82
UNDERFLOW compiler option,use with load-and-go, 42
UNDERFLOW,compiler option, 48
Unit numbers,permitted values for, 102
UNSAFE,compiler option, 89
Use of the characters @ $ and _, 182
USE_XMS,DBOS option, 295

V
Variables

common, 202
dynamic, 201
static, 202

Virtual address space, 302

W
Warning message, 27
Weitek coprocessor, 91, 197, 201
WEITEK,compiler option, 32, 48, 86
WHILE statement, 184
Windows 3.x,running DBOS applications with, 307
WRITE,RUN77 option, 235
WRITEU compiler option,use with load-and-go, 42
WRITEU,RUN77 option, 235

X
XREF,compiler option, 25, 49
XREF,LINK77 command, 231

Z
Z edit descriptor, 183
ZEROISE,compiler option, 30, 49, 80

	FTN77 User Guide
	Preface
	Contents
	Introduction
	Installation (DOS/Win16)
	Installation (Win32)
	Compiling with FTN77
	Using /LGO and /LINK
	Compiler Options
	Using SDBG
	Program Development
	Optimisation and efficient use of Fortran
	Fortran input/output
	Intrinsic functions
	Fortran 77 character handling
	Language extensions
	In-line assembler
	The in-line assembler and DBOS
	Mixed language programming
	The COMGEN utility
	Calling the Windows API (Win32)
	Linking under DOS/Win16
	Linking under Win32
	Using MK and MK32
	Using Plato
	DBOS (DOS)
	Running DBOS applications under Windows (Win16)
	Plotter interfacing (DOS)
	Calling realmode libraries (DOS)
	Execution errors and IOSTAT values
	Error and exception handling
	Overview of the FTN77 run-time libraries
	Index

